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L^{q}-L^{r} estimate of a generalized Oseen evolution operator, with

applications to the Navier‐Stokes flow past a rotating obstacle
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1 Introduction

Let us consider the motion of a viscous incompressible fluid in  3D exterior domains

when the obstacle (rigid body) moves with prescribed time‐dependent translational and
angular velocities, while the fluid is at rest at spatial inifinity. In a frame attached to the

moving obstacle, the problem is reduced to

 \partial_{t}u+u\cdot\nabla u=Au-\nabla p_{u}+(\eta(t)+\omega(t)\cross x)
\cdot\nabla u-\omega(t)\cross u,

 divu=0,

 u|_{\partial D}=\eta(t)+\omega(t)\cross u , (1.1)
 uarrow 0 as  |x|arrow\infty,

 u(\cdot, 0)=u_{0},

in a fixed exterior domain  D\subset \mathbb{R}^{3} with smooth boundary  \partial D (see Galdi [7] for details),
where  u=u(x, t) and  p_{u}=p_{u}(x, t) are unknown velocity and pressure of the fluid. The
translational and angular velocities of the obstacle are denoted by  \eta(t) and  \omega(t) . Suppose
they converge to some constant vectors  \eta_{\infty},  \omega_{\infty} , respectively, as   tarrow\infty . The existence of

a unique global solution to (1.1) with small  u_{0}\in L^{3}(D) for the case  \{\eta_{\infty}, \omega_{\infty}\}=\{0,0\}
has been studied by the present author [16]. In this article we discuss more relevant case
 \{\eta_{\infty}, \omega_{\infty}\}\neq\{0,0\} . When they are small enough, there is a steady flow  \{u_{s},p_{u_{s}}\} (unique
in the small  \Vert u_{s}\Vert_{3,\infty} ) with respect to a frame attached to the moving obstacle with the
rigid motion  \eta_{\infty}+\omega_{\infty}\cross x , see section 2 for the steady problem (2.1).

The linearization around the steady flow  \{u_{s},p_{u_{s}}\} leads to the non‐autonomous system

 \partial_{t}u+u_{s}\cdot\nabla u+u\cdot\nabla u_{s}=\triangle u-\nabla p_{u}+
(\eta(t)+\omega(t)\cross x)\cdot\nabla u-\omega(t)\cross u,
(1.2)

 divu=0.
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For our goal mentioned above, analysis of large time behavior of solutions to the initial

value problem for (1.2) subject to the homogeneous Dirichlet boundary condition is the
essential step. This is done under the assumption

 \eta, \omega\in C^{\theta}([0, \infty);\mathbb{R}^{3})\cap L^{\infty}(0, 
\infty;\mathbb{R}^{3}) (1.3)

for some  \theta\in(0,1) as well as smallness of the steady flow  u_{s} in  L^{3,\infty}(D) (which is accom‐
plished for small  \eta_{\infty},  \omega_{\infty} ). We show that the linearized operator generates an evolution
operator  \{T(t, s)\}_{t\geq s\geq 0} on  L_{\sigma}^{q}(D) by using evolution operators in the whole space and in

a bounded domain near the boundary. The construction of a parametrix of the evolution

operator in exterior domains is performed along the approach introduced by Hansel and

Rhandi [14], who studied the case  u_{s}=0 , and it is based on a certain iteration combined
with a cut‐off procedure. This procedure provides us with the  L^{q}-L^{r} smoothing rates of

 T(t, s) near the initial time  t=s although it is out of class of parabolic evolution opera‐

tors in the sense of Tanabe [22] on account of the drift term whose coefficient is the rigid
motion. We then follow more or less the idea of [16] based on the duality argument with
use of the first energy relation as well as a cut‐off technique to develop the  L^{q}-L^{r} decay

estimates of the evolution operator  T(t, s) and its adjoint  T(t, s)^{*} as  (t-s)arrow\infty . Unfor‐

tunately our approach does not work for deduction of the pointwise decay of the gradient

of the evolution operator, nevertheless, we can get around this difficulty in construction

of the Navier‐Stokes flow by making use of the energy relation combined with the  L^{q}-L^{r}

estimate. This way was proposed first by the present author [16, Lemma 5.1].
As a result, under suitable conditions, one finds a global solution to (1.1) which goes to

the steady flow  u_{s} as   tarrow\infty , see Theorem 2.1 in the next section, however, in this article

we concentrate ourselves on development of analysis of the linearized operator. Section 3

is devoted to construction of the evolution operator generated by (1.2). In section 4 we
give the outline of the proof of its decay properties.

