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1 Introduction

This paper provides a rather elementary and selfcontained presentation of a finite element
space that can be used for Galerkin approximations of the Stokes equation. This finite
element space was first defined in [8]. There, the language used was that of differential
forms, which makes it possible to give a uniform treatment of all space dimensions, and to
place the problem within the larger context of constructing complexes of differential forms.
On the other hand this language has not been adopted by all finite element practitioners.
Here, we use vectorfields in \mathbb{R}^{3} and standard vector identities (involving for instance the
vector product), and concentrate on the last two spaces in the complexes, which are the
ones relevant to Stokes’ equation. Compared with existing finite element methods, the
advantage of this one is that the space comes equipped with degrees of freedom that are
low order (don’t involve derivatives) and produce interpolators that satisfy a commuting
diagram. This makes the numerical analysis of the stability and convergence of the method
very natural.

Hopefully this presentation can reach a larger audience than the rather technical paper
[8]. We hope in particular it can provide the information necessary for implementing this
method. It was also an honor and a pleasure to attend the RIMS workshop”Mathematical
Analysis in Fluid and Gas Dynamics” (July 4‐ 6, 2018) where these results were pre‐
sented. Hopefully this paper can be useful to analysts who are curious about finite element
methods. We notice that many theoretical existence proofs for Navier‐Stokes equations
are based on Galerkin methods. For instance, [4] uses this method with Galerkin spaces
defined from eigenfunctions of the Stokes operator, but most of their analysis extends to
the type of Galerkin spaces we define here. In this direction it can also be mentioned that
some famous analysis tools have genuine extensions to a finite element setting [5] [7].

The Stokes equation. The Stokes equation arises as a simplified model in fluid mechan‐
ics, and can be derived from the incompressible Navier‐Stokes equations by looking for
solutions that are constant in time and for which the non‐linear term (convection) is
negligible. It takes the following form. We fix a bounded connected domain  S in  \mathbb{R}^{3}

whose boundary is Lipschitz, in the sense that locally it is the graph of a scalar Lipshitz
functions. Then we want to find a vector field  u on  S (modelling fluid velocities) and a
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scalar field  p on  S (modelling pressure) such that:

 -\epsilon\triangle u- grad p  =f , (1)
 divu=g . (2)

The vector field  f (modelling an external force) and the scalar field  g (which would be  0

for an incompressible fluid) are supposed given. The most important boundary condition
is the so‐called no‐slip boundary condition: all components of  u on the boundary  \partial S are
zero :  u|_{\partial S}=0 . For  p there are no boundary conditions, but for uniqueness we impose
that   \int p=0 . There is a compatibility condition, namely   \int g=0.

The appropriate functional framework is to look for  u in the Sobolev space  X=H_{0}^{1}(S)^{3}
of vector fields that are square integrable with first order partial derivatives that are also
square integrable. The no‐slip boundary condition is expressed in the subscript. The field
 p is looked for in  Y=L_{0}^{2}(S) , where the subscript indicates  0 integral. One supposes that
 f\in X'=H^{-1}(S)^{3}=(H_{0}^{1}(S)^{3})' and  g\in Y'=Y=L_{0}^{2}(S) .

The variational formulation of the Stokes equation is then:

 \{p\in Yu\in X  \{\begin{array}{ll}
\forall u'\in X \int\epsilon grad u\cdot grad u'+\int pdivu'   =\int f\cdot u'
\forall p'\in Y \int p'divu   =\int gp'
\end{array} (3)

Given  (f, g)\in X'\cross Y' , there is a unique solution  (u, p)\in X\cross Y.
The main ingredient in the wellposedness of the Stokes equation is the surjectivity

of  div :  H_{0}^{1}(S)^{3}arrow L_{0}^{2}(S) . This is equivalent to the property that the adjoint operator,
namely grad :  L_{0}^{2}(S)arrow H^{-1}(S)^{3} , is injective and has closed range. This again is equivalent
to the following inequality, due to Lions and Nečas: There exists  C>0 such that for all
 u\in L_{0}^{2}(S) :

 \Vert u\Vert_{L^{2}(S)}\leq C\Vert grad u  \Vert_{H^{-1}(S)^{3}} . (4)

For proofs of this inequality, and its relation to the Stokes equation, we refer to Chapter
4 of [4] or Chapters 13—15 of [15].

