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Abstract

We study the interactions of dark line solitons of the defocusing Davey-Stewartson II (DSII) system.
The angle dependency of dark line soliton interactions is investigated in detail by using an analytical
method based on exact solutions and numerical experiments. The general multi-dark line soliton solution
with full parameters is given in the Wronskian form and the chord diagrams for the DS II dark line solitons
are presented.

1 Introduction

The studies of soliton interactions of two-dimensional soliton systems have been attracted many researchers
over the last few decades. Recently, the line soliton interactions of the Kadomtsev-Petviashvili I (KPII)
equation

(—4uy + 6uty + Upga ) + Buyy =0 (1)

has been studied in detail by Kodama and his collaborators [1-10].
The Davey-Stewartson (DS) system

iUy + Upy — O1Uyy + 209 |ul?u + 4uQ = 0, (2)

sz+0'1ny +02(|u|2)xx :07 (3)
is known as a mathematical model which describes two-dimensional water waves in finite depth [11-16]. Here
the parameters o1 and o9 take +1 or —1. The case of 07 = —1 corresponds to the Davey-Stewartson I
(DST) system, and the case of o1 = +1 corresponds to the Davey-Stewartson II (DSII) system [15,16]. The
parameter oy determines focusing (o2 = —1) or defocusing (o2 = 1).

The DS system is sometimes expressed in the following form:

—
W~
=

g + o1Uge — Uyy + 203|u)?u + 4oy up, =0,
01 Qg + ¢yy + 03(|u‘2)r =0. (5)

(4) and (5) can be transformed into (2) and (3) by setting Q = ¢, oo = 0103, t = 01t.
The DS system (2) and (3) has a plane wave solution

u= poei(kz-%—ly—wt-%—&(u))’ Q=0 w=k*—o®— 202/)(2)_ 6)
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Here we look for soliton solutions with non-zero background, i.e., soliton solutions on the above plane wave.
By the transformation of dependent variables

9T Y5 ) i(hatiy—wtre®) * T (@Y, ) i(hatiy—wte®)
= ) = 3 = =l LY 1)) 2 s 7
u pof(a?,y,t)e u Po F(@y.t) e Q = ¢ = (log f(2,y,1))az, (7)

the bilinear equations of the DS system (2) and (3) are obtained:

(iD; + D2 — 01D} + 2ikD, — 2i011D,) g - f =0, (8)
(=iD; + D2 — 01D} — 2ikD, + 2i011D,) g* - f =0, (9)
(D2+0'1D§+w7k2+01l2) I f4 200029 =0, (10)

where f is a real function, g is a complex function and ¢* is its complex conjugate. The parameters k, I, w,
0o, €O are real. The Hirota’s D operators D, Dy and D; are defined by

Mg [YMy Mt £ _ £78 e E,i ™ 27& ™ - o gl
Dac Dy Dt fg_ <81‘ 8r,) <8y 8y') <8t (r%,) f(1777t)9($,y7t) 9 (11)

z'=z,y =y,t'=t

where m,, m,, m; are positive integers.
By using the Hirota direct method, we obtain the 1-soliton solution
_ (0) _ (0) _ (0)
f=1+ ePrray—t+o ., og=1+ aePTtay—St+o , g* =14 aePrty Qt+6 , (12)
2kp —201lg +i(P* —01¢>) —Q | 2kp —201lg —i(p? —01¢°) = Q
= o =
2kp — 201lqg —i(p? — 01¢%) — Q' 2kp — 201lq +i(p? — 014%) — Q’

2 2
p- — 019
7‘:”2 +01q2|\/(p2 +01¢%)(4o2pf —p? — 01¢%), @ = %1,

w=k>—ol® - 202/)%,

o

Q = 2kp — 201lq + €1

where p, ¢, 09 are real parameters, and the 2-soliton solution

f=1+e" 4% 4 Apefr1t0z, (13)
g=1+ a1 + ae? + ajandpe” % ¢* =1+ aje? + ase? + alajAieh 02,
0, =pjz+qy—Qt+67, w=k*—0> =200},

2kp; — 201lg; +1(pF — 0147) — _ 2kp; — 201lq; — i(pf —0147) — Q;

