
28

GROUPS WITH MANY SMALL SUBGROUPS, II

DMITRI SHAKHMATOV AND VÍCTOR HUGO YAÑEZ

As usual, \mathbb{Z} and  \mathbb{Q} denote the groups of integer numbers and rational numbers respec‐
tively,  \mathbb{N} denotes the set of natural numbers and  \mathbb{N}^{+}=\mathbb{N}\backslash \{0\} . We use  \mathbb{P} to denote the
set of prime numbers.

Let  G be a group. For subsets  A,  B of  G , we let  AB=  \{ab : a\in A, b\in B\} and
 A^{-1}=\{a^{-1} : a\in A\} . When  G is abelian, we use the additive notation  A+B instead of
 AB and  -A instead of  A^{-1} . For a subset  A of  G , we denote by  \{A\rangle the smallest subgroup
of  G containing  A . To simplify the notation, we write  \langle x\rangle instead of  \{\{x\}\rangle for  x\in G.

Let  G be an abelian group. Following [6], we denote by  r_{0}(G) the free rank of  G , by
 r_{p}(G) the  p‐rank of  G , and we let

 r(G)= \max\{r_{0}(G), \sum\{r_{p}(G) : p\in \mathbb{P}\}\}.
Following [3, Definition 7.2], we call the cardinal

(1)  r_{d}(G)= \min\{r(nG) : n\in \mathbb{N}^{+}\}
the divisible rank of  G . The notion of the divisible rank was defined, under the name of
final rank, by Szele [15] for  p‐groups.

All topological groups in this paper are assumed to be Hausdorff.

1. MINIMALLY ALMOST PERIODIC AND SSGP GROUPS

A topological group is minimally almost periodic if every continuous homomorphism
from it to a compact group is trivial. This class of topological groups was introduced by
von Neumann and Wigner [12] in 1940, as a means of expanding the theory of almost
periodic functions [11]. Examples of minimally almost periodic groups are notoriously
difficult to construct. We refer the reader to [8, 1, 4, 5] for a historical overview of these
examples.

Answering a long‐standing question of Comfort and Protasov, Dikranjan and the first
author gave a complete characterization of abelian groups which admit an introduction of
a minimally almost periodic group topology [5]. In 1978, Dierolf and Warken [2] proved
that every topological group is embedded in a topological group which is minimally almost
periodic. The small subgroup generating property (SSGP) was defined by Gould in [8] as
a generalization of a stronger property used by Dierolf and Warken in the proof of their
result.

Following [4], we define

(2)  Cyc(A)=\{x\in G:\langle x\}\subseteq A\} for every  A\subseteq G.

Definition 1.1. A topological group  G has the small subgroup generating property (ab‐
breviated to SSGP) if and only if  \langle Cyc(U)\rangle is dense in  G for every neighbourhood  U of
the identity of  G . We shall say that a topological group  G is SSGP if  G satisfies the small
subgroup generating property.

This talk was presented at the conference by the second listed author who was partially supported by
the Matsuyama Saibikai Grant.
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This definition uses a convenient reformulation of the original definition of Gould given
in [4]. The SSGP property was studied extensively by Comfort and Gould [8, 9, 1].

Comfort and Gould [1] asked the following question.

Question 1.2. [1, Question 5.2] What are the (abelian) groups which admit an SSGP
group topology?

In the abelian case, Dikranjan and the first author completely resolved Question 1.2
for abelian groups of infinite divisible rank.

Theorem 1.3. [4, Theorem 3.2] Every abelian group  G satisfying   r_{d}(G)\geq\omega admits an
SSGP group topology.

An abelian group  G satisfies  r_{d}(G)=0 if and only if  G is a bounded torsion group; that
is, if  nG=\{0\} for some  n\in \mathbb{N}^{+} . Therefore, the following theorem is a reformulation of
[4, Corollary 1.7] which itself is a combination of results of Gabriyelyan [7] and Comfort
and Gould [1]:

Theorem 1.4. A non‐trivial abelian group  G satisfying  r_{d}(G)=0 admits an SSGP group
topology if and only if all leading Ulm‐Kaplanski invariants of  G are infinite.

In the remaining case   0<r_{d}(G)<\omega , Dikranjan and the first author found a necessary
condition on  G in order to admit an SSGP topology, and they asked whether said condition
was also sufficient. This question was reduced by the same authors to the following
problem:

Question 1.5. [4, Question 13.1] Let  m\in \mathbb{N}^{+} and

 G=G_{0} \cross(\bigoplus_{i=1}^{k}\mathbb{Z}(p_{i}^{\infty}))\cross F,
where  F is a finite group,  k\in \mathbb{N},  p_{1},  p_{2},  p_{k} are (not necessarily distinct) prime numbers,
and  G_{0} is a subgroup of  \mathbb{Q}^{m} containing  \mathbb{Z}^{m} such that  G_{0}\not\in \mathbb{Q}_{\pi}^{m} for every finite set  \pi of
prime numbers. Is it true that  G admits an SSGP group topology?