It can also be remarked that on a domain  S which is starshaped with respect to a
ball, Bogovskii has defined an integral operator that provides an explicit right inverse of
 div :  H_{0}^{1}(S)^{3}arrow L_{0}^{2}(S) . The Bogovski

 \breve{}

ı operator is the formal adjoint of the regularized
Poincaré operator. On bounded Lipschitz domains, a partition of unity technique can be
used to glue together regularized Poincaré operators, to provide a homotopy between the
identity and a compact operator, and then Fredholm theory shows that grad :  L^{2}(S)arrow
 H^{-1}(S)^{3} has closed range, from which (4) follows. We refer to [11] for an exposition
of these operators and their mapping properties, including the above mentioned gluing
construction.

The role of Poincaré operators in the construction of certain finite element spaces (such
as the Raviart‐Thomas‐Nédélec spaces defined below) has been highlighted in [12]. The
finite elements we introduce for the Stokes equation are also based on such operators, but
this is most apparent when the whole complex is considered (see the last section below).

Galerkin discretizations of the Stokes equation. A conforming discretization of the Stokes
equation is to identify finite dimensional subspaces  X_{h}\subseteq X and  Y_{h}\subseteq Y , depending on
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a small parameter  h which is typically the maximal diameter of the tetrahedra in some
mesh  T_{h} of the domain  S . One solves:

 \{p_{h}\in Y_{h}u_{h}\in X_{h}  \{\begin{array}{ll}
\forall u_{h}'\in X_{h} \int\epsilon grad u_{h}\cdot grad u_{h}'+\int p_{h}divu_
{h}'   =\int f_{h}\cdot u_{h}'
\forall p_{h}'\in Y_{h} \int p_{h}'divu_{h}   =\int g_{h}p_{h}'
\end{array} (5)

One is interested in the convergence of  u_{h} to  u and  p_{h} to  p as  h goes to  0. A necessary
condition for this convergence to hold (for all  f\in X' and all  g\in Y' ) is the so‐called
Brezzi inf‐sup condition: There exists a constant  C>0 such that for all  h :

 q_{h} \in Y_{h}\dot{{\imath}}nf\sup_{v_{h}\in X_{h}}\frac{\int q_{h}divv_{h}}
{\Vert q_{h}||_{Y}\Vert v_{h}\Vert_{X}}\geq 1/C . (6)

In the context of conforming finite element methods for the Stokes equation this con‐
dition is also sufficient for convergence (the inf‐sup condition can be formulated in the
more general context of mixed methods, where an additional condition must hold, that
is trivially satisfied for the Stokes equation). It expresses that the pair  (X_{h}, Y_{h}) must be
compatible in a sense: for instance, the  L^{2} ‐projection from  Y_{h} to the range of  div on  X_{h}
must be injective. Notice that if  Y_{h} is much smaller than  divX_{h} then, in the case  g=0
of incompressible flow, the numerical method does not in general produce divergence free
vectorfields  u_{h} . This can be a serious problem, even though the numerical method is
convergent, as discussed in [13].

Ideally one would like to construct pairs  (X_{h}, Y_{h}) such that  div :  X_{h}arrow Y_{h} is surjec‐
tive. Then the method produces divergence free vector fields when it should. However
surjectivity is not enough ; when it holds, the Brezzi the inf‐sup condition is equivalent
to the following property:

Stable discrete surjectivity: There is a constant  C>0 such that for each  h , for
each  q_{h}\in Y_{h} there is  v_{h}\in X_{h} such that  divv_{h}=q_{h} and  \Vert v_{h}\Vert_{X}\leq C\Vert q_{h}\Vert_{Y}.