*

a; = . , o= . ,
7 2kp; —2041q; — i(p3 —0147) — Q; I 2kpy — 201lg; +i(p? — 0147) —
Ip} — o14j| 2 2 2 _ .2 2 ;
Q; = 2kp; — 201lg; + —3 sV V= Ej\/(pj +01¢3)(dogpf —pi —0143), ¢ =1, (j=1,2),
by +0'1qj‘

Ay = 27206(pip2 + 010102) = 72 — (0T + 0101) (03 +0143)
402§ (p1p2 + 01q1G2) — M1y2 + (01 + 0167) (P53 + 0143)

In this article, we study the dark-line soliton interactions of the defocusing DSII system, i.e., the case of
o] = +1,0’2 = +1.
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Figure 1: 1-dark line soliton of the DSII system.
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2 Dark line soliton solutions of the defocusing Davey-Stewartson

II system

Hereafter we consider the defocusing DSTI system, i.e., the case of 01 = +1,09 = +1. The dark-type line

soliton solution of the defocusing DS1I system is given by

po+qy—Qt+0)
w = poeiFetly—wt+®) 1+ae w2292
= po _ ©) - Po>
1 + epr+qy—Qi+0

oo =2 +ip? —g?) = Q. 2kp—2lg—i(p’ —¢°) = O
2kp —2lg —i(p? — ¢*) = Q’ 2kp —2lq +i(p? — ¢%) —
P4 thx+qnyt+0<0)
4 2
= pg — Asech? VA[(cos ®)z + (sin O)y — Ct 4 2],

2

ul?> = p3

—Qt 4+ 60
0 g = Vs Pt ay =460
4 2
Q = 2kp —2lqg + el—|p2 il (P% + ¢2)(4p3 — p* — ¢?),
P +q
2, 2 0
P tq P . q 0 ¢
A= L ocosU=— sinVU=—o— 0=
4 /p2+q2 /p2+q2 /p2+q2

2 2
o= _ w2, -d WP e =41
VPt e ViRt E P VT R

(14)

In the DSTI line solitons, 2 and C can take 2 different values for the same set of parameters p,q,k, 1, po
because of the parameter e;. If we set kK = [ = 0, these solitons for ¢; = +1 and e2 = —1 propagate in the
opposite direction. Note that line solitons in the KPII equation do not have this property and KP I line
solitons always propagate in the same direction. In the 1-dark line soliton solution, tan ¥ = % corresponds
to the slope of a line soliton and ¥ corresponds to an angle which is measured clockwise from the negative

part of y-axis (see Fig.1). The depth of the dark line soliton is given by

(15)



118

20

0
x 20

Figure 2: 2-dark line soliton of the DSII system.

The 2-dark line soliton solution of the defocusing DSII system is given by

_g(myt)
=P0
f(z,y,t)
Fol4e" +e% 4 Appehitoe,
g=1+a1e” +aze®™ + arazdine” . g = 1 +aje” +aze” + ajaz A %,
0; =piw+qy—Qt+67, w=k—1-2p,
o, = 2kpj —2lg; + i(pF —q3) — 9 ot = 2k —2lg; — i(p} —q3) —
T 2kpy —2q; —i(pE—q}) - 7 2kp; —20g; +1(p? — ) —
[p% — qu|7,
g
4p(p1p2 + q12) — 192 — (PF + 07) (03 + ¢3)
Apy = — Po\P1P2 + G192) — M1z — \P1 T+ 4i)(P2 T 43)
4p3(p1p2 + q12) — M1y2 + (0% + ¢3) (P + ¢3)

ekrtty=wt € 0 — (log f(2,y,t))re (16)

Q; = 2kp; — 2lg; + v = ej\/(p§ A —pi—q), =%, (j=12)

The graph of the 2-dark line soliton is given in Fig.2.
In the above 1-dark line soliton solution, by setting

p=2ppcosUsin®, ¢=2pgsin¥sind, (17)
u, a, o, Q and C are written as

2pg cos ¥ sin @)z +(2pg sin ¥ sin @ —QH—G(”)
ikt ly—wtre©@) 1+ ael(2pro )z+(2p0 )y

_ _ 1.2 _ 12 _ 2
U= poe 1 + e(2po cos ¥ sin ®)x+(2po sin ¥ sin P)y—Qt+6() 7 w=Fk ! 2/)07 (18)
a=e 20t g 2ait
Q = 4kpo cos W sin & — 4lpg sin ¥ sin @ + 26 p2| cos 20 sin 20|, ¢ = £1. (19)

