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Asymptotic limit of strong stratification for the 3D inviscid

Boussinesq system

Ryo Takada
Faculty of Mathematics, Kyushu University

1 Introduction

This note is the survey of our paper [20]. We consider the initial value problem for the
3D inviscid Boussinesq equations in the whole space R3:

O+ (v-V)v=—Vq+nes t>0,reR3,
Om+(v-Vn=0 t>0,reR3 (L.1)
V-v=0 t>0,zcR3 .

v(0,z) = vo(x), 7(0,2) = no(z) z € R3.

The unknown functions v = (v1(t, ), vo(t, z), v3(t, 2))T, n = n(t,z) and q = q(¢, ) repre-
sent the velocity field, the temperature and the scalar pressure of the fluids, respectively,
while vy = (vo1(x), vo2(x), vo3(z))T is the given initial velocity field satisfying the com-
patibility condition V-vy = 0 and 1y = no(z) is the given initial temperature. The vertical
unit vector is denoted by ez = (0,0,1)7.

It is known that the system (1.1) has an elementary explicit stationary solution (vs, 1, gs)
of the form

a
vy =0, ns(x3) =axs, qs(x3) = ?Li (a € R) (1.2)
dgs .
satisfying the hydrostatic balance d—q = n,. Throughout this paper, we focus on the case
T3
of stable stratification: p
s
=—>0,

that is, the stable situation in which the temperature increases with height and warmer
fluid is above colder one. We set N = y/a, which is called the buoyancy or the Brunt-
Viisila frequency and represents the strength of stable stratification. Let us set

e(tv‘r) = U(t7$) - 7]5(1?3)7 qn(t7$) = q(t;c) - q3($3), (13)



where 7, and ¢, are given by (1.2) with a = N? > 0. Substituting (1.3) into (1.1) gives
that (v, 0, g,) solves

O+ (v- V)v=—Vg, + fes,

00 + (v- V) = —N?uv3,

V-v =0,

v(0,2) = vo(z), 0(0,z) =6bp(z) = no(x) — N2x3,

where 6y denotes the initial thermal disturbance. The above system (1.4) is called the

(1.4)

inviscid Boussinesq equations for a stably stratified fluid.

For the original inviscid Boussinesq equations (1.1), it is known that for initial data
(vo,m0) € H*(R?) with V- vy = 0 and s > 5/2 there exists a Ty = To(s, ||(vo, 10)|| =) > 0
such that (1.1) possesses a unique classical solution (v,7) in the class C([0, Tp); H*(R?)).
Also, the local in time solution (v,n) in the class C([0,Ty); H*(R?)) can be extended
beyond ¢ = Ty provided that

To To
/ IV 0(t)]| = d < oo ML/OWXWWwHWWWMﬁ<w
0 0

See [4-6,9,19] for the local existence theory of (1.1) in function spaces embedded in C"
class such as the Holder spaces, the Sobolev spaces and the Besov spaces, and the blow-up
criteria of local solutions including the 2D cases.

For a stably stratified fluid, the system (1.4) exhibits a dispersive nature due to the
presence of the stable stratification (fes, —N?v3)T. This phenomenon is closely related to
the dispersive estimates for the propagator e*VPrl/IPl defined by the Fourier integral

NS0 = g [ RO ) em

Here, & = (€1,&) € R? so that &, = /& + & and f denotes the Fourier transform of
f. The sharp dispersive estimate for e*VPrl/IPl was established in [18]. Widmayer [21]
proved the local well-posedness of (1.4) in H*(R?) with s > 3 for all N > 0. Furthermore,
it is shown in [21] that for initial data (v, fy) € H*T3(R3) N W5H(R?) with s > 3, the
local solution (v, 6N) to (1.4) on [0,Tp] can be decomposed into two parts as
UNveN/N) = (wN70>0)+(uN7pN)7 w' = (w{V7wéV>’ u = (uiv ué\f7ué\f)
and there holds for every 0 < t < Tj
1, o) Ol = 0, 0(8) = Ol aay — 0