2 Result

We start with the corresponding steady problem with the rigid motion  \eta_{\infty}+\omega_{\infty}\cross x,

that is,

 -Au_{s}+\nabla p_{Us}-(\eta_{\infty}+\omega_{\infty}\cross x)\cdot\nabla u_{s}+
\omega_{\infty}\cross u_{s}+u_{s}\cdot\nabla u_{s}=0,

 divu_{s}=0,
(2.1)

 u_{s}|_{\partial D}=\eta_{\infty}+\omega_{\infty}\cross x,

 u_{s}arrow 0 as  |x|arrow\infty,
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in the exterior domain  D\subset \mathbb{R}^{3} . When  \omega_{\infty}\neq 0 , the Mozzi‐Chasles transform, see [11,
Section 2] and [9, Chapter VIII], makes it possible to reduce the problem to the particular
case when the translational and angular velocities are parallel each other. In fact, the
drift term can be rewritten as

 ( \eta_{\infty}+\omega_{\infty}\cross x)\cdot\nabla u=\{\frac{(\omega_{\infty}
\cdot\eta_{\infty})\omega_{\infty}}{|\omega_{\infty}|^{2}}+\omega_{\infty}\cross
(x-\frac{\omega_{\infty}\cross\eta_{\infty}}{|\omega_{\infty}|^{2}})\}
\cdot\nabla u.
Thus, by the change  \overline{x}=x-\omega_{\infty}\cross\eta_{\infty}/|\omega_{\infty}|^{2} , the new translational velocity is indeed

parallel to  \omega_{\infty} . In view of this observation, let us consider the cases

(i)  \omega_{\infty}\neq 0,  \omega_{\infty}\cdot\eta_{\infty}=0 (ii)  \omega_{\infty}\neq 0,  \omega_{\infty}\cdot\eta_{\infty}\neq 0 (iii)  \omega_{\infty}=0,  \eta_{\infty}\neq 0

separately. We know from [3], [4], [8], [11], [12] and [15] that there is a constant  \delta_{0}=

 \delta_{0}(D)>0 with the following property: if  |\eta_{\infty}|+|\omega_{\infty}|\leq\delta_{0} , then problem (2.1) admits a
solution  \{u_{s}, p_{u_{s}}\}\in C^{\infty}(D) which is unique in the small (concerning the uniqueness, we
have even more, see [11], [15]). In any case, the solution is of class

  \sup_{x\in D}(1+|x|)|u_{s}(x)|<\infty, \{\nabla u_{s},p_{u_{s}}\}\in L^{3/2,
\infty}(D)\cap H^{1}(D) .

In addition, we have

  \sup_{x\in D}(1+|x|)^{2}|\nabla u_{s}(x)|<\infty (2.2)

for the case (i), while an anisotropic decay structure with wake region leads to

 u_{s}\in L^{q}(D) \forall q\in(2, \infty]; \nabla u_{s}\in L^{r}(D) \forall 
r\in(4/3, \infty]

for the cases (ii), (iii). All the quantities above are bounded by  |\eta_{\infty}| and  |\omega_{\infty}| . Let us
collect the properties of  u_{s} we need in what follows (the last condition in (2.3) follows
actually from (2.2) for the case (i)):

 \{\begin{array}{l}
\{u_{s}, |x|u_{s}, \nabla u_{s}, \nabla^{2}u_{s}, |x|\nabla^{2}u_{s}\}\in 
L^{\infty}(D) ,
\nabla u_{s}\in L^{3/2,\infty}(D) , |x|\nabla u_{s}\in L^{3,\infty}(D) ,
\end{array} (2.3)

 \Vert u_{s}\Vert_{3,\infty}\leq c_{\dagger}(|\eta_{\infty}|+|\omega_{\infty}|)
\leq c_{\dagger}\delta_{0} . (2.4)

Here and throughout this article,  L^{q} and  L^{q,\infty} denote the Lebesgue and Lorentz spaces

endowed with norms  \Vert\cdot\Vert_{q} and  \Vert\cdot\Vert_{q,\infty} . If the region over which those function spaces are

defined is different from the exterior domain  D under consideration, we indicate it, for

instance,  \Vert\cdot\Vert_{q,\mathbb{R}^{3}}.
We find the solution to (1.1) of the form  u=u_{s}+v,  p_{u}=p_{u_{s}}+p_{v} , where the perturbation
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shoud obey

 \partial_{t}v+v\cdot\nabla v+u_{s}\cdot\nabla v+v\cdot\nabla u_{s}=\triangle v-
\nabla p_{v}+(\eta+\omega\cross x)\cdot\nabla v-\omega\cross v+f,

 divv=0,

 v|_{\partial D}=(\eta-\eta_{\infty})+(\omega-\omega_{\infty})\cross x (2.5)
 varrow 0 as  |x|arrow\infty,

 v(\cdot, 0)=v_{0}:=u_{0}-u_{s},

with

 f=\{(\eta(t)-\eta_{\infty})+(\omega(t)-\omega_{\infty})\cross x\}\cdot\nabla u_
{s}-(\omega(t)-\omega_{\infty})\cross u_{s}.

