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Abstract

Studies of the evolution of water wave spectra are usually focussed on frequency or
wavenumber spectra of energy or wave action. Much less is known about the shape, or even
width of the angular distribution and its evolution with time or fetch. Here, we consider
the evolution of angular width of wave spectra with and without wind forcing. As a metric
of the angular width, we use the second moment of the distribution at certain wavenum‐
bers relative to the wavenumber of the spectral peak k_{p} (0.5, 1, 2 and  3k_{p} ), or averaged
over all wavenumbers. Numerical experiments are performed using three different numer‐
ical approaches employing different sets of assumptions: the classic Hasselmann kinetic
equation (KE), the generalized kinetic equation  (gKE) and the direct numerical simulation
(DNS) algorithm based on the Zakharov equation (DNS‐ZE). The results of simulations
by each model are compared with each other and with the Tehuantepec field observations
by Romero & Melville (2010). For the case of initially narrow swell the kinetic equations
considerably overestimate the rate of the initial angular broadening , compared with the
DNS‐ZE, although at large time the integrated angular width approaches the same pow‐
erlike asymptote. The angular width of the spectral peak continues to grow slowly even
for large time. For constant wind forcing, the models agree well on the spectral width of
the spectral tail, but show large discrepancies for small wavenumbers. The DNS‐ZE simu‐
lations are more consistent with the data of the Tehuantepec observations, demonstrating
slow growth of angular width over time at the spectral peak, in contrast to nearly constant
width shown by the kinetic equations. Results of the study demonstrate serious shortcom‐
ings of modelling based on the Hasselmann kinetic equation and provide an insight into the
role of the assumptions underlying the Hasselmann equation.

1 Introduction

Studies of oceanic wind waves are mostly concerned with the evolution of wave spectra, mostly of
one dimensional (frequency or wavenumber) spectra of energy or wave action. Spatio‐temporal
evolution of directional characteristics is less known. Observations of the spatio‐temporal evo‐
lution of directional spectra are very difficult and, therefore, rare; they require precise measure‐
ments of two‐dimensional spectra with a good angular resolution over a sequence of fetches.
Parameterizations of wind wave spectra usually involve a representation of the directional dis‐
tribution in the form  D(\theta) , where  \theta is the angle, while the dependence of the function  D on
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frequency or wavenumber is often ignored (Holthuisen, 2007). Even in this idealised case, the
shape of the function  D(\theta) is not well known, usually it is assumed it having a maximum in
the downwind direction (for which it is convenient to set  \theta=0 ) and a gradual decrease with
increasing absolute value of  \theta . Several expressions to describe this scale averaged behaviour of
 D(\theta) have been proposed (e.g.  \cos 2 model,  \cos^{N} model, the wrapped‐normal distribution, etc).
On summarising a large number of observations (Young et al., 1995; Ewans, 1998) concluded
that the directional width also varies with frequency, increasing approximately two‐fold between
 \omega_{p} and  3\omega_{p} , where  \omega_{p} is the frequency of the spectral peak. To take into account the frequency
dependence of  D(\theta) Mitsuyasu et al. (1975) suggested a piecewise‐constant function, with the
directional spreading being narrowest around the spectral peak frequency and widening towards
both lower and higher frequencies. The value of the function at the spectral peak was also related
to wind speed. There were further attempts at improvement the piecewise‐constant relationship
Goda (2010). Donelan et al (1985) suggested to use  sech^{2}(\beta\theta) , where  \beta is a piecewise‐constant
function of frequency  \omega/\omega_{p} , independent of wind speed. Little is known about the evolution of
 D(\theta) with fetch or time.

Numerical simulations of long‐term spectral evolution also often focus on the evolution of one‐
dimensional (frequency or wavenumber)spectra. Badulin & Zakharov (2017) performed extensive
simulations of swell evolution with the Hasselmann kinetic equation (KE). They have found that
regardless of the initial angular width there is a tendency to a universal directional distribution
at large times, which appeared to be quasi‐stationary at least at the frequency corresponding to
the spectral peak.