as N — oo, where W = (w (¢, x), Wa(t, x)) solves the 2D incompressible Euler equations
(see (1.8) below). For the related singular limit problems to the rotating Navier-Stokes
equations and the viscous rotating Boussinesq equations, we refer to [1-3,7,8].
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In this manuscript, we prove the long time existence of classical solutions to (1.4) when
the buoyancy frequency N is sufficiently high. More precisely, we shall show that for given
initial disturbance ¢ = (v, 0/N) € H***(R3) with s > 3 and for given finite time 7', there
exists a positive parameter Ny such that the 3D inviscid stratified Boussinesq system
(1.4) admits a unique classical solution (v"V,0"/N) on the time interval [0, 7] provided
N > Ngp. Furthermore, we consider the singular limit of the strong stratification as
N — 00, and show that the long time classical solution v to (1.4) strongly converges to
that of the 2D incompressible Euler equations in the space-time norm L7(0, T'; W > (R?))
with the convergence rate O(Nﬁ) for 4 < ¢ < o0.

To state our result more precisely, we first rewrite the sytem (1.4). Let us combine the
velocity field with the rescaled thermal disturbance into the new unknown function

0\" 0\"
u = <'U, N) = (017027037]\/) .

Put
000 0
000 0
J = , Vi=(V,0)7
000 —1
001 0

Then, the perturbed system (1.4) can be written as

~—

O+ NJu + (u - %)u—i— %qn =0, Vou= 0,

1.5
u(Ovl) = ¢(I)7 ( )

where ¢ := (v, 0y/N)*. Next, let P be the Helmholtz projection of the velocity v onto
the divergence-free vector fields which is defined by

P— (61'/6 + Rij)lgj.kgs ‘ 0 )
' 0 1

Here {R;}, <j<3 denote the Riesz transforms on R3. Applying the Helmholtz projection P
to (1.5) gives the following evolution equation:

O+ NPJPu+P(u-Viu=0, V-u=0,

1.6
w(0,z) = ¢(x). (16)

Here, we have used the facts that ]P’%q77 =0 and Pu = u since V - u = 0.
The main result of the paper [20] reads as follows:



Theorem 1.1. Let s € N satisfy s > 3, and let 4 < q < oo. Then, for every ¢ =
(1, P2, 3, a)" € HTHR3) satisfying V - ¢ = 0 and for every 0 < T < oo, there exists a
m=+4 such that if N > Ny then (1.6)

positive constant Ny depending on s, q, T and ||¢|
possesses a unique classical solution u™ in the class

u™ € C([0,T); HH(R*)) N CH([0, T); H(R?)).

Furthermore, there exists a positive constant C = C(s,q,T, ||¢||gs+a) such that
[u™ — 0¥ oo rawioey < CN 3 (1.7)

for all N > Nyr, where v’ = (w,0,0)" and w = (wy(t,z), wa(t, )" is the classical
solution of the two dimensional Euler equations

Oyw +Pp(w - Vy)w =10 t>0, x€R3,
Vi-w=0 t>0,zeR3,

e v (1.8)
w(0,z) = Prop(x) r € R3,

w € C([0, T]; H*H(R?)) N CH([0, T]; H*(R?)).

Here, ¢p, = (¢1,02)", Vi, = (01, &)T and Py, = (0 +0j8k(—Ah)*l)1<j’k<2 denotes the
two dimensional Helmholtz projection.

This paper is organized as follows. In Section 2, we derive the explicit formula of

linear solutions e *NF/Pg,

LiNt|D|/1D]

and establish the space-time estimates for the linear propagator
In Section 3, we state the result on the global regularity of the limit system
(1.8). In Section 4, we introduce the modified linear dispersive systems. In Section 5, we

present the sketch of the proof of Theorem 1.1.

2 Linear solutions

In this section, we derive the explicit representation for the time evolution semigroup
generated by the linear operator — NPJP, and establish the homogeneous and inhomoge-
neous space-time estimates for the linear propagator e=NtPrl/IPI,

We follow the argument in [18, Section 2]. Let us consider the linear equation of (1.6):

du+ NPJPu=0, V- -u=0,

(2.1)
u(0,z) = ¢(x).
Applying the Fourier transform to (2.1), we have
Ot + NP(E)JP(E)u=0, (£0)7T-0=0, (2.2)

(0,€) = 4(€).
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Here, P(¢) is the multiplier matrix of the projection P defined by ]P/%\L(é) = P(&u(),
which is given explicitly by

fjfk)
Ojp — = 0
P(e) = ( "I cines
0 K
Set S(&) == —P(&)JP(&). Then, direct calculation yields
0 0 0 —&1&3
_tp o0 0 —§283
O=1g| o o 0 e+ |

§1& && —(&+E&3) 0
and then

dor a1 = s = (24 SLE).