In this parametrization, the depth of the dark line soliton is given by

P+
Py — = = rolcos |, (20)

€. =4p3). In the case of k = [ = 0, dark line solitons
corresponding to ¥ = I (= 45°), 87 (= 135°), 2% = (225°), ZX (= 315°) do not move (i.e, C = 0) and change



the direction of propagation at these critical angles. In the case of ¢, = —1, by setting ¥ — ¥ + 7 we have

p— 2pgcos(¥+m)sin® = —p, ¢ — 2ppsin(¥ + 7)sin® = —g,

Q_ — 4kpo cos(¥ + 1) sin @ — 4lpg sin(¥ + 7) sin @ — 2p3| cos 2(V + ) sin 20|
= —4kpg cos Usin ® 4 4lpo sin U sin & — 2p2| cos 2V sin 28|
=,

2i® (2po cos(U+r) sin B)z+(2po sin(¥+7) sin @)y—Q_ 40

i(kz+ly—wt4£0) 1+e
1 + e(2p0 cos(+m) sin @)x+(2po sin(¥+) sin D)y—Q_t+0)

u — poe

21 ,—(2pg cos U sin @)z —(2po sin ¥ sin ®)y—Q_ 46
i(szrlywa»E(o))l tee (2e0 Ja—(2eo )
1 4 e—(2po cos ¥ sin ®)a—(2pp sin ¥ sin @)y—Q_t+6(0)

= po€

kot ly— ot £©) 1 + e~ 2% (2p0 cos ¥ sin ®)a+(2p sin ¥ sin D)y+Qt—0
= poc ) 1 + e(2p0 cos Wsin ®)x+(2po sin ¥ sin D)y+Q4t—60)

where Qy = Q for ¢ =1 and Q_ = for ¢, = —1. Thus the case of ¢ = —1 corresponds to 180°-rotation
(I — ¥ + ) in the case of e = +1. Thus we can rewrite the 1-dark line soliton solution in the following
form without €;:

1+ ae(ZpD cos W sin @)z+(2pg sin ¥ sin ®)y—Qt+0*

i(katly—wt+£©) w=k2—12-2p% (21)

u = ppe
o 1 + e(2p0 cos ¥ sin @)x+(2po sin ¥ sin D)y—Qt+60)

a=e A of =B Q= 4kpgcos Usin® — 4lpg sin Usin @ + 2p3 cos 2V sin 2.

)

In the 2-dark line soliton solution, by setting
pj =2pocosU;sin®;, ¢; =2psin¥;sin®; (j=1,2) (22)
aj, aj, (j =1,2) and A5 are written as

aj = 6725_71(?_,,'7 C!; — 625_71(I>j7

Q; = 4kpo cos U sin &, — 4lpg sin U, sin @; + 2¢;p3| cos 2, sin 28|, e; =1 (j=1,2)
_ 4sin @y sin ®y(cos (U1 — Wy) — sin @y sin y) — €; €2 sin 204 || sin 205|

Ay = .
127 Isin @7 sin @y (cos (U1 — Uy) + sin B sin Dy) — €;€3] sin 281 || sin 285

(23)

As in the 1-dark line soliton solution, the case of €; = —1 corresponds to 180°-rotation (¥; — ¥; + ) in the
case of €; = +1. we can rewrite o, aj, Q; (7 =1,2) and A;2 in the following form without €; and €,

a; = e A%, aj = X% Q= 4kpocos U, sin ®; — 4lpysin U sin &; + 2p3 cos 2¥, sin 28,  (j = 1,2)
Ao — 4 sin @1 sin Po(cos (1 — ¥a) — sin Py sin P3) — sin 2P sin 2P, (24)
127 Ysin @1 sin @ (cos (Ug — Ua) + sin @1 sin Do) — sin 2@ sin 205

3 Angle dependency of dark line soliton interactions

Let us consider the angle dependency of the 2-dark line soliton interactions of the defocusing DSII system.
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Figure 3: Angle dependency of 2-dark soliton interaction.