The notation  \mathbb{Q}_{\pi} appearing in the above question is given in the next definition.

Definition 1.6. For a set  \pi of prime numbers, we use  \mathbb{Q}_{\pi} to denote the set of all rational
numbers  q whose irreducible representation  q=z/n with  z\in \mathbb{Z} and  n\in \mathbb{N}^{+} is such that
all prime divisors of  n belong to  \pi.

Dikranjan and the first author proved a provisional theorem completely characterizing
abelian groups  G which admit an SSGP group topology in the remaining open case  0<

  r_{d}(G)<\omega provided that the answer to Question 1.5 is positive [4, Theorem 13.2].
In [13], the authors gave a positive answer to a more general version of Question 1.5:

Theorem 1.7. [13, Theorem 2.10] Suppose that  m\in \mathbb{N}^{+} and  G_{0} is a subgroup of  \mathbb{Q}^{m}
containing  \mathbb{Z}^{m} such that  G_{0}\not\in \mathbb{Q}_{\pi}^{m} for every finite set  \pi of prime numbers. Then for each
at most countable abelian group  H , the product  G=G_{0}\cross H admits  a (separable) metric
SSGP group topology.

Thereby, the previously provisional result (of Dikranjan and the first author) for groups
of finite divisible rank became complete and may be stated as follows:

Theorem 1.8. [13, Theorem 2.9] For an abelian group  G satisfying   1\leq r_{d}(G)<\infty , the
following conditions are equivalent:
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(i)  G admits an SSGP group topology;
(ii) the quotient  H=G/t(G) of  G with respect to its torsion part  t(G) has finite rank

 r_{0}(H) and   r(H/A)=\omega for some (equivalently, every) free subgroup  A of  H such
that  H/A is torsion.

Here  t(G)= {  x\in G :  nx=0 for some  n\in \mathbb{N}^{+} }.

2. THE ALGEBRAIC SMALL SUBGROUP GENERATING PROPERTY

As noted in [8], the notion of an SSGP group was introduced as a generalization of
the stronger property which appeared (without a name) in Dierolf and Warken [2]. Be‐
low we give a name to this property and state it using the same notations adopted in
Definition 1.1.

Definition 2.1. We say that a topological group  G has the algebraic small subgroup
generating property (ASSGP) if and only if   G=\langle Cyc(U)\rangle for every neighbourhood  U of
the identity of  G . We shall say that a topological group  G is ASSGP if  G satisfies the
ASSGP property.

In contrast to Definition 1.1, the subgroup  \langle Cyc(U)\rangle in the above definition is required
to algebraically generate the whole group, rather than be only dense in it.

The following implications always hold:

(3) ASSGP  arrow SSGP  arrow minimally almost periodic.

The second arrow in (3) is not reversible [1, 8]. One of the goals of this paper is to
show that the first arrow in (3) is not reversible either, even in the class of torsion abelian
topological groups.

Before we state the original result of Dierolf and Warken, we recall the basics of
Hartman‐Mycielski construction from [10].

Let  G be a group and denote the unit interval  [0,1] by  I . We denote by  G^{I} the set of
all functions from  I to  G , which is a group under the coordinate‐wise operations. Given
 g\in G and  t\in(0,1 ] we define the function  g^{t}\in G^{I} such that

 g_{t}(x)=\{\begin{array}{l}
g if x<t
e_{G} if x\geq t,
\end{array}
where  e_{G} is the identity element of  G . It is known and easy to check that  G_{t}=\{g_{t} : g\in G\}
is a subgroup of  G^{I} that is isomorphic to  G for every  t\in(0,1]. If  G is abelian, then the
sum

HM  (G)= \bigoplus_{t\in(0,1]}G_{t}
is direct [5, 3, 4]. If  \mu is the standard probability measure on  I the Hartman‐Mycielski
topology on the group  HM(G) is the topology generated by the family of all sets of the
form

 O(U, \epsilon)=\{g\in G^{I} : \mu(\{t\in I : g(t)\not\in U\})<\epsilon\}
where  U is an open neighbourhood of  e_{G} in  G and  \epsilon>0 , forms the base of the identity
function of  HM(G) . This topology is known to be pathwise connected and locally pathwise
connected [10].

The Hartman‐Mycielski construction has been an invaluable tool for solving embedding
problems such as the ones seen in [3, 4].
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Following the construction by Dierolf and Warken in [2] (along with additional com‐
ments in [8] and [1]), we obtain the following:

Theorem 2.2. ([2, Theorem 1.1], [1, Theorem 3.2]) Let  G be a topological group. Then:
(a)  G is closed in  HM(G) ; and
(b)  HM(G) is ASSGP.