Until very recently, all numerical studies of long‐term evolution of random water wave fields
were based on the KE. The KE is based on two key assumptions: the statistical closure, occuring
as a result of an asymptotic procedure based on small nonlinearity for broadband wave fields
under the presumed absence of coherent patterns, and the quasistationarity implied by the large‐
time limit (Annenkov & Shrira,  2006a ; Newell & Rumpf, 2013). To describe situations with a
rapid transformation of a wave field, Annenkov & Shrira  (2006a) derived a generalization of the
KE called the generalized kinetic equation  (gKE) . The  gKE employs the same statistical closure,
but is free from the quasistationarity assumption. However, the role and validity of the statistical
closure can be verified only by direct numerical simulation (DNS). Until recently, progress in
clarifying this issue was very slow, since there were no tools for studying the long‐term evolution
of wave spectra without a statistical closure. Although there were a few attempts at modelling
the spectral evolution with DNS, starting with Tanaka (2001), the algorithms used were very
demanding in computational resources and, therefore, able to trace only the initial part of the
evolution. The DNS algorithm, based on the Zakharov equation (DNS‐ZE), was first suggested
and implemented by Annenkov and Shrira (2001) for simulations of deterministic evolution of
wave field, then modified and extended for modelling random wave fields in Annenkov & Shrira
(2009), it was later used for the study of the spectral evolution under gusty wind (Annenkov
& Shrira, 2011) and for simulations of the evolution of higher statistical moments of wave field
(Annenkov & Shrira, 2013; Shrira & Annenkov, 2013). The algorithm is based on integration of
the deterministic four‐wave Zakharov equation and ensemble averaging over a sufficient number
of realisations, and is free from any statistical assumptions.

Annenkov & Shrira (2018) examined the evolution of initially narrow (in both frequency and
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angle) spectra subjected only to dissipation localised at high frequencies, using all three numerical
models: the KE (the standard WRT algorithm was kindly provided by G. van Vledder), the
 gKE and the DNS‐ZE. The reason for this particular choice of the initial conditions was the vast
amount of observational and numerical data relevant to these spectra. In particular, they were
used in the MARINTEK wave tank experiments described by Onorato et al. (2009) and Toffoli
et al. (2010), so that detailed observations of the initial stages of both the spectral evolution
and the evolution of higher statistical moments were available. Since these spectra were initially
far from equilibrium, at the initial stage of evolution they undergo relatively fast broadening.
Annenkov & Shrira (2018) found a striking difference in the rate of this angular broadening,
which was much larger for the  gKE and the KE than for the DNS‐ZE. At the same time, results
of the DNS‐ZE simulations were consistent with earlier short‐term DNS simulations by Xiao et al.
(2013) carried out with the well‐established high‐order spectral method, the striking discrepancy
between the kinetic equations and DNS could have been reported earlier, but apparently was not
noticed. However, since the focus of Annenkov& Shrira (2018) was on the detailed comparison of
frequency spectra, all computations were performed within the same, relatively narrow, angular
sector  -4\pi/9\leq\theta\leq 4\pi/9 , which could have affected the long term evolution of angular spread.
In particular, the WRT code employed for the KE simulations proved to be sensitive to the
choice of the angular segment, especially for simulations of angular spreading.

In this paper, we consider the long‐term evolution of directional width of water wave spectra
with and without wind forcing. The aim is to compare evolution of directional spectra obtained
with different models, in order to reveal the role of different sets of assumptions under different
winds. As a metric of directional width, we use the second moment of directional distribution,
either at particular wavenumbers relative to the spectral peak  k_{p} , or integrated over a wide range
of wavenumbers.

First, we revisit the evolution of initially narrow spectra without wind, considered by An‐
nenkov & Shrira (2018). For the present study, the KE simulations of evolution have been rerun
for larger time and in the full circle rather than in a sector. At relatively short times, both KE
and  gKE show close evolution of directional width. However, the DNS‐ZE simulations predict
much slower rate of directional spreading of the spectral tail. In the long term, all models appear
to tend to the powerlike spreading of approximately the same rate, although the DNS spectra
have considerably larger directional width of the spectral peak.