To treat this external force, the last condition in (2.3) is needed. As in [16, Section 5.2],
the lifting function

 b= \frac{1}{2}\nabla\cross[\phi(x)\{(\eta(t)-\eta_{\infty})\cross x-|x|^{2}
(\omega(t)-\omega_{\infty})\}]
of the boundary data in (2.5) is harmless, where  \phi is a suitable cut‐off function. Let us
introduce the linearized operator  L(t) by

 \{\begin{array}{l}
D_{q}(L(t))=\{u\in L_{\sigma}^{q}(D)\cap W_{0}^{1,q}(D)\cap W^{2,q}(D);
(\omega(t)\cross x)\cdot\nabla u\in L^{q}(D)\},
L(t)u=-P[\triangle u+(\eta(t)+\omega(t)\cross x)\cdot\nabla u-\omega(t)\cross u-
u_{s}\cdot\nabla u-u\cdot\nabla u_{s}],
\end{array} (2.6)

where  P denotes the Fujita‐Kato projection associated with the Helmholtz decomposition

of  L^{q}‐vector fields ([6], [20], [21]) and  L_{\sigma}^{q}(D) is the solenoidal  L^{q}‐space,   1<q<\infty . Then
the operator family  \{L(t)\}_{t\geq 0} generates an evolution operator  \{T(t, s)\}_{t\geq s\geq 0} on  L_{\sigma}^{q}(D) ,

see Proposition 3.2. In terms of the adjoint evolution opertor  T(t, s)^{*} as well as  T(t, s) ,

the equation for  w=v-b is described as

 \langle w(t) ,  \psi\rangle=\langle T(t, 0)w_{0},   \psi\rangle+\int_{0}^{t}\langle T(t, \tau)(f+g)(\tau) ,  \psi\rangle d\tau
(2.7)

 + \int_{0}^{t}\{(w\otimes w+w\otimes b+b\otimes w)(\tau), \nabla T(t, \tau)^{*}
\psi\}d\tau, \forall\psi\in C_{0,\sigma}^{\infty}(D) ,

where

 w_{0}=v_{0}-b(\cdot, 0) ,

 g=\triangle b+(\eta+\omega\cross x)\cdot\nabla b-\omega\cross b-\partial_{t}b-b
\cdot\nabla b-u_{s}\cdot\nabla b-b\cdot\nabla u_{s}.

We are now in a position to state the main result. Note that the assumptions  (2.8)-(2.9)
below on  \{\eta, \omega\} imply (1.3), under which the linearized system (1.2) is analyzed. Why
we take  w_{0} from  L_{\sigma}^{3,\infty}(D) rather than  L_{\sigma}^{3}(D) is that the steady flow  u_{s} does not belong

to  L^{3}(D) in general for the case (i) (that is, purely rotating case after the Mozzi‐Chasles
transform). Having the starting problem ([5], [10]) in mind, we prefer to cover the case
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 u_{0}=0 in (1.1). By (2.10) and (2.9) we conclude that   \lim_{tarrow\infty}\Vert u(t)-u_{s}\Vert_{r}=0 for (1.1),
where  r\in(3,6) .

Theorem 2.1 Let

 \eta, \omega\in C^{1}([0, \infty);\mathbb{R}^{3}) . (2.8)

Suppose that there are  \{\eta_{\infty}, \omega_{\infty}\}\in \mathbb{R}^{3}\cross \mathbb{R}^{3} and  \gamma\in(1, \infty) such that

 M_{0}:= \sup_{t\geq 0}(1+t)^{\gamma}(|\eta(t)-\eta_{\infty}|+|\omega(t)-\omega_
{\infty}|)<\infty,
(2.9)

 M_{1} := \sup_{t\geq 0}(1+t)^{1/8}(|\eta'(t)|+|\omega'(t)|)<\infty,
as well as (2.3) and (2.4). Then there is a constant  \delta=\delta(D, \gamma)>0 with the following
property: If  w_{0}\in L_{\sigma}^{3,\infty}(D) and if

 |\eta_{\infty}|+|\omega_{\infty}|+M_{0}+M_{1}+\Vert w_{0}\Vert_{3,\infty}
\leq\delta,

then problem (2.7) admits a unique global solution which enjoys

 \Vert w(t)\Vert_{r}=O(t^{-\mu}) as   tarrow\infty (2.10)

for every  r\in(3,6) with  \mu  := \min\{1/2-3/2r, 1/8\}.

3 Evolution Operator

Let us start with the initial value problem for (1.2) in  \mathbb{R}^{3}\cross(s, \infty) subject to  u(\cdot, s)=f,
where the initial time  s\geq 0 is a parameter. Here, the coefficient  u_{S} is understood

as extension by setting  \eta_{\infty}+\omega_{\infty}\cross x in  \mathbb{R}^{3}\backslash D . By  U_{0}(t, s) we denote the evolution

operator for the case  u_{s}=0 in the whole space. One can explicitly describe the formula

of  U_{0}(t, s) , see [16, (3.4), Lemma 3.1], which together with  \nabla U_{0}(t, s) satisfies the  L^{q}-L^{r}

decay estimates. The regularity of  U_{0}(t, s) in terms of the space

 Y_{q}(\mathbb{R}^{3})=\{u\in L_{\sigma}^{q}(\mathbb{R}^{3})\cap W^{2,q}(\mathbb
{R}^{3});|x|\nabla u\in L^{q}(\mathbb{R}^{3})\}

has been also investigated, see Hansel and Rhandi [14] and the references therein. The
linearized operator  L_{\mathbb{R}^{3}}(t) in the whole space is defined in the same way as in (2.6), then
we note that  Y_{q}(\mathbb{R}^{3})\subset D_{q}(L_{\mathbb{R}^{3}}(t)) for all  t . The following proposition provides a solution

to the initial value problem above. For the proof, the regular solution and the decaying
one to

 u(t)=U_{0}(t, s)f- \int_{s}^{t}U_{0}(t, \tau)Bu(\tau)d\tau,  Bu=P_{\mathbb{R}^{3}}(u_{s}\cdot\nabla u+u\cdot\nabla u_{s}) , (3.1)
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are constructed independently, where  P_{\mathbb{R}^{3}} denotes the Fujita‐Kato projection in the whole

space, but they can be identified each other. In construction of the latter solution, a real

interpolation technique developed by Yamazaki [23] plays a crucial role. This technique
was also adopted in the paper [17, Theorem 2.2, Proposition 4.2] by Schonbek and the
present author, where the situation was quite similar. Notice that this technique does not

provide us with decay properties of the gradient of solutions, however, see (3.4).