In particular,  HM(G) is SSGP and therefore minimally almost periodic.

This theorem not only provides our first example of an ASSGP group but also estab‐
lishes the fact that every topological group can be embedded as a closed subgroup in an
ASSGP group.

3. SOME OF OUR RESULTS FOR ASSGP GROUPS

To begin, the following basic properties hold:

Proposition 3.1. [14] The class ofASSGP topological groups is closed under the following
operations:

(i) taking continuous surjective homomorphisms,
(ii) taking topological products,

(iii) taking direct sums,
(iv) taking topological quotients.

In the rest of this section we focus on the class of torsion groups.

Definition 3.2. A group  G is:

(i) torsion if for every  g\in G there exists  n\in \mathbb{N} such that  g^{n}=e_{G} (the minimal  n

with this property is called the order of  g ).
(ii) bounded if there exists  n\in \mathbb{N} such that  G^{n}=\{e_{g}\}.

Definition 3.3. A subgroup  H of a group  G is essential (in  G ) if  \{g\}\cap H\neq\{e_{G}\} for
every  g\in G\backslash \{e_{G}\}.

Theorem 3.4. Let  G and  H be torsion groups such that  G is non‐trivial and contains
a finite essential subgroup E. Suppose that the orders of arbitrary  g\in G\backslash \{e_{G}\} and
 h\in H\backslash \{e_{H}\} are relatively prime ( i.e., do not contain common divisors). Then the direct
sum  G\oplus H does not admit an ASSGP group topology.

Proof. Consider any open neighbourhood  V of  e in an arbitrary group topology on  G\oplus H.

Since  E is finite, the set  U=V\backslash (E\backslash \{e\}) is also an open neighbourhood of  e in this
topology.

Claim 1. The inclusion  \langle Cyc(U) }  \subseteq H holds.

Proof. Assume that  g\in G,  h\in H and  g+h\in Cyc(U) . Then

(4)  \langle g+h\rangle\subseteq U

by (2)
Suppose that  g\neq e_{G} . Let  n,  m\in \mathbb{N} be orders of  g and  h . Then  mh=e_{H} by Definition

3.2(i), so

(5)  g^{m}=g^{m}+h^{m}=(g+h)^{m}\in\langle g+h\rangle,

as  g and  h commute. Since  \langle g+h\rangle is a group, from (4) and (5) we get

(6)  \langle g^{m}\rangle\subseteq U.

31



32

Now, since  n and  m are relatively prime and  g\neq e_{G} , we have that  g^{m}\neq e_{G} . By hypothesis,
 E is an essential subgroup of  G , so  \langle g^{m}\rangle\cap E\neq\{e_{G}\} by Definition 3.3. Together with
(6), this implies  U\cap E\neq\{e_{G}\} which contradicts the definition of  U . The obtained
contradiction means that  g=e_{G}.

We have proved that  g+h=h\in H . Since  g+h was an arbitrary element of  Cyc(U) ,
this establishes the inclusion  Cyc(U)\subseteq H . Since  H is a group, we get  \langle Cyc(U)\rangle\subseteq H.  \square 

By the previous claim, we have that  \langle Cyc(U) }  \subseteq H . Since  G is non‐trivial,  H is a
proper subgroup of  G\oplus H . Therefore,  \{Cyc(U)\rangle\neq G\oplus H . By Definition 2.1,  G\oplus H does
not have the ASSGP property.  \square 

Theorem 3.4 allows us to show that the class of ASSGP groups is a proper subclass of
SSGP groups, even in the class of torsion abelian groups.

Example 3.5. Let  P\subseteq \mathbb{P} be an infinite set of primes. The following (torsion abelian)
groups admit an SSGP group topology but do not admit any ASSGP group topology:

(i) A direct sum  G=\oplus_{p\in P}\mathbb{Z}(p) of cyclic groups  \mathbb{Z}(p) of order  p.

(ii) A direct sum  G=\oplus_{p\in P}\mathbb{Z}(p^{\infty}) of  p‐Prüfer groups  \mathbb{Z}(p^{\infty}) .

Indeed, in either case the divisible rank  r_{d}(G) of  G satisfies that   r_{d}(G)=\omega . By [4,
Theorem 3.2],  G admits an SSGP group topology. If  q\in P , then either

 G= \mathbb{Z}(q)\oplus(\bigoplus_{p\in P\backslash \{q\}}\mathbb{Z}(p)) or  G= \mathbb{Z}(q^{\infty})\oplus(\bigoplus_{p\in P\backslash \{q\}}\mathbb{Z}(p^
{\infty})) ,

respectively. Since  \mathbb{Z}(q) is a finite essential subgroup of both  \mathbb{Z}(q) and  \mathbb{Z}(q^{\infty}) , from
Theorem 3.4 we conclude that  G does not admit an ASSGP topology.