Thus, the eigenvalues of S(&) are {ii%, 0, 0}, where &, = (£1,&) and |&,| = \/&F + £2.
Moreover, the corresponding eigenvectors are given by

i1 &3 —& &
1 :ttfgfg 1 61 1 52
- : - . bo(€) = — . (23
O Tmend | wee | O =] o | MO s | Y
[€nll€] 0 0
We see that {a(€),a_(£),an(§),bo(£)} is an orthonormal basis in C* and satisfies
S(©)0s(6) = £ 0s©). - S(an(e) = S(E(e) =0

Hence the solution to (2.2) can be written as

(t,€) = NOG(E) = 3 N (5(6), 0(€))cran (€)

oe{£,0}
Here, we remark that ($(€), bo(€))cs = 0 by the divergence-free condition V - ¢ = 0. Let
us set
Pig = F(6(8), a;(8))caa; (€)] (2.4)
for j = +,0, and define
eiith(D)f(l,) — 1 3/ eiz{iith(&)]?(g) df p(g) — |§h|. (25)
(27)3 Jgs §

Then, the solution to (2.1) is explicitly given in terms of the evolution semigroup, and we

obtain the following proposition.



Proposition 2.1. For every N > 0 and for every ¢ € L*(R3) with V- ¢ =0, there exists
a unique solution u to (2.1), which is given explicitly by

u(t,z) = e NP (1)

= NP DI P (1) + e VPP P_ () + Pogp(x).

Next, we shall prove the homogeneous and inhomogeneous space-time estimates for
the linear propagator e*NUPrl/IPl defined by (2.5). Since the phase p(&) = |&|/|€] is
homogeneous of degree 0, by the Littlewood-Paley decomposition and scaling, the matter
is reduced to the frequency localized case. Also, the sign + does not have any role. Hence
we consider the operators

wwﬂ@:/V“W“@wWﬂ@% (t,z) € R
R3

where 1 is a real-valued function in #(R?®) satisfying supp¢y C {272 < |¢| < 22} and
P(€) =1 on {27! < |¢] < 2}. The sharp dispersive estimate for Uy (t) is obtained in [18].

Lemma 2.2 ([18, Theorem 1.1]). There exists a positive constant C = C(1)) > 0 such
that

IUN @) Fll e < O+ NIH) 2 £
for allt € R and f € LYR3). Also, the decay rate 1/2 cannot be improved to a larger

one.

Now we investigate the boundedness of Uy (t). We use the notation for the space-time
norm
||f||L;1L; = Hf”Lq(R;Lr(RS))-
The following results are the homogeneous and inhomogeneous space-time estimates for

the linear operator Un(t).

Lemma 2.3. Let the exponents q,q,r, 7 satisfy
2 1 1 2 1 1 - -
7+7<77 T+T<77 4<q,q<007 2<T7T<OO' (26)
q r 2° q T "2
Then, there exist positive constants Cy = C1(¢, q,r) and Cy = Ca(¢,q,q,7,7) such that
_1
IUN@) fllLsry < CiN“7]|f| 2, (2.7)

t
H/ Un(t — s)F(s)ds < CoN~a 7| F

LiLr,

(2.8)

g ~
q’ !
Liry

for f € L*(R?) and F € LY (R; L™ (R%)), where 1/7 + 1/ =1 and 1/G+1/§ =
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Proof. We remark that the L'-L> decay rate of Uy(t) is —1/2 and the admissible range
(2.6) does not include the endpoint ¢ = 2. Hence the proof follows from the standard
TT* argument and the interpolation (See [10,15,16]). For details, we refer to [20]. O

From (2.7), (2.8), the Littlewood-Paley theory and scaling, we can show the space-time

+iNt|Dy,

Strichartz estimates for the original propagator e I/IPI"as a corollary of Lemma 2.3.