Proposition 3.1 Suppose (1.3) for some  \theta\in(0,1) . Let   1<q<\infty . Then there is an
operator family  \{U(t, s)\}_{t\geq s\geq 0} on  L_{\sigma}^{q}(\mathbb{R}^{3}) with the following properties.

1.  U(t, s) is a bounded linear operator from  L_{\sigma}^{q}(\mathbb{R}^{3}) into itself with the semigroup prop‐

erty

 U(t, \tau)U(\tau, s)=U(t, s)  (t\geq\tau\geq s\geq 0) ;  U(s, s)=I,
in  \mathcal{L}(L_{\sigma}^{q}(\mathbb{R}^{3})) .

2. For every  f\in L_{\sigma}^{q}(\mathbb{R}^{3}) , the function  u(t)=U(t, s)f is of class   u\in C((s, \infty);L_{\sigma}^{q}(\mathbb{R}^{3})\cap
 W^{1,q}(\mathbb{R}^{3})) and satisfies (3.1) as well as   \lim_{tarrow s}\Vert u(t)-f\Vert_{q,\mathbb{R}^{3}}=0.

3. Let  \tau_{*}\in(0, \infty) and  r\in[q, \infty] , then there is a constant  C_{\tau_{*}}=C_{\tau_{*}}(q, r, u_{s})>0 such
that

 \Vert\nabla^{j}U(t, s)f\Vert_{r,\mathbb{R}^{3}}\leq C_{\tau_{*}}(t-s)^{-(3/q-
3/r)/2-j/2}\Vert f\Vert_{q,\mathbb{R}^{3}} (3.2)

for all  (s, t) with  0\leq s<t\leq s+\tau_{*} and  f\in L_{\sigma}^{q}(\mathbb{R}^{3}) , where  j=0,1.

4. If in particular  q\in(3/2, \infty) , then the following two assertions hold so that  U(t, s)
is indeed an evolution operator in usual sense:

Fix  s\geq 0 , then for every  f\in Y_{q}(\mathbb{R}^{3}) and   t\in[s, \infty ) we have  U(t, s)f\in Y_{q}(\mathbb{R}^{3}) and
 U(\cdot, s)f\in C^{1}([s, \infty);L_{\sigma}^{q}(\mathbb{R}^{3})) with

 \partial_{t}U(t, s)f+L_{\mathbb{R}^{3}}(t)U(t, s)f=0, t\in[s, \infty) ,

in  L_{\sigma}^{q}(\mathbb{R}^{3}) .

Fix  t\geq 0 , then for every  f\in Y_{q}(\mathbb{R}^{3}) , we have  U(t, \cdot)f\in C^{1}([0, t];L_{\sigma}^{q}(\mathbb{R}^{3})) with

 \partial_{s}U(t, s)f=U(t, s)L_{\mathbb{R}^{3}}(s)f, s\in[0, t],

in  L_{\sigma}^{q}(\mathbb{R}^{3}) .

5. For every  r_{\dagger}\in(q, \infty) , there is a constant  \delta_{*}=\delta_{*}(q, r_{\dagger})>0 with the following

property. If  \Vert u_{s}\Vert_{3,\infty}\leq\delta_{*} , then for every  r\in[q, r_{\dagger} ) there is a constant  C=

 C(q, r_{\dagger}, r, u_{s})>0 such that

 \Vert U(t, s)f\Vert_{r,\mathbb{R}^{3}}\leq C(t-s)^{-(3/q-3/r)/2}\Vert 
f\Vert_{q,\mathbb{R}^{3}} (3.3)

for all  t>s\geq 0 and  f\in L_{\sigma}^{q}(\mathbb{R}^{3}) .
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Although optimal rate of decay of the gradient of the evolution operator is not available,

combining (3.3) with (3.2) simply leads to

 \Vert\nabla U(t, s)f\Vert_{r,\mathbb{R}^{3}}\leq C_{1}\Vert U(t-1, s)f\Vert_{r,
\mathbb{R}^{3}}\leq C(t-s)^{-(3/q-3/r)/2}\Vert f\Vert_{q,\mathbb{R}^{3}} (3.4)

for  t-s>2 as long as  u_{s} is sufficiently small in  L^{3,\infty}(D) ; indeed, (3.4) is needed for
(4.8) and also enough for our aim. Why we need the condition  q>3/2 to get the
fourth assertion above is that the boundedness  \Vert|x|\mathcal{R}f\Vert_{q,\mathbb{R}^{3}}\leq C\Vert|x|f\Vert_{q,\mathbb{R}^
{3}} holds for such

 q by the Muckenhoupt theory, where  \mathcal{R}=\nabla(-\triangle)^{-1/2} is the Riesz transform. Since