In the previous section, we obtained the following form of the 2-dark line soliton solution:

_ 9@yt atiy—wtre©) _ =
U = pPo f(flj-y, t)e ) Q - (lOg f(‘r7y7t))11 (2‘))

F=1+e" 4% 4 Appefrt0z,
g=1+ e +ae? + a1 A1eh 12 gt =14 aTeal + oz;‘ee2 + ai‘a%AlgeGﬁG?,
Gj:pjx-&-qjy—()jt—l-@?, w:kz—l2—2pg7

—2i®, * _ 2i®
ooy =en,

p; =2pgcosV;sin®;, q; =2ppsinV¥;sin®;, «o;=ce
Q; = 4kpocos U sin®; — 4lpgsin ¥ sin ®; + 2p3 cos 2¥,; sin 2®;, (j = 1,2)
Apy = 4 sin 4 sin Po(cos (¥1 — Uy) — sin Py sin Py) — sin 294 sin 2<I>2.

4 sin 4 sin P (cos (¥1 — Py) + sin Py sin Py) — sin 2P sin 2P,

Since Ajo in the 2-dark line soliton solution determines the soliton interaction, we investigate the angle
dependency of 6 = —log A;2 which describes the phase shift by soliton interaction [17]. Note that A2 does
not include the parameters k,l, w. This means that a continuous wave background (a plane wave) does not
affect dark-line soliton interactions.

Figure 3 shows the angle dependency of 2-dark soliton interactions. We consider the fixed vertical soliton
and rotate another soliton in the counterclockwise from the negative part in y-axis. The parameters in the
left graph are p; = 1, g1 = 0, po = 2cos ¥y, g2 = 2sin Uy (ie, pp = 2, U1 = 0°, sin®; = 1, sin®y = J).
In this case, the fixed vertical soliton propagates to right. The parameters in the right graph are p; = —1,
g1 =0, pa = 2cos ¥y, g3 = 2sin ¥y (i.e., po = 2, U3 = 180°, sinP; = %, sin @y = %) In this case, the fixed
vertical soliton propagate to left. Note that the right graph is obtained from the left graph by the 180° shift
of the angle. The right graph is obtained by the 180° shift of either ¥ or Ws.

In the case of the KP II equation, the region of § > 0 in the graph corresponds to 0 < Ajs < 1 in which the
soliton interaction is called P-type, and the region of § < 0 in the graph corresponds to A2 > 1 in which the
soliton interaction is called O-type. The region in which there is no curve corresponds to A2 < 0, thus the
corresponding 7-function gives a singular solution. In these regions of Wy, the T-type soliton solutions which
have a hole in the intermediate region appear instead of the above 2-dark line soliton solution. The angle
dependency of dark line soliton interactions of the DSII system is similar to that of the KP I line soliton
interactions.

We have performed numerical experiments of 2-dark line soliton interactions. In our numerical experi-
ments, we have employed the split-step Fourier method developed by White and Weideman [18]. To resolve
inconsistency of boundary condition, we have used the windowing technique [6,8,19]. We have confirmed
that the above theoretical prediction by the exact 2-soliton solution matches with numerical results. We will
report the detail of numerical studies of the DSII dark line solitons in our forthcoming paper.



4 Chord diagrams of dark line soliton solutions of the defocusing
Davey-Stewartson II system

In this section, we introduce a new parametrization for dark line soliton solutions of the defocusing DS
system.

1-dark line soliton solution
By setting
_Patin @71&"2—?/)1

v
2 2

1/11 < l/}g (26)

D, ¢, a, o and €) are rewritten as

Q = 2kpo(sin g — sin ;) + 2l po(cos s — cos 1) 4 pi(sin 24hy — sin 2¢1),
p=2pgcos Usin® = py(sinths —sineyy), ¢q=2pgsin¥sin® = —pg(cos s — coshy),
a= 6_1(1/]2_7‘/’1), af = el(P2=¥1) (27)
Then the 1-dark line soliton solution is rewritten in the following form:
u= po%‘““w*w”ﬁ‘“’), Q= (10g flox, w=k —1> 20, (28)
f= e’ + ae®, g= e el g > 0,
0; = (posintyj)z — (po cosh;)y — (2kpo sint; + 2lpg cosh; + pasin2;)t, (j =1,2)

by — 1
[u|? = p2 — p? sin? WTwlsechz {5(92 — 01+ loga)} ,

1 b — i b )2 1
Q= Pgwsechz {5(02 — 0, + loga)} < s
Here we set e = +1 since the case of ¢ = —1 is 180°-rotation of a dark line soliton in the case of ¢; = 1.