Let o be a function in . (R?) satisfying
0<wo(6) <1 forall ¢ €R®  suppypy C {5 €ER3 | 271 )¢ < 2}

and

Z ©;(€) =1 for every ¢ € R*\ {0},

jez
where ¢;(€) == po(279E). We set A;f := F 'p;] * f for j € Z. Then, for s € R and

1 <10 < oo, we define the semi-norm of the homogeneous Besov spaces BfﬁU(R?’) as

15, = 27 18510 e

o)

Also, we define the following space-time norm for 1 < g < oc:

1Fllgs, = H{?SJ‘ 185F g, }

€2lle(z)

Lemma 2.4 ([20]). Let the exponents q,q,r,T salisfy

2 1 1 2 1 1 _ .
- *g*, T"_Tg*s 4<q,q<007 2<T’T<OO'
q r 2 q T "2

Then, there exist positive constants Cy = C1(q, 1) and Cy = Cy(q, G, r,T) such that

, 1
||eiZth(D)f||E§BQ SCIN 9 ||fHBs<%—%>v (2.9)
i 2,0

_11
s SN qHF”z%jBi(l—%f;l:) (2.10)

By, ' B,

t
H / GiiN(t—s)p(D)F(S) ds

23(3-7) (o3 TR P (3
foralll<o< oo, f€B,; "(R®) and F € LY(R; B, = 7 (R?)).

3 Global regularity of the limit system

In this section ,we shall state the result on the global regularity of the limit system
(1.8), and give the global a priori H**3(R?)-estimate for the solution to (1.8). For the



detailed proof, see [20]. We remark that the projection Py onto the stationary mode of
the linear solution to (2.1) defined in (2.3) and (2.4) is also written as

_ ((5 - 5—5) ~
Ppe) = | A B acies | 6(6).
0 0
Hence we see that % corresponds to the two dimensional Helmholtz projection
- o _ P, |0
P, = (Ojk + djdk(—Ah) 1)1<j,k§27 Py = ( 0 10 ) . (31)

Now, let us consider the limit system of (1.6):

Ow + Pp(w - Vp)w =0 t>0,z€R3,
Vi -w=0 t>0, xeR3 (3.2)
w(0,z) = Propn(z) T €R3,
where w = (wy(t,x), wa(t,x))T, ¢n = (¢1(x), d2(z))T and Vj, = (01,9)T. Note that
for fixed z3 € R the system (3.2) for w = w(-, x3) corresponds to the two dimensional
incompressible Euler equations (see [11,13]).
The global regularity result for (3.2) reads as follows:

Theorem 3.1 ([20]). Let s € N satisfy s > 3. Then, for every ¢, € H*T3(R?) and for
every 0 < T < oo, there exists a unique classical solution w to (3.2) in the class

w € C([0,T); H(®%) N C1((0, T); H***(R?)).

Moreover, there exists a positive constant C, = Cp(s, T, ||én||gs+s) such that

sup [w(t)||gs+s < CL(s, T, ||onllms+3)- (3.3)

SIS

4 Linear Dispersive Solutions

In this section, we adapt the idea in [7] and introduce the modified linear dispersive
equations. Making use of Lemma 2.4, we shall establish the global space-time estimates
for the solutions to those systems.

Let s € N satisfy s > 3, and let 0 < T < oo. Then, for the initial data ¢ =
(dn, b3, 04)T € H(R3) with V- ¢ = 0, let w = (wy,wy) € C([0,T]; H(R?)) N
C*([0,T]; H*T3(R?)) be the classical solution to (3.2) with w(0,z) = P,¢p(z) constructed
in Theorem 3.1 satisfying the H***-estimate

prevs < CL(s, T, || 6n|gresa)- (4.1)

sup w(t)]

o<t<T
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Now, we put u° = (w,0,0)”, and consider the solution to the following linear systems

with the external forces Py (u® - V)u’:

Ot FiNp(D)u* + Pe(u® - V)u’ =0 t>0,z€R3
Vout=0 t>0, s cR3 (4.2)
u®(0,z) = Prd(x) r € R3,
where p(D) = |Dy|/|D| is the Fourier multiplier, and the projections P, are defined in
(2.3) and (2.4). By the Duhamel principle, the solutions to (4.2) are given by
uE(t) = NI P / t eFNE=TPD) Py (0 (7) - T )u(7) d. (4.3)
0

Lemma 4.1. Let s € N satisfy s > 3, and let 0 < T < co. Then, for every ¢ € H(R3?)
satisfying V - ¢ = 0, there exists a unique classical solution u* to (4.2) in the class

u* € C([0,T); H(R?)) N C ([0, T); H(R?)).