 P_{\mathbb{R}^{3}}=I+\mathcal{R}\otimes \mathcal{R} , we find

 \Vert|x|\nabla P_{\mathbb{R}^{3}}f\Vert_{q,\mathbb{R}^{3}}\leq C\Vert|x|\nabla 
f\Vert_{q,\mathbb{R}^{3}}

for  q\in(3/2, \infty) , which together with (2.3) implies that

 \Vert|x|\nabla Bu\Vert_{q,\mathbb{R}^{3}}\leq C\Vert u\Vert_{Y_{q}(\mathbb{R}
^{3})}

for such  q.

We fix  R>0 such that  \mathbb{R}^{3}\backslash D\subset B_{R} and consider the initial value problem for (1.2)
in  D_{R}=D\cap B_{R} subject to the homogeneous Dirichlet boundary condition as well as

 u(\cdot, s)=f . As in the case  u_{s}=0 that was studied by Hansel and Rhandi [14], the
non‐autonomous system (1.2) can be still treated as a simple application of the Tanabe‐
Sobolevskii theory [22], so that the associated linear operator generates an evolution
operator  \{V(t, s)\}_{t\geq s\geq 0} on  L_{\sigma}^{q}(D_{R}),   1<q<\infty , which satisfies the  L^{q}-L^{r} smoothing

estimates near the initial time  t=s . See [16, Lemma 3.2], in which it was further
clarified that the constant  C=C_{\tau_{*}} in those estimates can be taken uniformly in  (s, t)
with  t-s\leq\tau_{*} provided that  \eta and  \omega fulfill (1.3).

We now proceed to the exterior problem, that is, the non‐autonomous sysytem (1.2)
subject to

 u|_{\partial D}=0,  uarrow 0 as  |x|arrow\infty,  u(\cdot, s)=f . (3.5)

Since the linear operator for fixed  t is not a generator of analytic semigroups, the general

theory of parabolic evolution operators [22] is no longer useful. Following the idea due to
Hansel and Rhandi [14], let us sketch the construction of the evolution operator. Given
 f\in L_{\sigma}^{q}(D) , we take suitable two modifications of  f which can be regarded as initial values

in the whole space  \mathbb{R}^{3} and in the bounded domain  D_{R} , respectively. Denoting them still

by the same symbol  f itself for simplicity, we set

 W(t, s)f=(1-\phi)U(t, s)f+\phi V(t, s)f+B[(U(t, s)f-V(t, s)f)\cdot\nabla\phi] , (3.6)

by using both evolution operators explained above and an approproate cut‐off function

 \phi(x) , where  \mathbb{B} stands for the Bogovskii operator in a bounded domain that contains the
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support of  \nabla\phi . The Bogovskii operator provides a particular solution, with several fine

properties such as optimal regularity, to the boundary value problem for the divergence

equation in a bounded domain, see [1], [2], [9] and [13], and is often useful to recover the
solenoidal condition in cut‐off procedures. Let us introduce the space

 Y_{q}(D)=\{u\in L_{\sigma}^{q}(D)\cap W_{0}^{1,q}(D)\cap W^{2,q}(D);|x|\nabla u
\in L^{q}(D)\}.

If in particular  f\in Y_{q}(D) with some  q\in(3/2, \infty) , then the function defined by (3.6)
solves

 \partial_{t}W(t, s)f+L(t)W(t, s)f=PR(t, s)f

in  L_{\sigma}^{q}(D) subject to the initial condition  W(s, s)f=f , where  R(t, s)f is the remainder

which consists of  U(t, s)f and  V(t, s)f (together with the associated pressure) and whose
support is a compact set in  D . If  T(t, s) is an evolution operator generated by (2.6), we
should have

 W(t, s)f=T(t, s)f+ \int_{s}^{t}T(t, \tau)PR(\tau, s)fd\tau.
Therefore, it is reasonable to find the evolution operator  T(t, s) by solving the integral

equation

 T(t, s)f=W(t, s)f- \int_{s}^{t}T(t, \tau)PR(\tau, s)fd\tau.
Let us define the successive approximations  T_{j}(t, s)(j=0,1,2, \cdots) by

 T_{j+1}(t, s)=W(t, s)- \int_{s}^{t}T_{j}(t, \tau)PR(\tau, s)d\tau, T_{0}(t, s)=
W(t, s) .

Thanks to Lemma 5.2 of [14] on iterated convolutions, we obtain the strong convergence
of  T_{j}(t, s)f in  L_{\sigma}^{q}(D) uniformly in  (s, t) with  0\leq s\leq t\leq s+\tau_{*} , where  \tau_{*}\in(0, \infty) is

fixed arbitrarily. To show that the limes  T(t, s)f obtained here provides a strong solution

especially for  f\in Y_{q}(D) , one needs  q\in(3/2, \infty) not only because this condition is already

required for the fourth assertion of Proposition 3.1 but because

 \Vert|x|\nabla Pf\Vert_{q}\leq C\Vert|x|\nabla f\Vert_{q}+C\Vert f\Vert_{W^{1,
q}(D)}

holds for  q\in(3/2, \infty) . Since one has the latter reason even for the case  u_{s}=0 discussed

in the paper [14] by Hansel and Rhandi, the same restriction should be also needed there
although it is not explicitly mentioned in [14].