This property should be compared with the main step to show that the continuous
Stokes equation is well‐posed, which we recall was to prove that  div:Xarrow Y is surjective.
The stable discrete surjectivity can be deduced from the continuous surjectivity if one
knows how to construct surjective projections  P_{h}^{X} :  Xarrow X_{h} and  P_{h}^{Y} :  Yarrow Y_{h} which are
bounded in the operator norms of  X and  Y respectively, uniformly with respect to  h , and
such that the following diagram commutes:

 Xarrow^{div}Y (7)

 X_{h}arrow Y_{h}\downarrow P_{h}^{x_{div}}\downarrow P_{h}^{Y}
In practice  P_{h}^{Y} will often be the  L^{2}‐projection onto  Y_{h} . The existence of a uniformly
bounded  P_{h}^{X} (called a Fortin operator) is equivalent to the stable discrete surjectivity,
but in practice the way towards a proof of the inf‐sup condition is to define a finite
element for which a  P_{h}^{Y} can be constructed a priori (see the discussion in §5.4 and §8.4
in [3]).

174



175

The construction of a Stokes pair  (X_{h}, Y_{h}) equipped with natural operators  P_{h}^{Y} and
 P_{h}^{X} with the above properties, is delicate. Many existing methods are justified by other
means, in particular the macro‐element technique of Stenberg (see §8.5 in [3]).

Notice that the first method one might think of, namely to use a tetrahedral mesh (with
meshwidth h) and continuous piecewise affine velocities (for  X_{h} ) and piecewise constant
pressures (for  Y_{h} ), is an unstable method. For an overview over finite element methods
that have been proposed for the Stokes problem, including the various tricks that have
been devised to prove the inf‐sup condition, we refer to Chapter 8 of [3].

A related model problem. If we replace the viscosity term by a reactive term in the
Stokes equation, we arrive at the following problem, for some  \lambda>0 :

 \lambda u- gradp  =f , (8)
 divu=g (9)

Now the relevant boundary condition for  u is that the normal component on  \partial S is  0 (so
that the fluid velocity is parallel to the boundary) as in the Euler equation.

The appropriate function space for  u is now  Z=H_{0}^{0}(div, S) , the space of  L^{2} vectorfields
with divergence in  L^{2} , satisfying this boundary condition (indicated in the subscript). This
space is strictly larger than  X . The variational formulation of this equation is:

 \{p\in Yu\in Z  \{\begin{array}{ll}
\forall u'\in Z \int\lambda u\cdot u'+\int pdivu'   =\int f\cdot u'
\forall p'\in Y \int p'divu   =\int gp'
\end{array} (10)

Given  (f, g)\in Z'\cross Y' , there is a unique solution  (u,p)\in Z\cross Y.
Good discretizations are now obtained by defining subspaces  Z_{h}\subseteq Z and  Y_{h}\subseteq Y such

that there exists a constant  C>0 such that for all  h :

 q_{h} \in Y_{h}\dot{{\imath}}nf\sup_{v_{h}\in Z_{h}}\frac{\int q_{h}
d\dot{{\imath}}vv_{h}}{\Vert q_{h}||_{Y}||v_{h}||_{Z}}\geq 1/C . (11)

Good finite elements for this equations have been known for a long time, namely the
Raviart‐Thomas‐Nédélec (RTN) spaces. They provide a pair  (Z_{h}, Y_{h}) for which  div :
 Z_{h}arrow Y_{h} is stably surjective in the above sense. In the spaces  Z_{h} , the vector fields are
continuous only in the normal direction across two‐dimensional faces, so that they would
not provide conforming spaces for the Stokes equation. Recall that a vectorfield that is
piecewise smooth with respect to a simplicial mesh, is in  H^{0}(div, S) if an only if it is
continuous in the normal direction across two‐dimensional faces.

We now provide the definition of the lowest order RTN spaces, since they provide a
template for the Stokes element we will introduce later.