Moreover, there exists a positive constant C' = C(s, T, ||¢|| gs+1) such that

sup ||uE(t)|| gors < ||B||ots + C(s, T, ||| fross)- (4.4)

Also, for 4 < g < oo there exist positive constants Cy = C(q) and C = C(s,q,T, ||¢| g=+1)
such that

IV ooz < CoN s (10l + C(s, 4. 19l +4)) (4.5)

for1=0,1,2,...,s+1.
Proof. We shall give the sketch of proof for the space-time estimate (4.5). For the homo-

geneous term in (4.3), by the continuous embedding BY, ; (R?) — L=(R?), the Minkowski
inequality and (2.9) in Lemma 2.4, we have for 1 =0,1,2,...,s+1

||vleiith(D)Pi(;SHLq(O,T;LOO) <C }’vleﬂth(D>Pi¢HL‘I(O,T;B@’OJ)

< C||Vl€“Nw(D)Pi(b”ﬁ(o,T;Bgc:l)

1 —1.
SONT4||[VIPeg] 5 < CN7a @], (4.6)
2,

For the inhomogeneous term in (4.3), similarly to (4.6), it follows from (2.10) in Lemma
2.4 with (§,7) = (00, 2) that

¢
HVI/ cﬂN(t_T)p(D)Pi(uo(T) -V)u'(1) dr
0

L1(0,T;L>)

<CON i

VlPi(uO . 6)“0‘

(4.7)

—~ .3 .
L1(0,T;BZ,)



Here, we have by the H*™-estimates (4.1) for w(t)

HVlPi(uO 'ﬁ)uol dt

= [ v ),

3
B3y

, T
i< C [ Ol di
0

— .3
L1(0,T;B2,)

H2+l

<o [ orer - o)
<o [ o

Combining (4.6), (4.7) and (4.8) yields the desired estimate (4.5). O

2 s dt < C(5, T, ||pnlros4)- (4.8)

5 Proof of Main Theorem

We are now ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let s € N with s > 3, and let ¢ = (¢, ¢3,04)T € H*T4(R?)
satisfying V - ¢ = 0. Since PJP is skew-symmetric and then (PJPu, u) . = 0, it follows
from the standard local well-posedness theory for the 3D Euler equations in H*(R?) by
[12,14,17] that there exists a local time Ty = To(s, ||@||ms) > 0 such that (1.6) possesses
a unique classical solution "V for all N > 0 in the class

u™ € C([0, Tp); HS(R?)) N C*([0, Tp]; H* H(R?)). (5.1)

In particular, there exist positive constants Cy = Cy(s) and C; = C(s) such that
Co
[l

Let 0 < T < oo. We shall first show that the local solution «” in the class (5.1) can be
extended to the arbitrary finite time interval [0, T] provided that the buoyancy frequency
N is sufficiently high.

Let w = (wy,w) € C([0,7]; H¥(R?)) N C1([0,77]; H*"3(IR?)) be the classical solution
to the limit system (3.2) with w(0,z) = Pr¢p(x) constructed in Theorem 3.1. We put
u® = (w,0,0)T. Then, by (3.1), we see that u° is the classical solution to the system

T, > sup [|u (t)][#= < Cull9]

Hs 0<t<Ty

e (5.2)

O’ + Py(u® - V=0, V- u’=0,
u?(0,z) = Pyo.