In this way, we obtain the desired evolution operator. Note that the constant  m in (3.7)
below can be large.

Proposition 3.2 Suppose (1.3) for some  \theta\in(0,1) . Let   1<q<\infty . Then  \{L(t)\}_{t\geq 0}
given by (2.6) generates an operator family  \{T(t, s)\}_{t\geq s\geq 0} on  L_{\sigma}^{q}(D) with the same prop‐
erties as in Proposition 3.1 except the last assertion (on large time behavior) there. Given
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 m\in(0, \infty) as well as  \tau_{*}\in(0, \infty) , the constant  C_{\tau_{*}}=C_{\tau_{*}}(m, q, r, \theta, u_{s}, D) in  L^{q}-L^{r}

smoothing estimate, which corresponds to (3.2), is taken uniformly in  \{\eta, \omega\} which satis‐
fies

  \sup_{t\geq 0}(|\eta(t)|+|\omega(t)|)+St>u^{p_{0}}\frac{|\eta(t)-\eta(s)|+
|\omega(t)-\omega(s)|}{(t-s)^{\theta}}\leq m . (3.7)

The adjoint evolution operator  T(t, s)^{*} must be related to the backward system subject

to the final condition at  t , that is,

 \partial_{s}T(t, s)^{*}g=L(s)^{*}T(t, s)^{*}g,  s\in[0, t] ;  T(t, t)^{*}g=g , (3.8)

in  L_{\sigma}^{q'}(D) , where  1/q'+1/q=1 . We should start with analysis of the adjoint evolution

operator  U(t, s)^{*} in the whole space  \mathbb{R}^{3} , and then we rigorously find the adjoint relation

in  \mathcal{L}(L_{\sigma}^{q}(D)) for every  q\in(1, \infty) as in subsection 2.3 of [16].
Large time behavior of  T(t, s) simultaneously with  T(t, s)^{*} is discussed in the next

section.

4  L^{q}-L^{r} decay estimate

When the linearized system (1.2) is autonomous and  u_{s}=0,  L^{q}-L^{r} decay estimates of the
semigroup and those of its gradient have been developed by several authors since Iwashita

[18] studied such estimates for the Stokes semigroup  (\eta=\omega=0) , see the references in
[16]. Most of those papers rely on spectral analysis. In fact, we have the resolvent for
the autonomous case and analysis of the regularity of the resolvent near  \lambda=0 plays a

crucial role, where  \lambda denotes the resolvent parameter. For the non‐autonomous system,

some particular cases such as the time‐periodic case could be still discussed by means of

spectral analysis, however in general, that is not the case.

We thus take another way with some devise to prove

Theorem 4.1 Suppose (1.3) for some  \theta\in(0,1) . For every  \{q, r\} with  1<q\leq r<\infty,

there is a constant  \delta_{**}=\delta_{**}(q, r)>0 with the following property. If  \Vert u_{s}\Vert_{3,\infty}\leq\delta_{**} , then

for each  m\in(0, \infty) there is a constant  C=C(m, q, r, \theta, u_{s}, D)>0 such that

 \Vert T(t, s)f\Vert_{r}\leq C(t-s)^{-(3/q-3/r)/2}\Vert f\Vert_{q} (4.1)

 \Vert T(t, s)^{*}g\Vert_{r}\leq C(t-s)^{-(3/q-3/r)/2}\Vert g\Vert_{q} (4.2)

hold for all  t>s\geq 0 and  f,  g\in L_{\sigma}^{q}(D) whenever (3.7) is fulfilled.
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The non‐autonomous terms  (\eta+\omega\cross x) .  \nabla u-\omega\cross u are skew‐symmetric, and so is

 u_{s}\cdot\nabla u on account of  divu_{s}=0 . By the Lorentz‐Hoelder inequality and the Lorentz‐

Sobolev embedding relation, we know

 |\langle u\cdot\nabla u_{s}, v\rangle|=|\langle u, -(\nabla v)^{T}u_{s}\rangle|
\leq c_{0}\Vert u_{s}\Vert_{3,\infty}\Vert\nabla u\Vert_{2}\Vert\nabla 
v\Vert_{2},

which leads to the energy inequalities

  \Vert T(t, s)f\Vert_{2}^{2}+\int_{\tau}^{t}\Vert\nabla T(\sigma, s)f\Vert_{2}^
{2}d\sigma\leq\Vert T(\tau, s)f\Vert_{2}^{2} (4.3)

and

  \Vert T(t, s)^{*}g\Vert_{2}^{2}+\int_{s}^{\tau}\Vert\nabla T(t, \sigma)^{*}
g\Vert_{2}^{2}d\sigma\leq\Vert T(t, \tau)^{*}g\Vert_{2}^{2} (4.4)

for all  f,  g\in Y_{2}(D) and  t\geq\tau\geq s\geq 0 , provided that  \Vert u_{s}\Vert_{3,\infty}\leq 1/(2c_{0}) . Let  q\in(1,2].
Under the same conditions as in Theorem 4.1,  L^{q}-L^{r} estimates  (4.1)-(4.2) combined with