Second, we consider the evolution of directional width under a constant wind, with wind
speed equal to  3c_{p} and  5c_{p} , where  c_{p} is the phase speed of the initial spectral peak. The initial
conditions, identical for all three models, are taken in the form of Donelan et al (1985) spectra for
the corresponding wind speed. Third, we perform numerical simulations, with all three numerical
approaches, of the evolution of wind waves observed in the Tehuantepec experiment (Romero &
Melville, 2010) and compare the results with the observations.

The paper is organized as follows. Section 2 contains basic equations and brief description of
the numerical algorithms and parameters. In section 3, results of the numerical simulations are
discussed. Section 4 provides conclusions and a brief discussion.
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2 Basic equations and numerics

2.1 The Zakharov equation and wave kinetic equations

Our starting point is the equation of motion in the form of the “four‐wave” integrodifferential
Zakharov equation originally derived for potential gravity waves at the surface of ideal incom‐
pressible fluid of infinite depth, with the accuracy up to  O(\varepsilon^{3}) (Zakharov ,  196S ; Krasitskii,
1994)

  i\frac{\partial b_{0}}{\partial t} = \omega_{0}b_{0}+\int T_{0123}b_{1}b_{2}b_
{3}\delta_{0+1-2-3}dk_{123} , (1)

where the wave field is expressed in terms of complex canonical variables  b(k) linked to the Fourier
harmonics of the surface elevation  \zeta(k) and velocity potential at the surface  \psi(k) through an
integral‐power series:

 b( k)=\frac{1}{\sqrt{2}}\{\sqrt{\frac{\omega(k)}{k}}\zeta(k)+i\sqrt{\frac{k}
{\omega(k)}}\psi(k)\}+O(\varepsilon) . (2)

Compact notation is used, designating arguments by indices, e.g.  \delta_{0+1-2-3}=\delta(k_{0}+k_{1}-k_{2}-
 k_{3}),  dk_{123}=dk_{1}dk_{2}dk_{3} . The interaction coefficient  T_{0123} is given by an explicit but lengthy
expression (e.g. Krasitskii, 1994).

Equation (1) is the basis for the derivation of the wave kinetic equation. Consider ensembles
of random wave fields, assuming spatial homogeneity. Then the spectral density of wave action
at wavevector  k_{0} is the second‐order correlator  n_{0},

 \{b_{0}^{*}b_{1}\}=n_{0}\delta_{0-1}.

By multiplying the Zakharov equation by  b_{0}^{*} , upon ensemble averaging we get

  \frac{\partial n_{0}}{\partial t}=2{\rm Im}\int T_{0123}\langle b_{0}^{*}b_{1}
^{*}b_{2}b_{3}\rangle\delta_{0+1-2-3}dk_{123} . (3)

In a similar way we can express time derivative of the fourth‐order correlator in terms of the
sixth‐order one and so on. This infinite chain of equations can be truncated invoking the closure
hypothesis (e.g. Zakharov et al., 1992; Nazarenko, 2011). Since the statistics of a linear wave
field is gaussian, the natural assumption is that the statistics of a weakly nonlinear field will be
quasi‐gaussian. Following Zakharov et al. (1992), we assume that the third‐order correlator is
zero. The fourth‐order correlator can be always presented as

 \{b_{0}^{*}b_{1}^{*}b_{2}b_{3}\rangle=[n_{0}n_{1}(\delta_{0-2}\delta_{1-3}+
\delta_{0-3}\delta_{1-2})]+J_{0123}^{(1)}\delta_{0+1-2-3},

where  J_{0123}^{(1)} is the irreducible part of the correlator (cumulant), which determines the evolution
of  n_{0} . To find the evolution of  J_{0123}^{(1)} we express it in terms of the sixth‐order correlator, in which
we retain just the dominant terms—the products of pair correlators