Also, let u* € C([0,77]; H*"3(R?)) N C*([0, T]; H*"2(R?)) be the classical solutions to the
linear systems (4.2) constructed in Lemma 4.1 satisfying (4.4) and (4.5).
Now we set

oV = uN —ut —u =l
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Then, since there hold ¢ = Pp = Py + P_¢ + Py¢p and Pju/ = o’ for j € {0, £}, the
perturbation vV should solve

o 4+ NPJPuY + P(u Jo +Z]P’ Z P(u - V)u* =0,
j=0,£ J,k=0,+
~ (J«k)¢(010)
V-oN=0
oMV (0,7) =0
(5.3)

on the local time interval [0, 7p]. Let us derive the H*-estimate for v™(t). Taking the H*
inner product of (5.3) with vV gives

5 70" Ol + (@ @) V)o @), ™ ()
+ ) AN VW@, D)+ Y (W () V) (E), oY () e = 0. (54)
j=0,+ G, k=0,+
(G.0)£(0,0)
Since it holds
/ (W™ - V)N - 00N dx = 0
R3
for a € (NU{0})® with |a| < s by the divergence-free condition, we have
(u - V) Z Z Ca, H N V)9 NH ) HaavNHL2
la|<s 0<B<a
O™ || gzs 0N |34 (5.5)

Here, we have used the estimates (see [12, Lemma in page 302])

H (&PuN - W) PN

Clla™ s 0™ [l e 0<f<a [f=12
<

N
L C”“N”HWI HUNHH\M—VMS 0<p<a |B=3

For the third term in the left hand side of (5.4), since s > 3 and H*(R?) is a Banach
algebra, we see that

SNV oMy < Y@ | e,
J=0,+ j=0,%
<C Z w2 || grsa |0 || (5.6)
=0,

For the fourth term in the left hand side of (5.4), the Schwartz inequality gives

Yo (W@t oM <Y - V)t

7,k=0,%+ 7,k=0,%+
(4,k)#(0,0) (4,k)#(0,0)

(5.7)

Hs



Let us derive the estimates for ||(u? - V)u¥||g=. It follows from the the Leibniz rule that

| (u - =Y > Caps / 0%l - )OO (97 - V)T dr. (5.8)

|a|<s B<a y<a

For (j,k) = (%, £), we have by the Holder inequality

YN Cuss / (Pu* - V)Pt - (07 - V)0 uE da

la|<s BLa v

<3S Ca P e |07 VO P V011

la|<s BLa y<a

S 2
e (Z ||Vlui||L°°> . (59)
=0

Similarly to (5.9), we see that for (j, k) = (£, F), (£,0), (0, £)

s 2
%{s—%—l (Z ||vlui||Loo> s (510)

< Cllu®|

/ (0Put - )P PuF - (Pt - V) dr| < Ol
R3 =0

s 2
. (Zwminm) SNCAEY

=0

s+1 2
o (ZvluiHW) . (5.12)
=0

/ (0%u* - V)0 U - (7 u* - V)0 T dar| < Ol
R3

/ (0P - )PPt - (97 - )0 di| < Ol
RS

Combining (5.7)—(5.12), we obtain

S (Dt M| <0 Y ]

s+1

e 3 (V' oo + 190 || ) [0

Jok=0, j=0.+ 1=0
(k) £(0,0)
(5.13)
Substituting (5.5), (5.6) and (5.13) into (5.4), we have
d .
Lol < <||uN| et Y I H>
7j=0,£
s+1
+O Y e Y (Ve e + [V ). (5.14)

=0+ 1=0
Here, it follows from the uniform H**3 estimates (3.3), (4.4) and (5.2) that there exists a
positive constant C' = C(s, T, ||¢|| gs+1) such that
lers + Z lw/ () || gser < sup ||u™ ()]s + Z sup | (t)
=0+ Osi<To j=0,+ 0SIST

C(s, T, [|pllrrs+4) (5.15)

™ Hots
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for 0 <t < Tp. Then, by (5.14), (5.15) and v (0) = 0, we have

s+1

we) S / (19" () + [V (7)) dr

w) [ )

Here, it follows from the Holder inequality and the space-time estimates (4.5) in Lemma
4.1 that for 4 < g < oo

[ (1)]

Hs < C(S./T, ||¢|

+C(s, T, [|¢]

s+1 + s+1
> / IV (1) e dr < T 03 [V |paoriae) < Cls,a T [ @lless) N0 (5.17)
1=0 ”0 1=0
for 0 <t < Ty < T. Hence we have by (5.16), (5.17) and the Gronwall inequality
sup 0¥ (O)llie < C(5, 0, T, @l gess) N3 eCETIONea)T, (5.18)
0<t<T)