 (4.3)-(4.4) imply the following estimates for  f,  g\in C_{0,\sigma}^{\infty}(D) and, therefore, those being in

 L_{\sigma}^{q}(D) :

  \int_{t}^{\infty}\Vert\nabla T(\sigma, s)f\Vert_{2}^{2}d\sigma\leq C(t-s)^{-(3
/q-3/2)}\Vert f\Vert_{q}^{2},
  \int_{0}^{s}\Vert\nabla T(t, \sigma)^{*}g\Vert_{2}^{2}d\sigma\leq C(t-s)^{-
(3/q-3/2)}\Vert g\Vert_{q}^{2},

for all  t>s\geq 0 . The latter estimate is actually employed in the proof of Theorem 2.1.

Since  w_{0} is taken from  L_{\sigma}^{3,\infty}(D) in this theorem, one also needs

 \Vert T(t, s)f\Vert_{r}\leq C(t-s)^{-1/2+3/2r}\Vert f\Vert_{3,\infty}

for  r\in(3, \infty) , which follows from (4.1) by interpolation. We note that the energy relations
 (4.3)-(4.4) play an important role in the proof of Theorem 4.1 as well.

Since the only knowledge about the decay property is (3.3) for the whole space problem,
it is reasonable to regard the exterior flow as a perturbation from (a modification of)
 U(t, s)f . To be precise, given  f\in C_{0,\sigma}^{\infty}(D) , we describe  T(t, s)f in the form

 T(t, s)f=(1-\phi)U(t, s)f+\mathbb{B}[(U(t, s)f)\cdot\nabla\phi]+v(t) (4.5)

by using a suitable cut‐off function  \phi(x) and the Bogovskii operator  \mathbb{B} (see the previous
section) in a bounded domain that contains the support of  \nabla\phi . Then the perturbation
 v(t)=v(t;s) is of class  C^{1}([s, \infty);L_{\sigma}^{q}(D)) and  v(t)\in Y_{q}(D) whenever  q\in(3/2, \infty) ;

furthermore, it obeys

 \partial_{t}v+L(t)v=F(t) ,  t\in[s, \infty) ;  v(s)=\overline{f}:=\phi f-B[f\cdot\nabla\phi] , (4.6)
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with a solenoidal forcing term  F with compact support. Although the explicit form of  F

is omitted here, it consists of several terms all of which involve  U(t, s)f.
We intend to show (4.1) for   2\leq q\leq r<\infty simultaneously with (4.2) for  1<q\leq r\leq 2.

Let  r\in(2, \infty) , then our task is to find the uniform boundedness

 \Vert v(t)\Vert_{r}\leq C\Vert f\Vert_{r} (t-s>3) . (4.7)

Once we have (4.7) with some  r=r_{0}\in(2, \infty) , we get (4.2) for  r\'{O}\leq q\leq r\leq 2 as in
Lemma 4.1 of [16], where l/rÓ  + l/r0  =1 ; by duality, we get (4.1) for  2\leq q\leq r\leq r_{0}

as well. In fact, (4.7) with  r=r_{0} together with (3.3)  (q=r=r_{0}) as well as the third
assertion of Proposition 3.2  (\tau_{*}=3) leads to (4.1) with  q=r=r_{0} and, therefore, (4.2)
with  q=r=r\'{O}. From this latter thing, an interpolation inequality, embedding and

the energy relation of differential form corresponding to (4.4), we obtain a differential
inequality for  \Vert T(t, s)^{*}g\Vert_{2}^{2} with  g\in C_{0,\sigma}^{\infty}(D) as in [19, Section 5]. Solving this inequality
yields the conclusion above.

Given   2<r<r_{\dagger}<\infty (where  r_{\dagger} is soon suitably chosen), the decay properties  (3.3)-
(3.4) imply that the forcing term  F given by (4.6) decays like

 \Vert F(t)\Vert_{r}\leq C(m+\Vert\{u_{s}, \nabla u_{s}\}\Vert_{\infty}+1)(t-s)^
{-(3/r-3/r_{\ddagger)/2}}\Vert f\Vert_{r}  (t-s\geq 1) (4.8)

with  r_{\ddagger}\in(r, r_{\dagger}) provided  \Vert u_{s}\Vert_{3,\infty}\leq\delta_{*}(r, r_{\dagger}) , while (3.2) leads to

 \Vert F(t)\Vert_{r}\leq C(m+\Vert\{u_{s}, \nabla u_{s}\}\Vert_{\infty}+1)(t-s)^
{-1/2}\Vert f\Vert_{r} (0<t-s<1) . (4.9)

Instead of (4.6), as in [16], we use the duality formulation

  \langle v(t), \psi\rangle= \langle\overline{f,}T(t, s)^{*}\psi\rangle+\int_{s}
^{t}\langle F(\tau), T(t, \tau)^{*}\psi\}d\tau (4.10)

for  \psi\in C_{0,\sigma}^{\infty}(D) because we have the advantage that we have only to take a local norm

of the adjoint evolution operator on account of compactness of the supports of  \overline{f} and  F.