We suppose that the domain is subdivided into tetrahedra by a simplicial mesh  T_{h},
where  h is the mesh‐width. The elements of  Z_{h} are the vectorfields in  Z that are piecewise
of the form:

 v:x\mapsto ax+b , (12)
with  a\in \mathbb{R} and  b\in \mathbb{R}^{3} . On a given tetrahedron  T , this is a 4‐dimensional space, and an
elements  v is uniquely determined by the 4 numbers:

  \int_{F}v\cdot n_{F} , (13)
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which are the integrals, for each triangular face  F of  T , of the normal component of  v(n_{F}
denotes the normal vector of  F , for a choice of orientation). Since the normal component
of a field of the form (12) is constant, globally determining a vectorfield by the numbers
(13) guarantees  H^{0}(div, S) continuity. Incidentally this shows that the dimension of  Z_{h} is
the number of interior faces.

The degrees of freedom (13) determine a projection onto  Z_{h} , the so‐called associated
interpolator. One can define it for instance on piecewise smooth vectorfields on  S that
are elements of  Z , the space of which is denoted  \tilde{Z}_{h} . The interpolator  I_{h}^{Z} :  \tilde{Z}_{h}arrow Z_{h} is
defined by associating to vectorfield  v\in\tilde{Z}_{h} , the element  I_{h}^{Z}v of  Z_{h} with the same degrees
of freedom.

For  Y_{h} one takes the piecewise constant functions on  S , with  0 integral. The degree of
freedom associated with a tetrahedron  T is the integral on  T . The associated interpolator
 I_{h}^{Y} is then the  L^{2} projection on each tetrahedron. We let  \tilde{Y}_{h} denote the space of elements
of  Y that are piecewise smooth.

These spaces and operators have the property that the following diagram commutes:

 \tilde{Z}_{h}arrow^{d_{{\imath}}^{\dot{}}v}\tilde{Y}_{h} (14)

 \downarrow I_{h}^{z_{div}} \downarrow I_{h}^{Y}
 Z_{h}arrow Y_{h}

Indeed, given that  I_{h}^{Z} and  I_{h}^{Y} are projections, it is enough to check that if  I_{h}^{Z}u=0 then
 I_{h}^{Y}divu=0 , and this follows from Stokes’ theorem, written:

  \int_{T}divu=\sum_{F}o(T, F)\int_{F}u\cdot n_{F} , (15)

where the sum is over the faces  F of  T , given their relative orientation  o(T, F)\in\{+1, -1\}
(which is  +1 iff  n_{F} is outward pointing, compared with  T).

Ideally, instead of diagram (14), one would like to have commuting projection operators
onto  Z_{h} that are defined on larger spaces, especially  Z or even  L^{2}(S)^{3} . For this purpose
one can precede the interpolation by a smoothing operator, where the smoothing kernel
is adapted to the mesh. For quasi‐uniform meshes and periodic domains one can use
smoothing by convolution:

 u\mapsto\phi_{\epsilon h}*u , (16)

for a fixed small enough parameter  \epsilon>0 . Here,  \phi_{\epsilon h} is the standard mollifier, scaled so that
its support is in a ball of diameter  \epsilon h . For details on how to modify the method to take
into account boundary conditions or the possibility that the diameter of the cells in the
mesh varies significantly across the domain (while the mesh remains shape‐regular), we
refer to [10] and [9]. The conclusion is that an interpolator such as the above, defined from
degrees of freedom, can be modified by a smoothing step, so that one obtains commuting
projections that are bounded in  L^{2}(S) , uniformly in  h . From this the stable discrete
surjectivity follows.
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2 A finite element for Stokes

We now proceed to define a Stokes pair  (X_{h}, Y_{h}) , which, for its properties, mimicks as
far as possible the RTN element, in particular in the sense that there are natural degrees
of freedom, for which the associated interpolator satisfies a commuting diagram. Inci‐
dentally the space  Y_{h} is the same as for the RTN element, as it consists of the piecewise
constants, with  0 integral on  S . Another source of inspiration for the Stokes element was
the Clough‐Tocher element for scalar fields of class  C^{1}(S) , in that we define vectorfields
on a tetrahedron that are piecewise polynomial with respect to a subdivision of the tetra‐
hedron. Finally it can be remarked that our degrees of freedom coincide with those of
[2], though the vectorfields they define are quite different, in particular they do not have
piecewise constant divergence.

