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Abstract. In this short report, we survey concepts and properties of various types
of complementarity functions, including NCP‐functions, SOCCP‐fucntions, and SCCP‐
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1 Introduction

The complementarity problem arises from the KKT conditions of an optimization prob‐
lem. Formally, it seeks to find an element x such that

 x\succeq_{\mathcal{K}}0, F(x)\succeq_{\mathcal{K}}0, \langle x, F(x)\rangle=0 , (1)

where  \mathcal{K} is usually a symmetric cone [14],  \succeq_{\mathcal{K}} is the partial order associated with  \mathcal{K} , and
 \langle\cdot,  \cdot\rangle is an appropriate inner product. When  \mathcal{K} is the nonnegative orthant, the above
problem (1) reduces to the well known nonlinear complementarity problem (NCP for
short) which consists in finding a point  x\in \mathbb{R}^{n} such that

 x\geq 0, F(x)\geq 0, \langle x, F(x)\}=0,

where  \langle\cdot,  \cdot } is the Euclidean inner product and  F=(F_{1}, \ldots, F_{n})^{T} is a map from  \mathbb{R}^{n} to  \mathbb{R}^{n}.

NCPs have wide applicability in the fields of economics, engineering, and operations re‐
search, see [13, 15, 21] and references therein. When  \mathcal{K} represents a positive semidefinite
cone  S_{+}^{n} , the complementarity problem (1) reduces to a semidefinite complementarity
problem (SDCP for short). When  \mathcal{K} is the second‐order cone (SOC) whose definition
will be introduced later, the complementarity problem (1) is the second‐order cone com‐
plementarity problem (SOCCP for short). All the above special cases can be unified as
symmetric cone complementarity problem (SCCP) under Euclidean Jordan algebra.
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Besides the symmetric cone complementarity problem which is endowed in a finite
dimensional space, we further consider the generalized complementarity problem (GCP
for short) in infinite dimensional space. More specifically, let  (X, \Vert\cdot\Vert) denote a real
Banach space,  X^{*} represent its dual space, we consider a cone  K which is solid (i.e.,
intK  \neq\emptyset ) closed convex in  X . Note that its dual cone  K^{+} is defined as

 K^{+}=\{x^{*}\in X^{*} : \langle x, x^{*}\rangle\geq 0, \forall x\in K\}.

In contrast to the aforementioned symmetric cone,  K is not self‐dual in general. Let
 \langle\cdot,  \cdot\rangle :  X\cross X^{*}arrow \mathbb{R} be the canonical bilinear pairing and  F:Xarrow X^{*} The generalized
complementarity problem (GCP) is to find an element  x\in X such that

 x\in K, F(x)\in K^{+}, \{x, F(x)\}=0 . (2)

The GCP was originally proposed by Karmardian in 1971, see [27]. For more details
regarding GCP including solution methods, properties, and applications, please refer to
the textbook [26].

To deal with various complementarity problems, the so‐called complementarity func‐
tions (  C‐fUnctions) play crucial roles in designing solution methods, see [3, 4, 7, 9, 16, 18,
25, 32] and the reference therein. In the setting of NCP, the complementarity function
is abbreviated as NCP‐function, which is denoted by  \phi :  \mathbb{R}^{2}arrow \mathbb{R} and defined as

 \phi(a, b)=0 \Leftrightarrow a, b\geq 0, ab=0.