Although a dark line soliton of the same shape can propagate in 2 different speeds, we can interpret that the
one dark line soliton among these two dark line solitons with different speeds is 180°-rotation of the other
dark line soliton.

40

200 f
[1,2]-soliton,

Figure 4: The graph of the dark line soliton (left) and its chord diagram (right).

Note that the parametrization using ¥; and w9 provides us a simpler expression of dark line soliton
solutions of the DSTI system, and in this form we can find the important information for constructing chord
diagrams of the DS dark line soliton solutions. In Fig.4 we show the graph and the chord diagram of the
1-dark line soliton. To draw a chord diagram corresponding to a given 1-dark line soliton solution, we first
draw a circle with the radius pp and points on the circle corresponding to angles t¢); and 5, then connect
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Figure 5: The graph of the resonant dark line soliton (left) and its chord diagram (right).

these points by arcs. Here parameters v; and 12 are measured counterclockwise from the negative part in
y-axis. The parameter ¥ = % provides the location of the dark line soliton, and the dark line soliton
corresponds to a perpendicular bisector of the line segment connecting 2 points on the circle. The other
parameter & = @ gives the depth of the dark soliton and this corresponds to the length of the line
segment connecting 2 points on the circle. Since the 1-dark line soliton corresponds to the permutation of

the index 1 in ¢ and the index 2 in 9, i.e.,

we call it [1,2]-soliton.

Resonant Y-shape dark line soliton solution
The resonant Y-shape dark line soliton solution is given by

f=e" +ane®” +aze®, g=e"T 4 ape® V2 £ a3 ag, a3 >0,
8; = (posint;)z — (pocosth;)y — (2kpo sinay; + 2pg cosh; + pasin2)t, (5 =1,2,3)

P < g < b, (29)

As in the case of the KP II equation, this solution corresponds to the permutation 7 = (312). The graph and
the chord diagram of this resonant soliton solution are given in Fig.5. Setting wave numbers p;, ¢;(i = 1,2, 3)
and angular frequencies Q;(i = 1,2, 3) of dark line solitons as

p1 = po(sinthy —siny1), pa2 = po(sinthz —sinehe), p3 = po(sinehz — siney),

g1 = —po(costhy —cost), g2 = —po(cosys —cos2), g3 = —po(costhz — cosn),
Q1 = 2kpo(sin by — sin 1) + 2lpg(cos b — coshy) + p(sin 2hy — sin 241 )),

Qo = 2kpo(sin s — sineha) + 2l pg(cos g — costh) + pg(sin 2th5 — sin 2¢h3)),

Q3 = 2kpo(sin bz — sin 1) + 2lpo(cos 3 — coshy) + pg(sin 23 — sin 241 )), (30)
we can find that resonant soliton condition
p1+p2=p3, @t+g=g, U+=0Q (31)

is satisfied. More complicated soliton resonance solutions which show soliton reconnection were discussed
in [20].

2-dark line soliton solution
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In the 2-dark line soliton solution, we introduce the new parametrization

PRI j — o , ‘
\I}j = ¢2J V2 17 ®] = 7/)23 szj 17 (j = 172)7 wl <Y < 1113 < Y4 (32)
Then Q;, pj, g5, @, af (§ = 1,2) and A;2 are written by
Q; = 2kpo(sin thg; — sinepa;j_1) + 2po(cos e, — costhaj_1) + pi(sin 2thg; — sin 24 1),
pj = po(sinipa; —sinthg;j_1), q; = —po(costha; — cos 1),
;= E*i(d’z;‘*wz;—l)7 a;f — ei(¢2]*¢2;—1)7 (] — 172)7
Aoy B_ —sin(yy — 1) sin(¢py —¢p3) _ sin %;’1’1 sin ng
T B —sin(vy — ) sin(vs — v3)  sin 502 gin i
B. — 4si Yo —P1 . Py — 3 Ya+P3—tha—P1 . o —P1 . Pa— 3
. = 4sin sin cos + sin sin
2 2 2 2 2
o — — /s by — Vo — b
B — 4sin ¥ . 1 sin s . b3 <COSU4+TJ)3 . P2 — 1 _sin 2 - 1 sin 4 - 7/13> (33)

The soliton interaction of this solution is called O-type and corresponds to the permutation # = (214 3).
The chord diagram of the O-type 2-dark line soliton solution is given in Fig.6 (left figure).