The subdivision of a tetrahedron we use, as well as the degrees of freedom, are repre‐
sented in Figure 1.

 \underline{div}

Figure 1: Stokes pair

The subdivision of the tetrahedron that we use is known as a Worsey‐Farin split.  A

point  W_{T} is chosen in the interior of the tetrahedron. Moreover, an interior point  W_{F} is
chosen in each face  F . Then  W_{F} is connected by edges to each vertex of  F , defining a
subdivision of the face  F into three triangles. Finally  W_{T} is connected by edges to each
vertex of  T , as well as to  W_{F} for each face  F of  T . Interior faces and tetrahedra are added,
so that we have, for each face  F , three tetrahedra whose base are the three triangles in
the face  F already mentioned and whose top vertex is  W_{T} . In total, this divides  T into
12 smaller tetrahedra (3 for each of the 4 faces). We denote by  \mathcal{R}(T) this refinement of
 T.

As we shall see, and as is required in a proper Worsey‐Farin split, when two tetrahedra
 T and  T' share a two‐dimensional face  F , then  W_{F} should lie on the line joining  W_{T}
and  W_{T'} . This will be important for ensuring interelement continuity of the vectorfields.
However the definition of the finite element does dot depend on this property and is local
to each  T.

Fix now a tetrahedron  T . We define the following spaces of vectorfields on  T :

 K(T)=\{v\in C^{0}P^{1}(\mathcal{R}(T), \mathbb{R}^{3}) : divv=0\} , (17)
 X(T)=K(T)\oplus\{x\mapsto a(x-W_{T}) : a\in \mathbb{R}\} (18)
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In words, for  K(T) we consider the continuous vectorfields on  T that are piecewise affine
with respect to  \mathcal{R}(T) , and that are moreover divergence free. In order to define  X(T)
we add a one dimensional space of vectorfields with constant divergence, from the RTN
space.

On the space  X(T) we consider the following degrees of freedom:

 \bullet evaluation of the vector field (3 components) at the 4 vertices.

 \bullet integration of the normal component on the 4 triangular faces.

This may be considered as a list of 16 linear forms, and one sees that they span a 16‐
dimensional space of linear forms on, say the continuous vectorfields on  T.

Theorem 2.1. The space  X(T) is 16‐dimensional and the above degrees of freedom are
unisolvent on  X(T) , in the sense that given 16 real numbers, there is a unique element of
 X(T) such that the degrees of freedom evaluate to these numbers.

The proof of this theorem will occupy much of the remainder of this section, and will
be decomposed into a succession of lemmas.

Lemma 2.2. The space  K(T) has dimension at least 15.

Proof. An element of  C^{0}P^{1}(\mathcal{R}(T), \mathbb{R}^{3}) is uniquely determined by its vertex values, at the
vertices of  \mathcal{R}(T) , of which there are 4  + 4  + 1 (4 vertices of  T , the interior points on the
4 faces of  T , and one interior point in  T). Thus the dimension of this space is 27.

The divergence of an element of this space is piecewise constant with respect to  \mathcal{R}(T) ,
which consists of 12 small tetrahedra. Thus  K(T) has dimension at least  27-12=15.  \square 

Lemma 2.3. Consider a two‐dimensional face F. We denote by  \mathcal{R}(F) the refinement
of  F stemming from  \mathcal{R}(T) , that divides  F into 3 triangles having  W_{F} as vertex. Let
 v\in X(T) and let  e_{F} be the vector  e_{F}=W_{F}-W_{T} , which is transverse to F. We let
 (v\cross e_{F})_{F} be the tangential component of  v\cross e_{F} on the face F. Then  (v\cross e_{F})_{F} is an
affine vectorfield on  F.

Proof. (i) We use the notation  e=e_{F} . We notice the formula (a special case of Cartan’s
formula for Lie derivatives):

 \partial_{e}v=(divv)e+cur1(v\cross e) , (19)

which we consider inside the tetrahedron with base  F and vertex  W_{T}.