Many NCP‐functions and merit functions have been explored and proposed in many
literature, see [20] for a survey. Among them, the Fischer‐Burmeister (FB) function and
the Natural‐Residual (NR) function are two famous and effective NCP‐functions. The
FB function  \phi_{FB} :  \mathbb{R}^{2}arrow \mathbb{R} is defined by

 \phi_{FB}(a, b)=\sqrt{a^{2}+b^{2}}-(a+b) , \forall(a, b)\in \mathbb{R}^{2}

and the NR function  \phi_{NR} :  \mathbb{R}^{2}arrow \mathbb{R} is defined by

  \phi_{NR}(a, b)=a-(a-b)_{+}=\min\{a, b\} , \forall(a, b)\in \mathbb{R}^{2}

During the past four decades, approximately thirty NCP‐functions have been pro‐
posed, see [20] for a survey. Some of them have been extending to be a complementarity
functions for symmetric cone complementary problem, including SDCP, SOCCP. Among
the existing NCP‐functions, it is observed that none of them is both convex and dif‐
ferentiable. Miri and Effati [31] show that convexity and differentiability cannot hold
simultaneously for an NCP‐function. Huang et. al [22] further generalized this result for
general complementarity functions associated with the GCP. In this article, we survey
some newly discovered complementarity functions and provide an idea for constructing
new complementarity functions from existing ones.
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2 Preliminaries

In this section, we review the basic concepts and properties concerning Jordan algebras
and symmetric cones from the book [14] which are needed in the subsequent analysis.
Especially, we recall some background materials regarding second‐order cone as well.

A Euclidean Jordan algebra is a finite dimensional inner product space  (\mathbb{V}, \{\cdot, \cdot\rangle)  (\mathbb{V}
for short) over the field of real numbers  \mathbb{R} equipped with a bilinear map  (x, y)\mapsto x\circ y :
 \mathbb{V}\cross \mathbb{V}arrow \mathbb{V} , which satisfies the following conditions:

(i)  xoy=y ox for all  x,  y\in \mathbb{V} ;

(ii)  xo(x^{2}oy)=x^{2}o(xoy) for all  x,  y\in \mathbb{V} ;

(iii)  \{xoy,  z\rangle=\{x, yoz\} for all  x,  y,  z\in \mathbb{V},

where  x^{2}  :=x\circ x , and  x\circ y is called the Jordan product of  x and  y . Moreover, if there is
an (unique) element  e\in \mathbb{V} such that  x\circ e=x for all  x\in \mathbb{V} , the element  e is called the
identity element in  \mathbb{V} . Note that a Jordan algebra does not necessarily have an identity
element. Throughout this paper, we assume that  \mathbb{V} is a Euclidean Jordan algebra with
an identity element  e.

In a Euclidean Jordan algebra  \mathbb{V} , the set of squares  \mathcal{K}  :=\{x^{2} : x\in \mathbb{V}\} is called a
symmetric cone [14, Theorem III.2.1], which means  \mathcal{K} is a self‐dual closed convex cone
and, for any two elements  x,  y\in int(\mathcal{K}) , there exists an invertible linear transformation
 \Gamma :  \mathbb{V}arrow \mathbb{V} such that  \Gamma(x)=y and  \Gamma(\mathcal{K})=\mathcal{K} . An element  c\in \mathbb{V} is called an idempotent
if  c^{2}=c , and it is a primitive idempotent if it is nonzero and cannot be written as a sum
of two nonzero idempotents. The idempotents  c,  d are said to be orthogonal if  c\circ d=0.

In addition, a finite set  \{e^{(1)}, e^{(2)}, \cdot\cdot\cdot , e^{(r)}\} of primitive idempotents in  \mathbb{V} is said to be a
Jordan frame if

 e^{(i)}\circ e^{(j)}=0 for  i\neq j , and   \sum_{i=1}^{r}e^{(i)}=e.
With the above, there has the spectral decomposition of an element  x in  \mathbb{V}.

Theorem 2.1. (Spectral Decomposition Theorem) [14, Theorem III.1.2] Let  \mathbb{V} be  a Eu‐
clidean Jordan algebra. Then there is a number  r such that, for every  x\in \mathbb{V} , there exists
a Jordan frame  \{e^{(1)}, \cdot\cdot\cdot , e^{(r)}\} and real numbers  \lambda_{1}(x) , ,  \lambda_{r}(x) with

 x=\lambda_{1}(x)e^{(1)}+ +\lambda_{r}(x)e^{(r)}.