Therefore, there exists a positive constant Ng = Ny(s, ¢, T, ||@||gs++) > 0 such that there
holds

sup [|o™ ()]

0<t<Tp
for all N > N,. Then, since v¥ = u" —u — u™ — u~, it follows from (3.3), (4.4) and

(5.19) that there exists a positive constant C, = C,(s, T ||¢||gs+41) such that

™ (To)| wet Y W (T0)]

e <1 (5.19)

e < [0 (To)

HS
§=0,+
< sup ¥ Ollae+ 32 sup [ (6)]ers
0<t<To o 0T
J s
<1+ Cu(s, T, |6 gese)- (5.20)

Note that the constant C.(s,T, |4
the local solution u™¥ can be extended to [T}, T1], where

Co
T+ G T [l

ms+4) is independent of the local time Ty. Therefore,

T =Ty >

(5.21)

and there holds
sup [[u™ (t)]ls < Cy (1+ Cu(s, T, ||

To<t<Ty

fst1)) . (5.22)

We repeat the same procedure as (5.4)—(5.18) on the time interval [Tp, 71]. Since we have
the global estimates for w/ (j = 0,4) on [0, 7], it suffices to modify the above argument
for the initial data ||v(Tp)||zs and the H* estimates for v’V as in (5.2) and (5.22). Then,
similarly to (5.18), we have

— N7 eCET N8l o) T

sup [[o™ ()|l us < C(s,4, 7, ][9]

To<t<Th




for N > N,. Hence one can take Ny = Ny(s,q, T, ||¢||gs+1) = Ny so that there holds

sup [l ()]

To<t<Ty

for all N > N;. Then, we have by (3.3), (4.4) and (5.23)

e <1 (5.23)

Il () e < 0™ (D)l + Y e ()
J=0,£
< sup [N@)las 4 Y sup [l (1)
To<t<T: oo O<I<T
<1+ Cu(s, T, ||p||gs+a) (5.24)
for all N > N;. Note that the above bound (5.24) is exactly same as (5.20). Hence the

local solution u” can be uniquely extended to the solution of (1.6) on the time interval

[T1, T + (Ty — Ty)] (defined in (5.21)) for N > N; and satisfies

sup  ||uN ()|l < O (14 Culs, T, ||| grs+4)) - (5.25)

Ty <t<2T1—Tp
Also note that the bound (5.25) is exactly same as (5.22). Since 7" is arbitrary finite time,
we repeat a finite number of the same procedures in the above, and continue the local solu-
tion u” to the given time interval [0, 7] in the class C([0, T]; H*(R*))NC([0, T]; H*~*(R?))
for N > Ny, where Nyr = N(s,q,T, ||| gs+4) is some large positive constant. Also,

since we have the H*(IR®)-estimate, it is easy to see that the solution u"¥ belongs to the
class C([0,T]; H5™(R?)) nC([0, T]; H¥™3(IR®)) by the standard extension criterion. Note
that it follows from the above procedure on the extension of solutions that the long time
solution u™ on [0, 7] satisfies the uniform H* estimate as

sup [[u” (t)||us < C(5,4, T |||

o<t<T

s+e) (5.26)

with some positive constant C'(s, g, T, ||@||gs+4) for N = Ny .
It remains to prove the convergence result (1.7). Let N > N, . Since there holds the
uniform H* estimate (5.26) for u”™ (t), we have similarly to (5.18)

sup |0 (1)) Hs+4)N_%eC(S’T’||¢’HHS+4)T. (5.27)

0<t<T

Recall that vV = v — «® — u™ — u~. Therefore, by (4.5), (5.27) and the continuous
embedding H*(R?) — W1>(R3), we obtain for 4 < ¢ < oo

e < O(s.q.T. ||9]

Ju? — UOHLG(O,T;WLM) < HUN”Lq(o,T;WLw) + Z ||uj||L‘1(0,T;W1=°°)
j=%

1 .
< T sup [ (@) ]ms + Z [ oo, rwr.o0)
0<t<T o

< C(S7q7T7 ||¢‘ HS+4)N_%

197
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for all N > Ny . This completes the proof of Theorem 1.1. O
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