 ( i\frac{\partial}{\partial t}+\triangle\omega)J_{0123}^{(1)}=-2T_{0123}
f_{0123} , (4)
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where  \triangle\omega=\omega_{0}+\omega_{1}-\omega_{2}-\omega_{3},  f_{0123}=n_{2}n_{3}(n_{0}+n_{1})-n_{0}n_{1}(n_{2}+n_{3}) . The derivation of the

classical KE drops  \partial/\partial t from the equation for the cumulant  J_{0123}^{(1)} , which leads to the approximate
solution for large time in terms of generalised functions

 J_{0123}^{(1)}(t)=-2T_{0123}[ \frac{P}{\triangle\omega}+
i\pi\delta(\triangle\omega)]f_{0123}(t) ,

where  P is “principal value  \delta is Dirac 6‐function. This leads to the KE

  \frac{\partial n_{0}}{\partial t}=4\pi\int T_{0123}^{2}f_{0123}\delta_{0+1-2-
3}\delta(\omega_{0}+\omega_{1}-\omega_{2}-\omega_{3})dk_{123} , (5)

The  gKE is derived using the same statistical closure as the KE, but without the assumption of
quasi‐stationarity and the use of large time asymptotics. Instead, the equation for the cumulant
 J_{0123}^{(1)}(4) is solved exactly (Annenkov & Shrira,  2006a )

 J_{0123}^{(1)}(t)=-2 iT_{0123}\int_{0}^{t}e^{-i\triangle\omega(\tau-t)}f_{0123}
(\tau)d\tau+J_{0123}^{()}(0)e^{i\triangle\omega t}.
Then the resulting equation  (gKE) has the form

  \frac{\partial n_{0}}{\partial t} = 4{\rm Re}\int\{T_{0123}^{2}[\int_{0}^{t}e^
{-i\triangle\omega(\tau-t)}f_{0123}(\tau)d\tau]
‐   \frac{i}{2}T_{0123}J_{0123}^{(1)}(0)e^{i\triangle\omega t}\}\delta_{0+1-2-3}
dk_{123} . (6)

The  gKE is nonlocal in time: evolution of the spectrum depends on the previous history of
evolution, starting from the initial moment when the value of cumulant  J_{0123}^{(1)}(0) is prescribed as
the initial condition. However, the  gKE can be solved iteratively. On each time step, the value
of  J_{0123}^{(i)} is computed as

 J_{0123}^{(1)}(t)=-2 iT_{0123}\int_{0}^{t}e^{-i\triangle\omega(\tau-t)}f_{0123}
(\tau)d\tau+J_{0123}^{(1)}(0)e^{i\triangle\omega t} (7)

and taken as the new initial condition, so that the‘internal’ time integration is performed over one
timestep only. Analytical results concerned with the  gKE are summarised in Shrira & Annenkov
(2013).

2.2 Numerics

In this study, we use three different algorithms for three different models: the classic KE (Has‐
selmann), the  gKE , and our DNS algorithm based on the Zakharov equation (DNS‐ZE). For
the KE, we use the standard WRT code kindly provided by Gerbrant van Vledder. Two other
algorithms are original.

Although the  gKE at first glance looks much more complicated than the KE, and requires
to take into account a large number of interactions, including those far from resonance, the
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algorithm has a simpler structure and can be parallelized with nearly perfect scalability, thus
efficiently utilizing the advantages of modern supercomputers. The nonlocality in time can be
treated by accumulating all the previous history in the value of the cumulant  J_{0123}^{(1)} , which is
taken as the initial condition at each time step. We employ the standard Runge‐Kutta‐Fehlberg
time‐stepping algorithm with automatic step choice. Details of the algorithm can be found in
Annenkov & Shrira (2016).

The DNS algorithm is based on the efficient algorithm for the simulation of the evolution
of discrete wave systems, employing the integrodifferential Zakharov equation (Annenkov and
Shrira, 2001). In that study, a wave field  b(k, t) was considered as an ensemble of discrete
harmonics of the form

 b( k, t)=\sum_{j=1}^{N}b_{j}(k_{j}, t) . (8)

The DNS‐ZE algorithm is essentially an application of the original algorithm of Annenkov and
Shrira (2001) to the evolution of continuous random wave fields. It is based on the idea of
coarse‐graining of a continuous wave field, retaining its fundamental properties of nonlinear
interactions. The coarse‐graining represents a wave field by a grid consisting of wave packets,
coupled through exact and approximate resonant interactions. The resulting system of discrete
dynamical equations is again solved by Runge‐Kutta‐Fehlberg time‐stepping scheme. The DNS‐
ZE algorithm was described in detail by Annenkov & Shrira  ( 2013,  201S) .