Here, the numbers  \lambda_{i}(x)(i=1 , r) are called the spectral values of  x , the expression
 \lambda_{1}(x)e^{(1)}+  +\lambda_{r}(x)e^{(r)} is called the spectral decomposition of  x . Moreover,  tr(x):=
  \sum_{i=1}^{r}\lambda_{i}(x) is called the trace of  x,  \det(x)  :=\lambda_{1}(x)\lambda_{2}(x)\cdots\lambda_{r}(x) is called the determinant
of  x , and  r is called the rank of  \mathbb{V}.
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The second‐order cone (SOC for short) in  \mathbb{R}^{n} , also called the Lorentz cone, is defined
by

 \mathcal{K}^{n}=\{x=(x_{1}, x_{2})\in \mathbb{R}\cross \mathbb{R}^{n-1}|\Vert 
x_{2}\Vert\leq x_{1}\}.
While  n=1,  \mathcal{K}^{n} denotes the set of nonnegative real number  \mathbb{R}_{+} . For any  x,  y\in \mathbb{R}^{n} , we
write  x\succeq_{\mathcal{K}^{n}}y if  x-y\in \mathcal{K}^{n} , and  x\succ_{\mathcal{K}^{n}}y if  x-y\in int(\mathcal{K}^{n}) . The relation  \succeq_{\mathcal{K}^{n}} is a
partial ordering but not a linear ordering in  \mathcal{K}^{n} . For any  x=(x_{1}, x_{2})\in \mathbb{R}\cross \mathbb{R}^{n-1} and
 y=(y_{1}, y_{2})\in \mathbb{R}\cross \mathbb{R}^{n-1} , we define their Jordan product as

 x\circ y=(x^{T}y, y_{1}x_{2}+x_{1}y_{2}) .

Then,  (\mathbb{R}^{n}, \circ, \langle\cdot, \cdot\}) forms a Euclidean Jordan algebra with identity  e=(1,0, \ldots, 0)^{T}.
Notice that this Jordan product is not associative. However, it is power associative, i.e.,
 x\circ(x\circ x)=(x\circ x)\circ x for all  x\in \mathbb{R}^{n} . Without loss of ambiguity, we may write  x^{m} for
the product of  m copies of  x and  x^{m+n}=x^{m}\circ x^{n} for all positive integers  m and  n . Here,
we set  x^{0}=e.

For any  x\in \mathcal{K}^{n} , it is known that there exists a unique vector in  \mathcal{K}^{n} denoted by  x^{1/2}

such that  (x^{1/2})^{2}=x^{1/2}\circ x^{1/2}=x . Indeed,

 x^{1/2}=(s,  \frac{x_{2}}{2s}) , where  s=\sqrt{\frac{1}{2}(x_{1}+\sqrt{x_{1}^{2}-\Vert x_{2}\Vert^{2}})}.
In the above formula, the term  x_{2}/s is defined to be the zero vector if  s=0 , i.e.,  x=0.

Since  x^{2}\in \mathcal{K}^{n} for any  x\in \mathbb{R}^{n} , there exists a unique vector  (x^{2})^{1/2}\in \mathcal{K}^{n} , denoted by
 |x| . It is easy to verify that  |x|\succeq_{\mathcal{K}^{n}}0 and  x^{2}=|x|^{2} for any  x\in \mathbb{R}^{n} . For any  x\in \mathbb{R}^{n},
we define  [x]_{+} to be the nearest point projection of  x onto  \mathcal{K}^{n} , which is the same defi‐
nition as in  \mathbb{R}_{+}^{n} . In other words,  [x]_{+} is the optimal solution of the parametric SOCP:
 [x]_{+}= \arg\min\{\Vert x-y\Vert|y\in \mathcal{K}^{n}\} . In addition, it can be verified that  [x]_{+}=(x+|x|)/2 ;
see [14, 19].