15

15

Figure 6: The chord diagrams of O-type (left) and P-type (right) 2-dark line soliton solutions.

In the 2-dark line soliton solution, we can set

he - + on e . .
v, = '72 e = o ]2 11)]7 (1=12), ¥1<t2<t¥3<tn (34)
Qj, pj» 45, @y, af (j =1,2) and Ajp are written by
Q; = 2kpo(sin g5 —; — sint;) + 2po(cos s —j — costh;) + pj(sin 205 ; — sin 20);),
p; = po(sintps_; —sine);), ¢; = —po(cosips_; — cosyy;),
o = e*i(ws—gfibj)’ a;f _ ei(d’s—J*%)7 (j=1,2),
Aoy — B_ —sin(1p4 — 1) sin(yp3 —1Pp)  sin w;‘” sin @
2 B Sin(s — v1)sin(Us — V2)  sin Syl sin U2
B. —4si Ya—th1 . 3 —1ho at =y =t | Ya =1 Y3 — ¢
| =4sin sin cos + sin sin
2 2 2 2 2
B — 4sin 4 ; Y1 Vs — Yo (COS Ya+ 1 ; Ys— %2 Ya g Y1 ¥s ; 1#2) (35)
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The soliton interaction of this solution is called P-type and corresponds to the permutation 7 = (4321).
The chord diagram of the P-type 2-dark line soliton solution is given in Fig.6 (right figure).

General 2-dark line soliton solutions

By using parameters 1)1, 12, %3, %4, the general 2-dark line soliton solution is expressed in the following
determinant form:

f = 7—(7%)7 g= 7-(%)7 g* = 7(7%)

s s+1
o] o
s s ?
P2 P2

(s) 1‘ NTR t ZG‘WE( s) I Y, t) EES)(x,y, t) _ eofisw?’

0; = (posin wi)m — (po cos s )y — (2kpo sinb; + 2lpg cos 1 + pa sin 20;)t,
Y1 < Yo < U3 < Ya.

The above 7-function 7() is written as

) =14 BV, (36)
691+i5w1 691+i(s+1)¢1
. (541
A a1 a1z a3 au E(S) _ ef2+is2 692+1<S+ )2
a1 A2y QA3 Qo4 ’ 6934—18@)3 693+1(S+1)’¢J3

604+is'q!14 e94-%—i(s+1)1/)4

As in the case of KP II line solitons, the A-matrix and parameters 11, V9, 13,94 determine 2-dark line soliton
interactions of the DS1I system. By the Cauchy-Binet formula, 7(*) is rewritten as

) = Z A(ml,mQ)E(S) (m1, m2)
1<mi<mo<4
= Z A(my, my)ei*¥m Fistms (e¥ms _ gi¥my )by +0ms
1<mi<m2<4
=2 Z A(my, ma)e i(543) Wona 2 i %ﬁmlegmﬁgma
1<mi<ma<4
~ Z A(mhmz)ei(er%)(wmlermz)Sinw Oy +0my 37)

1<mij<mo<4

where A(my,ma) is the 2 x 2 minors of the matrix A obtained from ms-th and ma-th columns (1 < m; <
my < 4) and E(m,my) is the 2 x 2 minors of the matrix E(*) obtained from mi-th and my-th rows
(1§77’L1 <m2§4).

The A-matrix is canonically chosen in the reduced row echelon form (RREF). As in the case of the
KPI equation, there are total seven different types of (non-singular) 2-soliton interactions which can be
enumerated according to the seven derangements (permutations that have no fixed points) of the index set
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Figure 7: The chord diagram of T-type 2-dark line soliton solution.

[1,2,3,4] with two excedances:

(7]

These matrices are irreducible totally non-negative (TNN) matrices, i.e., all its maximal minors are non-
negative, and correspond to points on TNN Grassmannian Gr*(2,4). The chord diagram of the T-type

m=(3412): A:<(1) (1) —ac _bd>7a,b,c,d>0,ad7bc>0,T—type
T=(2413): A:((l) v ‘bd>,a,b,c,d>o,ad—bc:o,
T=(4312): A:(é (1] ;b BC>,a,b,c>0,

T=(3421): A:(é 0 _bc),a7b7c>07

m=(4321): A:(é (1] 2 _Ob>,a,b>O,P—type

T=(3142): A:((l) ol ’bc>,a,b,c>o,

T=(2143): A:(é g ? 2>,a,b>0,0—type

2-dark line soliton solution is given in Fig.7.