For all computations in this work, we use non‐regular grids with  N_{\omega} logarithmically spaced
points in the range  \omega_{p}/2\leq\omega\leq 3\omega_{p} and  N_{\theta} uniformly spaced angles. The KE is simulated in
the full circle of the angles  \theta , since this is preferable for the existing WRT code. The  gKE and
DNS‐ZE algorithms can work in any sector of  \theta , and a sector  -7\pi/9\leq\theta\leq 7\pi/9 , sufficiently
wide for the purposes of the present study, was used. The frequency resolution was chosen as
 N_{\omega}=160 for the DNS‐ZE, and  N_{\omega}=100 for both kinetic equations. Angular resolution was
 N_{\theta}=70 within  -7\pi/9\leq\theta\leq 7\pi/9 for the DNS,  N_{\theta}=30 within the same sector for the  gKE,
and  N_{\theta}=50 in full circle for the KE. In some computations which involved initially narrow
spectra (§3.1 below), angular resolution for both kinetic equations was refined, and results were
verified to be non‐dependent on any further refinement.

3 Results

Here we consider results of simulations for several different cases of spectral evolution with or
without wind forcing, focussing on the evolution of directional spreading. As a measure of
directional spreading, we use the second moment of the normalized angular distribution function
 D(k, \theta) (Hwang et al., 2000, eg)

  \theta_{2}(k)=(\int_{0}^{\pi/2}\theta^{2}D(k, \theta)d\theta)^{1/2}(\int_{0}^{
\pi/2}D(k, \theta)d\theta)^{-1/2} (9)

Often, directional spreading is characterized by the mean directional spread  \theta_{m} , defined as the
average of  \theta_{2} over  k (Xiao et al., 2013; Annenkov & Shrira,  201S ). Being a scale averaged
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Figure 1: Evolution of averaged second moment of directional distribution  \theta_{m} without wind
forcing. Initial conditions are JONSWAP spectra with  \gamma=6 and narrow directional spreading,
corresponding to (a)  N=850(b)N=24 in the  \cos^{N} directional model.

characteristics of the angular spectrum,  \theta_{m} provides only the most basic information about its
width. Since  D(k, \theta) , angular distributions at all wavenumbers play equal role, regardless of
the spectral amplitude, diminishing the relative contribution from the spectral peak. In order
to understand the evolution of the angular distributions at key parts of the spectrum, at the
spectral peak, slope and front separately, along with  \theta_{m} we consider the evolution of  theta_{2} for
at selected specific values of  k , relative to the spectral peak  k_{p} (  0.5k_{p},  k_{p},  2k_{p} and  3k_{p} ).

In the rest of this section, we consider three spectral evolution scenarios: evolution of initially
narrow (both in frequency and angle) spectra without wind forcing, evolution of directionally
wide spectra under constant wind, and simulation of a realistic observation‐based wind wave
evolution, with comparison with the experimental data.

3.1 Evolution of initially narrow spectra without wind

The laboratory experiment by Onorato et al. (2009), who studied short‐term (about 30 wave‐
length) evolution of wave spectra having initially JONSWAP form and different directional dis‐
tributions provided inspiration for a few studies that aimed at modelling the same evolution
numerically. Xiao et al. (2013) performed numerical modelling using high‐order spectral method
with high resolution, taking as initial conditions the spectra generated mechanically in the ex‐
periment and simulating their evolution for about 150 wave periods. Two of these spectra had
JONSWAP form with peakedness  \gamma=6 , significant wave height  H_{s}=0.08m , the peak period
 T_{p}=1s , and different directional distributions  D(\theta) , given by cosine square