optimization problems involved second‐order cones have been appeared in real world
applications. For dealing with second‐order cone programs (SOCP) and second‐order
cone complementarity problems (SOCCP), there needs spectral decomposition associated
with SOC [5]. More specifically, for any  x=(x_{1}, x_{2})\in \mathbb{R}\cross \mathbb{R}^{n-1} , the vector  x can be
decomposed as

 x=\lambda_{1}u_{x}^{(1)}+\lambda_{2}u_{x}^{(2)} , (3)

where  \lambda_{1},  \lambda_{2} and  u_{x}^{(1)},  u_{x}^{(2)} are the spectral values and the associated spectral vectors of
 x , respectively, given by

 \lambda_{i}=x_{1}+(-1)^{i}\Vert x_{2}\Vert , (4)

 u_{x}^{(i)}=\{\begin{array}{ll}
\frac{1}{2}(1, (-1)^{i}\frac{x_{2}}{\Vert x_{2}\Vert})   if x_{2}\neq 0,
\frac{1}{2}(1, (-1)^{i}w)   if x_{2}=0,
\end{array} (5)
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for  i=1,2 with  w being any vector in  \mathbb{R}^{n-1} satisfying  1w\Vert=1 . If  x_{2}\neq 0 , the decom‐
position is unique. Accordingly, the determinant, the trace, and the Euclidean norm of
 x can all be represented in terms of  \lambda_{1} and  \lambda_{2} :

  \det(x)=\lambda_{1}\lambda_{2}, tr(x)=\lambda_{1}+\lambda_{2} , \Vert 
x\Vert^{2}=\frac{1}{2}(\lambda_{1}^{2}+\lambda_{2}^{2}) .

From the simple calculation, we especially point out that  tr(x)=2x_{1} , which we fre‐
quently use in the following paragraphs.

For any real valued function  f :  \mathbb{R}arrow \mathbb{R} , the following vector‐valued function associ‐
ated with  \mathcal{K}^{n}(n\geq 1) was considered in [2, 6]:

 f^{soc}(x)=f(\lambda_{1})u_{x}^{(1)}+f(\lambda_{2})u_{x}^{(2)}, \forall x=
(x_{1}, x_{2})\in \mathbb{R}\cross \mathbb{R}^{n-1} (6)

If  f is defined only on a subset of  \mathbb{R} , then  f^{soc} is defined on the corresponding subset of  \mathbb{R}^{n}.

The definition (6) is unambiguous whether  x_{2}\neq 0 or  x_{2}=0 . The cases of  f^{soc}(x)=x^{1/2},
 x^{2},  \exp(x) are discussed in [14]. For subsequent analysis, we will frequently use the vector‐
valued functions corresponding to  t^{p}(t>0,p>0) and  |t|^{p}(t\in \mathbb{R},p>0) , respectively.
In particular, they can be expressed as

 x^{p} = \lambda_{1}^{p}u_{x}^{(1)}+\lambda_{2}^{p}u_{x}^{(2)}, \forall x\in 
\mathcal{K}^{n},
 |x|^{p} = |\lambda_{1}|^{p}u_{x}^{(1)}+|\lambda_{2}|^{p}u_{x}^{(2)}, \forall 
x\in \mathbb{R}^{n}.

The spectral decomposition along with the Jordan algebra associated with SOC entail
some basic properties as listed in the following text. We omit the proofs since they can
be found in [2, 14, 19].

3 New complementarity functions

Recently, there have many new NCP‐functions as below which are newly discovered. In
fact, they are constructed from existing ones. Inspired by this, we will provide another
new idea for constructing complementarity functions.

(i)  \phi_{NR}(a, b)=a^{p}-(a-b)_{+}^{p},  p>1 is odd integer (Chen, Ko, and Wu [8]).

(ii)  \phi_{S-NR}(a, b)=\{\begin{array}{ll}
a^{p}-(a-b)^{p}   if a>b,
a^{p}=\theta^{p}   if a=b, p>1 is odd integer (Chang, Chen, and
b^{p}-(b-a)^{p}   if a<b,
\end{array}
Yang [1]).