General multi-dark line soliton solutions
Multi-dark line soliton solutions of the defocusing DS 1II system is given as follows:

fF=rtFY, g =755 g = (5,
N—-1
P Pl
SO : ,
s s+N—1
AD

M
W@y t) =Yy B (@, t), B (x,y,t) = e isv
=1

0; = (posina;)x — (po costh;)y — (2kpo sin ;4 21pg cos; + pf sin 2u;)t,

h <o <y <thm (i=1,2,--- M, j=1,2,---  N).

(38)
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The above 7-function 7(%) is written as

) =14 EW), (39)
ayy - aim 601+is1/)1 . 601+i(s+N71)1J)1
A= o . EW= : . :
ani -+ aNuM eOmtisvn L. GOmHi(s+N—1)Ym
As in the case of KP1I line solitons, the A-matrix and the parameters ¢y, 9, -+ , %5 determine dark line

soliton interactions of the DS system. By the Cauchy-Binet formula, (%) is rewritten as

) = Z A(mq,- - 7mN)E(S)(ml,~~~ JMN)
1<mp<---<mny<M
= Z A(my,--- 7mN)€Z;V:1 159 ; H (eiwm£2 _ )ezle O,
1<my<--<my<M 1<i1<ia<N
oY= >N i(5+ Nfl)qp . "Z’mlz - wm” SN 0,
= e =1 ™ —1 0m,
=(2i) > Z A(ma, -+ my)es 2 9 H sin 5 e i
1<my<---<my<M 1<i; <ia<N
N N-1 . 1/1 i 1/) i N
~ Z A(my, -+ my)ei= (54552 )¥m; H sin 2~ 3 i o251 Om; (40)
1<mi<--<my <M 1<i1 <ia<N
where A(my,--- ,my) is the N x N minors of the matrix A obtained from m;-th,...,my-th columns (1 <
my <---<mpy <M)and E(mq,---,mp) is the N x N minors of the matrix E® obtained from m;-th, ...,

mpy-th rows (1 <my <--- <my < M).

As mentioned above, DS 1-dark line soliton of the same shape can propagate in 2 different speeds. This
means that a given soliton pattern can evolve into different patterns. So the multi-dark line soliton interactions
for the defocusing DSTI system can be more complicated compared to the KP II equation. However we can
analyze dark line soliton interactions by using the tools developed in the case of the KP II equation because
2 dark line solitons with the same shape and different speeds can be expressed in 2 different chord diagrams
(i.e., points corresponding to ¥s on the circle are different for these 2 dark line solitons).

By using the chord diagrams presented in this article and triangulations, we can analyze the interactions
of multi-dark line solitons for the DS system. The angle dependency of soliton interactions discussed in the
previous section can be explained by using chord diagrams.

As in the KP I line solitons [9], we can solve an inverse problem for the DS II dark line solitons in which
the 7-function is determined and the time evolution is predicted from a given initial pattern. The algorithm
to solve the inverse problem is as follows: i) From an initial soliton pattern, get data of angles, depth and
speed of line solitons, ii) from these data, construct the data of the parameters ¢;, iii) draw a chord diagram
corresponding to an initial pattern, iv) using the chord diagram, we construct the A-matrix and 7-function.

The details of these issues will be addressed in our forthcoming paper.

5 Conclusions

In this article, we have studied the interactions of the dark line solitons for the defocusing DSII system. We
have investigated the angle dependency of 2-dark line soliton interactions and confirmed that the numerical
experiments match with the analytical results by using the exact 2-dark line soliton solution. We have also
given the general multi-dark line soliton solution with full parameters in the Wronskian form and the chord
diagrams for the DSTI system. The detail of the analysis of DS dark line soliton interactions will be given
in our forthcoming paper. We would like to thank Prof. Yuji Kodama and Prof. Sarbarish Chakravarty for
useful discussions. This work was supported by JSPS KAKENHI Grant Number JP18K03435, JP17H02856
and the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto
University.
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