 D(\theta)=\{\begin{array}{ll}
\frac{2}{\Theta}\cos^{2}(\frac{\pi\theta}{\Theta})   for |\theta|\leq\Theta/2
0   for |\theta|>\Theta/2
\end{array} (10)
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 (D^{\Xi}\smile^{3}\tau^{\circ}\wedge b\dot{D}

 10^{I}  10^{2}  10^{3} 10’  10^{2}  10^{3}  10^{4}
 t (periods)  t (periods)

Figure 2: As in figure 1, in logarithmic coordinates, and power fits for the KE results for large
time

where  \Theta is the directional spreading width in radians. The first spectrum was very narrow in
angle with  \Theta=\pi/15 , approximately corresponding to  N=840 in the  \cos^{N} directional model.
The second spectrum was wider, with  \Theta=\pi/2.9 , corresponding to  N=24 . This angular width
can be considered as typical width of swell.

Recently, Annenkov & Shrira (2018) performed numerical experiments with the same initial
conditions, using three numerical models (the KE, the  gKE , and the DNS‐ZE), focussing mostly
on one‐dimensional spectral evolution. Using the advantages of the DNS‐ZE, these simulations
were performed for thousands of wave periods. The validation of the DNS‐ZE algorithm was
provided by quantitative comparisons with the results of short‐term DNS simulations by Xiao
et al. (2013)) and tank observations by Onorato et al. (2009). Long‐term simulations allowed
Annenkov& Shrira (2018) to reveal fundamental differences between the predictions of the kinetic
equations and DNS. These differences were attributed to the role of the statistical closure.

One of these differences was in the rate of directional spreading at the initial stage of the
evolution, which was found to be much faster for the kinetic equations than for the DNS‐ZE,
although the latter was in close agreement with the results by Xiao et al. (2013). The long‐
term angular width evolution appeared to tend to the same limiting angle for all three models.
However, since the focus of Annenkov & Shrira (2018) was on one‐dimensional evolution, all
computations were performed for a relatively narrow range of angles  -4\pi/9\leq\theta\leq 4\pi/9 , identical
for all models to facilitate the comparison between them.

For this work, all simulations involving the KE have been recomputed in the full circle, with
the base resolution of  N_{\theta}=50,  -\pi\leq\theta\leq\pi . For the narrow  N=840 case, this angular
resolution was found to be insuffient at the initial stage of the evolution, so  N_{\theta} was increased
to 130. Simulations with the  gKE and the DNS‐ZE were found to have sufficient resolution and

to be unaffected by the angular limits for the time span of the simulations. In this work, these
simulations are used unchanged.

Figure la,  b shows the long‐term evolution of the averaged second moment  \theta_{m} for both initial

107



108

 \hat{CD^{N}\smile\triangleleft^{v^{j)}}b}

 0 1000 2000 3000 4000  0 2000 4000 6000 8000 10000
 t (periods)  t (periods)

Figure 3: Evolution of second moment of directional distribution  \theta_{2}(k) at wavenumbers  k=k_{p},
 0.5k_{p},  2k_{p} and  3k_{p} , for two initially JONSWAP spectra with  \gamma=6 and narrow directional
spreading, corresponding to (a)  N=850(b)N=24 in the  \cos^{N} directional model

spectra, obtained with the KE, the  gKE and the DNS‐ZE. Computations for different models
were performed for different times, due to the numerical instability of the  gKE in the high
frequencies, which is particularly effective without wind forcing (Annenkov & Shrira, 2018),
and high computational cost of the DNS‐ZE simulations, which involved averaging over 100
realizations. Case (b), with wider initial angular spectrum, was traced for larger time to get a
more complete picture of long‐term behaviour. In the short term, both kinetic equations give
nearly identical results and demonstrate much faster angular expansion than the DNS‐ZE. In
the long term, the least‐squares fit for the KE shows slow powerlike growth of  \theta. , and all models
appear to tend to it (figure  2a,b). The exponents for the powerlike growth are slightly different
for the two initial spectra, apparently due to a large difference in angular resolution. While  \theta_{m}
is an averaged characteristic, a more comprehensive picture of the directional spreading can be
obtained from the evolution of the second moment  \theta_{2}(k, t) at different  k . This evolution, for a
few values of  k relative to the spectral peak  k_{p} , is shown in figure  3a,b . All three models nearly
coincide for  \theta 2(0.5k_{p}, t) , but at the spectral peak and for higher  k the DNS‐ZE demonstrates
a larger angular width at large times than the kinetic equations, although with close rates of
growth. However, the gradient of the angular width with respect to wavenumber is higher for
the KE, so that the difference in the averaged  \theta_{m} becomes small at large times due to the role
of the highest wavenumbers.