There, we see that  \partial_{e}v (the derivative of  v along e) is piecewise constant with respect to
 \mathcal{R}(T) , yet continuous. Therefore it is constant. For the proof it is enough to consider the
case  v\in K(T) , that is  divv=0 . We then get that cur1  (v\cross e) is constant. In particular
its normal trace on  F is constant. This proves that rot  (v\cross e)_{F} is constant on  F.

(ii) We now proceed to show that if a tangent vectorfield  u on  F , which is continuous on
 F and piecewise affine with respect to  \mathcal{R}(F) , has constant rot on  F , then it is affine. For
this purpose it is enough to show that if  u is  0 at the 3 vertices of  F then it is  0 , so we
consider this hypothesis. We first remark that  u restricts to  0 on the boundary  \partial F of  F.

This gives   \int rotu=0 therefore rot  u=0 . Let now  V_{0},  V_{1},  V_{2} be the vertices of  F.
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We let  [W_{F}, V_{i}, V_{l+1}\prime] be the triangle with vertices  W_{F},  V_{i},  V_{i+1} . We have:

 0= \int_{[W_{F},V_{i},V_{i+1}]} rot   u= \int_{\partial[W_{F},V_{i},V_{l+1}]}u\cdot\tau , (20)

 =1/2u(W_{F})\cdot(V_{i}-W_{F})-1/2u(W_{F})\cdot(V_{i+1}-W_{F}) . (21)

This shows that the three numbers  u(W_{F})\cdot(W_{F}-V_{i}) are equal.
On the other hand, let  \alpha_{i} be the barycentric coordinate of  W_{F} , in  F , with respect to

V. Then we have:

  \sum_{i}\alpha_{i}u(W_{F})\cdot(V_{i}-W_{F})=u(W_{F})\cdot(\sum_{i}\alpha_{i}
V_{\dot{i}}-W_{F})=u(W_{F})\cdot(W_{F}-W_{F})=0 . (22)

This shows that  u(W_{F})\cdot(V_{i}-W_{F})=0 for each  i . Therefore  u(W_{F})=0 . This shows

that  u=0.  \square 

Lemma 2.4. Let  F be a face of  T and let  \overline{F} be the tangent vector space of F.  As

in the previous lemma, we let  e_{F}=W_{F}-W_{T} . For a vector  u\in \mathbb{R}^{3} , we denote by
 u_{F}=u-(u\cdot n_{F})n_{F}\in\overline{F} its tangent component along F. We have an isomorphism:

 \{\begin{array}{l}
\mathbb{R}^{3} arrow \overline{F}\cross \mathbb{R}
u \mapsto ((u\cross e_{F})_{F}, u\cdot n_{F})
\end{array} (23)

Proof. From the point of view of differential forms, it is natural to prove that the pair
 ((u\cross e)_{F}, u\cdot n_{F}) determines the antisymmetric form  \det(u, \cdot, \cdot) which in turn determines
 u.

One can introduce an orthonormal basis  (\tau_{1}, \tau_{2}) of  \overline{F} , so that  \tau_{1}\cross\tau_{2}=n_{F} . Then
 \det(u, a, b) is known for  \{a, b\}\subseteq\{e_{F}, \tau_{1}, \tau_{2}\}.  \square 

Lemma 2.5. Let  v\in X(T) and suppose that the 16 degrees of freedom are  0 , namely
vertex values and integrals of normal components on faces. Then  v=0.

Proof. (i) The divergence of  v is a constant, with integral  0 , from Stokes’ theorem, so
 divv=0.

Remark next that on each of the 4 faces  F of  T,  (v\cross e_{F})_{F} is affine and  0 at vertices,
hence  0 . Moreover  v\cdot n_{F} is continuous and piecewise affine with respect to  \mathcal{R}(F) ; being
 0 at vertices of  F and having  0 integral, it is  0.

By Lemma 2.4 it follows that  v is  0 on  \partial T . It remains to be proved that  v(W_{T})=0.

(ii) Denote by  V_{0},  V_{1},  V_{2},  V_{3} the vertices of  T.