This example shows that the first arrow in (3) is not reversible.
Example 3.5 is best possible in a sense that torsion groups witnessing the non‐reversibility

of the first arrow in (3) cannot be made bounded.

Proposition 3.6. Every bounded torsion SSGP group satisfies the ASSGP property.

Proof. Let  n\in \mathbb{N} be the order of  G and  U\subseteq G be any open neighbourhood of the identity
 e . Let  V be an open neighborhood of  e such that  V^{n}\subseteq U.

Let  x\in V . Then  \langle x\rangle=\{x^{m} : m=1, , n\}\subseteq V^{n}\subseteq U , so  x\in Cyc(U) . This shows
that  V\subseteq Cyc(U) . Clearly,  Cyc(U)\subseteq\langle Cyc(U)\rangle . Since the subgroup  \langle Cyc(U) } contains
the non‐empty open set  V , it is clopen in  G . Since it is also dense in  G by the SSGP
property of  G and Definition 1.1,  \{Cyc(U)\} must coincide with  G.

We have established the equation   G=\langle Cyc(U)\rangle for an arbitrary open neighbourhood
 U of  e in  G . By Definition 2.1,  G has the ASSGP property.  \square 

As a corollary, we obtain the following:

Corollary 3.7. Every minimally almost periodic bounded torsion abelian group is ASSGP.

Proof. Let  G be a minimally almost periodic bounded torsion abelian group. By [1,
Corollary 3.28], every bounded minimally almost periodic group has the SSGP property,
and so  G is SSGP. By Proposition 3.6,  G has the ASSGP property.  \square 
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4. THE RATIONALS AND THE ASSGP PROPERTY

The group of rationals  \mathbb{Q} plays a fundamental role in the theory of SSGP groups, as
evidenced in Question 1.5 and Theorem 1.7. In this section, we show that Theorem 1.7
cannot be strengthened to produce ASSGP groups.

Theorem 4.1. [14] Suppose that an abelian ASSGP group  G admits an algebraic decom‐
position  G=H\oplus T into a direct sum of a group  H and a torsion group T. Assume
that  B is a finite subgroup of  G such that  E=\mathbb{Z}^{n}+B is an essential subgroup of  G and
 t(G)\cap E=B . Then:

(i)  E is precompact in the subgroup topology inherited from  G ;
(ii)  E is not dense in  G.

From this, we can obtain the following corollary:

Corollary 4.2. [14] Let  G be an abelian ASSGP group.
(i) If  G has a dense and finitely generated essential subgroup, then  G is the trivial

group.

(ii)  G cannot have a dense and essential subgroup isomorphic to  \mathbb{Z}^{n} for some  n\in \mathbb{N}^{+}.

(iii) If  G is finitely generated, then it is trivial.

As a consequence, the following was obtained:

Theorem 4.3. [14] Let  n\in \mathbb{N}^{+} be arbitrary. Suppose  G is a subgroup of  \mathbb{Q}^{n} such that
 \mathbb{Z}^{n}\subseteq G. If  P\subseteq \mathbb{P} is any subset of primes, then the group  H=G\oplus\oplus_{p\in P}\mathbb{Z}(p^{\infty})^{m_{p}},
where  m_{p}\in \mathbb{N} for all  p\in \mathbb{P} , does not admit an ASSGP group topology.

We highlight the importance of the word “any” in the previous theorem, as the set  P

can be taken as empty. As a particular case, we have the following:

Corollary 4.4. [14]  \mathbb{Q}^{n} does not admit an ASSGP group topology for every  n\in \mathbb{N}^{+}.

Following [13], we call a subgroup  G of  \mathbb{Q}^{m} wide if  \mathbb{Z}^{m}\subseteq G and  G\ovalbox{\tt\small REJECT} \mathbb{Q}_{\pi}^{m} for every
finite set  \pi of prime numbers. The following result is a re‐statement of Theorem 1.7.

Theorem 4.5. Let  n\in \mathbb{N}^{+} be arbitrary. A non‐trivial subgroup  G\subseteq \mathbb{Q}^{n} admits an SSGP
group topology if and only if  G is a wide subgroup of  \mathbb{Q}^{n}.

Since all wide subgroups of  \mathbb{Q}^{n} satisfy the hypotheses of Theorem 4.3, we can combine
it with Theorem 4.5 to obtain the following:

Corollary 4.6. For every  n\in \mathbb{N}^{+} , the following statements hold:

(i) The group  \mathbb{Q}^{n} contains no non‐trivial ASSGP subgroups.
(ii) Every wide subgroup of  \mathbb{Q}^{n} admits an SSGP group topology but does not admit an

ASSGP group topology.

This corollary provides many additional examples of topological groups showing that
the first arrow in (3) is not reversible.
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