Badulin & Zakharov (2017), having performed the long‐term simulations with the KE of the
evolution of swell of different initial angular width, found that the angular width at the spectral
peak at large times tends to a certain universal value, although they provided only a qualitative
demonstration of the approach to this limit. Our simulation with the KE shows that the growth
at the spectral peak continues even for large times (  \gg 10^{4} periods), although it becomes very
slow.
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Figure 4: Evolution of averaged second moment of directional distribution  \theta_{m} for wind waves,
with wund speed (a)  U/c_{p}=3(b)U/c_{p}=5 , where  c_{p} is the phase speed of the initial spectral
peak

3.2 Evolution of wind wave spectra with constant wind forcing

Here, we consider the evolution of wind wave spectra under the action of constant wind, for
two different wind speeds, corresponding to either moderate or strong wind. Initial conditions,
including the initial directional distribution, are specified in the form of the empirical spectra by
Donelan et al (1985) for  U/c_{p}=3 (moderate wind) or 5 (strong wind), where  U is the wind speed
and  c_{p} is the initial phase speed of the spectral peak. The subsequent wind forcing, for the same
wind speed, modelled according to Hsiao and Shemdin (1983), applied to frequencies  \omega\leq 2.5\omega_{p},
where  \omega_{p} is the initial spectral peak frequency. Dissipation is applied to  \omega>2.8\omega_{p} . Simulations
are performed with the same frequency discretizations as before. The angular discretization
involves 50 uniformly spaced angles for the KE, 30 angles within  -7\pi/9\leq\theta\leq 7\pi/9 for the  gKE
and 70 angles within the same sector for the DNS‐ZE. The DNS‐ZE algorithm includes a simple
parameterization of wave breaking: in all realizations all harmonics within the forcing domain
are subjected to strong dissipation instead of forcing if they exceed a certain level of nonlinearity.
Only a small number of harmonics is affected by this breaking parameterization (typically, 1−10
for moderate wind and 10‐20 for strong wind, out of the total number of 11431). Averaging for
the DNS‐ZE is over 20 realizations.

Figure 4 shows the evolution of the averaged second moment  \theta_{m} for both cases. Since initial
spectra are already directionally wide, the change of angular width during evolution is much
smaller than in the previous section. All spectra initially adapt to the constant wind forcing
over the first few hundred periods, after which the evolution of  \theta_{m} is very similar for all models,
showing a gradual increase of angular width. For strong wind, there is a relatively small sys‐
tematic difference between the DNS‐ZE and both kinetic equations, which give almost identical
results between themselves. This difference is likely to be due to a different shape of directional
distribution in the case of the DNS‐ZE, which requires a special study.
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Figure 5: Evolution of second moment of directional distribution  \theta_{2}(k) at wavenumbers  k=k_{p},
 0.5k_{p},  2k_{p} and  3k_{p} for wind waves, with wind speed (a)  U/c_{p}=3(b)U/c_{p}=5 , where  c_{p} is the
phase speed of the initial spectral peak

The details of the angular distribution, as shown in figure 5, reveal a close agreement for
angular width at higher wavenumbers between the three models, but a large discrepancy for
large scales, where the DNS‐ZE gives a considerably narrower angular distribution. For small
scales, the angular width continues to increase at large times, while at the spectral peak it
saturates.