Let  t-s>3 and let us concentrate ourselves on consideration of the integral

  J:= \int_{s+1}^{t-1}\langle F(\tau), T(t, \tau)^{*}\psi\}d\tau
since the other parts of the RHS of (4.10) are treated straightforward for every  r\in(2, \infty)
by using  (4.8)-(4.9) (with, say,  r_{\dagger}=25 ) together with (4.4) (and are thus omitted). To
discuss the integral  J , one needs four steps (while three steps are enough for the case
 u_{s}=0 in [16] since  U_{0}(t, s) , see (3.1), enjoys  L^{r}-L^{\infty} decay estimate). Except for the
fourth step, let us choose for instance  r_{\dagger}=25 and adopt (4.8) with  r_{\ddagger}=24 for  r\in(2,8) ;
to be precise,

first step:  r<8/3 , second step:  r<4 , third step:  r<8,
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and then the case   r\in[8, \infty ) is discussed in the last step by choosing another  r_{\dagger} . Let us
begin with the first step in which the only thing we know is the energy inequality (4.4).
Since  F is compactly supported and since  T(t, \tau)^{*}\psi\in Y_{2}(D) vanishes at the boundary
 \partial D , one can use the Poincaré inequality to obtain

 |J| \leq C\Vert f\Vert_{r}\int_{s+1}^{t-1}(\tau-s)^{-3/2r+1/16}\Vert\nabla T(t,
\tau)^{*}\psi\Vert_{2}d\tau . (4.11)

Then (4.4) leads us to

 |J| \leq C\Vert f\Vert_{r}\Vert T(t, t-1)^{*}\psi\Vert_{2}(\int_{s+1}^{t-1}
(\tau-s)^{-3/r+1/8}d\tau)^{1/2}
Recalling the third assertion with  \tau_{*}=1 in Proposition 3.2, we find

 |J|\leq C\Vert f\Vert_{r}\Vert\psi\Vert_{r'} (t-s>3) (4.12)

provided  r\in(2,8/3) , which implies (4.7) for such  r and, thereby, (4.2) with   8/5<q\leq
 r\leq 2 . This yields

 \Vert T(t, s)^{*}\psi\Vert_{2}\leq C_{\varepsilon}(t-s-1)^{-3/16+\varepsilon}
\Vert\psi\Vert_{r'} (4.13)

with arbitrary small  \varepsilon>0 for  t-s>1 by the backward semigroup property when

 r'<8/5 . With this better information (than the energy inequality) at hand, we proceed
to the second step, in which the integral in (4.11) is splitted into

  \int_{s+1}^{(s+t)/2}+\int_{(s+t)/2}^{t-1}
Combining (4.13) with (4.4), we see that

  \int_{s+1}^{(s+t)/2}\Vert\nabla T(t, \tau)^{*}\psi\Vert_{2}^{2}d\tau\leq 
C_{\varepsilon}(t-s-2)^{-3/8+2\varepsilon}\Vert\psi\Vert_{r}^{2}, . (4.14)

From this decay property we use Lemma 3.4 of [16] to find the growth estimate

  \int_{(s+t)/2}^{t-1}\Vert\nabla T(t, \tau)^{*}\psi\Vert_{2}d\tau\leq 
C_{\varepsilon}(t-s-2)^{5/16+\varepsilon}\Vert\psi\Vert_{r'} . (4.15)

Employing these estimates in (4.11), we get (4.12) for  r\in(8/3,4) , which implies (4.2)
with  4/3<q\leq r\leq 2 . Hence, in the third step, we have (4.13) for  r'\leq 4/3 , in which the
rate  -3/16+\varepsilon of decay is replaced by  -3/8+\varepsilon . Accordingly, the rate of decay of (4.14)
and the one of growth of (4.15) are improved as  -3/4+2\varepsilon and   1/8+\varepsilon , respectively. We
then repeat the previous argument to obtain (4.12) for  r\in[4,8), which implies (4.2) with
 8/7<q\leq r\leq 2.
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Finally, suppose   8\leq r<\infty . This time we choose, for instance,  r_{\dagger}=2r+1 and use

(4.8) with  r_{\ddagger}=2r (thus,  \Vert u_{s}\Vert_{3,\infty} must be taken smaller for larger  r ). Then the rate
 -3/2r+1/16 should be replaced by  -3/4r in the integrand of (4.11). We also know
even better rate  -9/16+\varepsilon of decay in (4.13), where it is sufficient to take  \varepsilon such that
 1/16<\varepsilon<1/16+3/4r . By the same argument as in the second and third steps,

we find (4.12) even if  r is arbitrarily large. As a consequence, we conclude (4.1) with
  2\leq q\leq r<\infty as well as (4.2) with  1<q\leq r\leq 2.

The opposite case, that is, (4.1) with  1<q\leq r\leq 2 and (4.2) with   2\leq q\leq r<\infty , can
be discussed by means of the similar method in which the role of  T(t, s) and the one of

 T(t, s)^{*} are replaced each other. The remaining case  q<2<r is filled easily on account

of the semigroup property of evolution operators.
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