For each edge  E=E_{ij}=[V_{i}, V_{j}] of  T , we may consider the triangle  [W_{T}, E]=
 [W_{T}, V_{i}, V_{j}] and we let  n_{E} be the unit normal vector. We then let  c_{E} be the number:

 c_{E}= \int_{[W_{T},E]}u\cdot n_{E} . (24)

We now show that  c_{E}=0.
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Notice that  u is affine on  [W_{T}, E] , and that  W_{T} is the only vertex where it is non‐zero.
We deduce:

 c_{E}= \frac{1}{6}u(W_{T})\cdot((V_{i}-W_{F})\cross(V_{j}-W_{F})) . (25)

For each triangular face  F of  T we write Stokes theorem on the tetrahedron with base
 F and top vertex  W_{T} . This gives:

  \sum_{E}o(F, E)c_{E}=0 , (26)

where the edges  E we sum over are those in the boundary of  F . This can be interpreted
as saying that the coboundary of the cochain  c. is  0.

For each vertex  V_{\dot{i}} of  T we let  \alpha_{i} be the barycentric coordinate of  W_{T} with respect to
V. For each  i we can write:

  \sum_{j\neq i}\alpha_{j}o(E_{ij}, V_{i})c_{E_{ij}}=\sum_{j\neq i}\alpha_{j}
u(W_{T})\cdot((V_{\dot{i}}-W_{T})\cross(V_{j}-W_{T})) , (27)

 =u(W_{T}) \cdot((V_{i}-W_{T})\cross(\sum_{j\neq i}\alpha_{j}V_{j}-W_{T})) , (28)

 =u(W_{T}) \cdot((V_{\dot{i}}-W_{T})\cross(\sum_{j}\alpha_{j}V_{j}-W_{T})) , (29)

 =u(W_{T}) . ((  Ví—  WT )  \cross(W_{T}-W_{T}) )  =0 . (30)
(31)

If we denote by  \alpha_{E_{\dot{x}j}}=\alpha_{i}\alpha_{j} this gives, for each vertex  V of  T :

  \sum_{E}o(E, V)\alpha_{E}c_{E}=0 , (32)

where the sum extends over edges  E containing  V . This can be interpreted as saying that
a boundary of a weighted version of the cochain  c. is  0 . One now uses that the cochain
complex of a simplex is exact.

Explicitely, from (26) it follows that there are numbers  c_{V} attached to the vertices  V

of  T such that:

 c_{E}= \sum_{V}o(E, V)c_{V} . (33)

Plugging this into (32) gives  c_{E}=0 , for each  E . It then follows that  u(W_{T})=0.
 \square 

We are now in a position to prove Theorem 2.1:

Proof. It follows from Lemma 2.2 that the dimension of  X(T) is at least 16. From Lemma
2.5 it then follows that the dimension of  X(T) is exactly 16, and that the degrees of
freedom are linearly independent on  X(T) .  \square 
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Along the way we have also assembled the results necessary to prove the following. We
suppose that the mesh  T_{h} has been refined by a Worsey‐Farin split, which we denote by
 \mathcal{R}_{h}.

Let  \tilde{X}_{h} consist of elements of  X that that are piecewise smooth with respect to  \mathcal{R}_{h},
and likewise for  \tilde{Y}_{h} . The gobal finite element space  X_{h} consists of the elements in  X such
that the restriction to each tetrahedron  T in  T_{h} is in  X(T) . Such fields are in  \tilde{X}_{h} . Recall

that  Y_{h} consists of the piecewise constants.