3.3 Evolution of wind wave spectra in natural conditions

In the Tehuantepec experiment, Romero & Melville (2010) performed high quality airborne mea‐
surements of two‐dimensional wind wave spectra with simultaneous measurements of wind, over
a few hundred kilometers of fetch. Here we model one particular example of this evolution (corre‐
sponding to research flight 10 of the experiment) numerically, taking as the initial condition the
two‐dimensional spectrum measured at fetch 100 km offshore, where wind waves start dominat‐
ing over opposing swell. During the evolution, wind is gradually weakening and turning clockwise
by about 40 degrees, the wind data being input into the numerical models using, as before, the
paramaterization by Hsiao and Shemdin (1983). The same numerical grid as in the previous
section was used, the initial condition and wind data renormalized accordingly. Averaging for
the DNS‐ZE was performed over 30 realizations. The opposing swell and its effect on wind waves
are not modelled.

Figure 6 shows the evolution of  \theta_{m} for three numerical models, and comparison with  \theta_{m}
obtained from the data. It demonstrates a rough consistency of all the models with the obser‐
vations. Figure 7, which details the evolution of the angular width for different wavenumbers,
reveals a complex picture. For long waves, the angular width is identical for all the models, but
quite different from the data, apparently due to the presence of swell. For the spectral peak and
shorter waves, the DNS‐ZE shows good agreement with the data, demonstrating slow growth of
angular width over time at the spectral peak (in contrast to nearly constant width shown by the
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Figure 6: Evolution of averaged second moment of directional distribution  \theta_{m} for wind waves in
the Tehuantepec experiment (Romero & Melville, 2010), data and numerical modelling

kinetic equations) and weak dependence of angular width on wavenumber.

4 Concluding remarks

Better description of the evolution of the directional spectra is key for probing the adequacy of
our present understanding of the underpinning physical mechanisms. In this work, we examined
a few representative examples of the evolution of directional wave spectra (with and without wind
forcing) obtained numerically using simulations with three different models, based on different
sets of assumptions. By comparing the results of simulations with different models and against
the Tehuantepec observations we have got important insights into the ability of existing numerical
tools to capture the angular evolution of wave spectra.

As a quantitative characteristics of wave field directionality we confined our attention to the
directional width, as given by the second moment of the angular distribution function, calcu‐
lated at a few “ characteristic”’ wavenumbers relative to the spectral peak, or averaged over all
wavenumbers. For the case of swell, initially narrow in angle, we have found that although the
kinetic equations, compared with the DNS‐ZE, considerably overestimate the rate of the initial
angular broadening, the integrated angular width at large time approaches the same powerlike
asymptote, corresponding to slow broadening with time. However, the DNS‐ZE shows a weaker
dependence of the angular width on wavenumber. Within all models, the angular width of the
spectral peak continues to grow slowly even for large time. For constant wind forcing, the mod‐
els agree well on the spectral width of the spectral tail, but show large discrepancies for small
wavenumbers. For the case of the Tehuantepec experiment data, the DNS‐ZE is consistent with
the data, demonstrating slow growth of angular width over time at the spectral peak, in contrast
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Figure 7: Evolution of second moment of directional distribution  \theta_{2}(k) at wavenumbers  k=k_{p},
 0.5k_{p},  2k_{p} and  3k_{p} for wind waves in the Tehuantepec experiment, data and numerical modelling

to nearly constant width shown by the kinetic equations, and weak dependence of angular width
on wavenumber. The overall conclusion is that the modelling based upon the Hasselmann kinetic
equation or  gKE does not capture well the evolution of the angular width, DNS‐ZE does a much
better job in this respect.

The results presented have important, although not necessarily short term, implications.
The knowledge of the directional distribution of water waves is essential for various practical
applications. Accurate measurements of two‐dimensional spectra are rare, and most of the
existing understanding of directional properties comes from modelling, which is almost exclusively
based on the Hasselmann kinetic equation. Understanding the role of the assumptions underlying
the KE is necessary for improving wave prediction models. From the theoretical perspective,
revealing the discrepancies between the kinetic equations and the DNS helps understand the role
of the statistical closure in kinetic models, which is important both within and beyond the water
wave context.

We are grateful to G. van Vledder for providing his WRT code, and to L. Romero and W.
K. Melville for the access to Tehuantepec experiment data. The work was supported by UK
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