Theorem 2.6. The degrees of provided freedom define interpolators that map onto  X_{h}
and  Y_{h} and satisfy the commuting diagram:

 \tilde{X}_{h}arrow^{d_{{\imath}}^{\dot{}}v}\tilde{Y}_{h} (34)

 X_{h}arrow Y_{h}\downarrow I_{h}^{x_{d\dot{{\imath}}v}}\downarrow I_{h}^{Y}
Proof. We check that the degrees of freedom guarantee interelement continuity, so that  I_{h}^{X}
maps into  X_{h} . Let tetrahedra  T and  T' in  T_{h} share a triangular face  F . By the hypothesis
that the split is Worsey‐Farin, the vectors  e_{F} and  e_{F}' defined by Lemma 2.3 for  T and
 T' respectively, are proportional to each other. Recall that for an element  v of  X(T) the
tangent component  (v\cross e_{F})_{F} is affine and  v\cdot n_{F} is piecewise affine, and similarly for an
element of  X(T') . The degrees of freedom attached to  F are unisolvent on such fields.
By Lemma 2.4 this guarantees that the interpolate of an element  v of  \tilde{X}_{h} has the same
restrictions on  F from  T and  T' . Therefore the interpolate is continuous.

The commutation follows from Stokes theorem.  \square 

3 Finite element complexes

Complexes with minimal regularity A more complete point of view on the RTN spaces
is as follows. We consider the Hilbert complex consisting of spaces  W^{k} defined by:

 W^{0}=H^{1}(S)=\{u\in L^{2}(S) : grad u  \in L^{2}(S)^{3}\} , (35)
 W^{1}=H^{0} (curl,  S )  = {  u\in L^{2}(S)^{3} : curl  u\in L^{2}(S)^{3} }, (36)

 W^{2}=H^{0}(div, S)=\{u\in L^{2}(S)^{3} : divu\in L^{2}(S)\} , (37)

 W^{3}=L^{2}(S) . (38)

The two middle spaces are spaces of vector fields adapted to the curl and  div operators,
while the first and last spaces are spaces of scalar fields. The Nédélec spaces provide
subspaces  W_{h}^{k}\subseteq W^{k} equipped with interpolation operators  I_{h}^{k} which are projections onto
 W_{h}^{k} that are defined on dense subspaces of  W^{k} containing the piecewise smooth fields.
Crucially, these operators commute with the relevant differential operators grad, curl,  div.

By combining these interpolation operators with a smoothing technique one can extend
the domain of definition, to get projections  P_{h}^{k} :  W^{k}arrow W_{h}^{k} such that the following
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diagram commutes:

 W^{0}arrow^{grad}W^{1}arrow^{cur1}W^{2}arrow^{d_{{\imath}}^{\dot{}}v}W^{3} (39)

 W_{h}0^{g{\imath} d\dot{{\imath}}v}arrow W_{h}^{1_{arrow}^{cur}}W_{h}^{2}arrow 
W_{h}^{3}\downarrow P_{h}^{0}\downarrow P_{h}^{1}\downarrow P_{h}^{2}\downarrow 
P_{h}^{3}
These spaces have proved very useful for several PDEs describing fluid flow and elec‐

tromagnetic waves, but are not convenient for the Stokes equation. The vectorfields in
 W_{h}^{2} are adapted to the  div operator, but are not continuous in the tangential direction
on interfaces of the mesh. On the other hand the vectorfields in  W_{h}^{1} are continuous in

the tangential direction, but not in the normal direction, on interfaces of the mesh. The
language of differential forms enables one to extend the above complexes of finite element
spaces to arbitrary dimension [12] [6] [1].

Complexes for the Stokes equation. The previous example motivates the search for a
Hilbert complex setting for the Stokes equation, as in [14].

A natural complex to consider consists in replacing  L^{2} by  H^{1} throughout:

 H^{2}(S)arrow H^{1}grad (curl,  S )  arrow^{cur{\imath}}H^{1}(div, S)arrow^{div}H^{1}(S) . (40)
However this forces the pressure to become continuous, which is not always wise. One
can therefore consider the alterative complex:

 H^{2}(S)arrow H^{1}grad  (curl,  S)^{cur1}arrow H^{1}(S)arrow^{div}L^{2}(S) . (41)
The goal is then to construct finite dimensional subcomplexes of these spaces, that can
be equipped with uniformly bounded projections that commute with the differential op‐
erators at hand.

In the previous section we provided subspaces corresponding to the last part of the
last complex, namely  H^{1}(S)arrow L^{2}(S) . We refer to [8] for a treatment of the rest of both
of the above complexes, in arbitrary space dimension.
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