(iii)  \psi_{S-NR}^{p}(a, b)=\{\begin{array}{ll}
a^{p}b^{p}-(a-b)^{p}b^{p}   if a>b,
a^{p}\dagger j^{p}=a^{2p}   if a=b, p>1 is odd integer (Chang, Chen,
a^{p}b^{p}-(b-a)^{p}a^{p}   if a<b,
\end{array}
and Yang [1]).
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(iv)  \vartheta_{D-FB}(a, b)=(\sqrt{a^{2}+b^{2}})^{p}-(a+b)^{p},  p>1 is odd integer (Ma, Chen, Huang, and
Ko [30]).

(v)   \varphi_{NR}^{p}(a, b)=(\frac{a+b}{2})^{p}-(\frac{|a-b|}{2})^{p}=\frac{1}
{2^{p}}[(a+b)^{p}-|a-b|^{p}],  p>1 is odd integer

(Su [34]).

For more properties of the aforementioned NCP‐fUnctions, please refer to [24, 34].

Some of the above NCP‐functions have been extended to symmetric cone and second‐
order cone settings. Here we define a monotone transformation that makes new com‐
plementarity functions (  C‐functions) from existing ones. We first formulate the general
construction principle, which is called  \theta‐extension.

Lemma 3.1. Let  \mathcal{K}^{n} be a second‐order cone and  x,  y\in \mathbb{R}^{n} . Suppose  \theta :  \mathbb{R}arrow \mathbb{R} a strictly
monotone increasing and continuous function. Then,  x=y if and only if  \theta^{soc}(x)=
 \theta^{soc}(y) .

Proof. For  x=y , it is clear that  \theta^{soc}(x)=\theta^{soc}(y) by spectral decomposition and the
definition of the vector‐valued function associated with symmetric cone.

For the other direction, suppose that  \theta^{soc}(x)=\theta^{soc}(y) . Applying the spectral decompo‐
sition (3)‐(5) give

 x = \lambda_{1}(x)u_{x}^{(1)}+\lambda_{2}(x)u_{x}^{(2)},
 y = \lambda_{1}(y)u_{y}^{(1)}+\lambda_{2}(y)u_{y}^{(2)}.

Then, we have  \theta^{soc}(x)=\theta(\lambda_{1}(x))u_{x}^{(1)}+\theta(\lambda_{2}(x))u_{x}^{
(2)} and  \theta^{soc}(x)=\theta(\lambda_{1}(x))u_{x}^{(1)}+\theta(\lambda_{2}(x))u_{x}^{
(2)}.
Since  \theta^{soc}(x)=\theta^{soc}(y) and the spectral values are unique, we have  \theta(\lambda_{i}(x))=\theta(\lambda_{i}(y))
for  i=1,2 . By the strictly monotonicity and continuity of  \theta , we can conclude that
 \lambda_{i}(x)=\lambda_{i}(y) for  i=1,2 . Besides, both  \{u_{x}^{(1)}, u_{x}^{(2)}\} and  \{u_{y}^{(1)}, u_{y}^{(2)}\} are Jordan frames, we
further have  u_{x}^{(1)}+u_{x}^{(2)}=u_{y}^{(1)}+u_{y}^{(2)}=e , where  e is the identity. From  \theta^{soc}(x)=\theta^{soc}(y)
and  u_{x}^{(1)}+u_{x}^{(2)}=u_{y}^{(1)}+u_{y}^{(2)} , we may obtain

 (\theta(\lambda_{1}(x))-\theta(\lambda_{2}(x)))(u_{x}^{(1)}-u_{y}^{(1)})=0.

If  \theta(\lambda_{1}(x))=\theta(\lambda_{2}(x)) , we get  \lambda_{1}(x)-\lambda_{2}(x) and  \lambda_{1}(y)-\lambda_{2}(y) , which imply that  x=

 \lambda_{1}e=y . Otherwise, we must have  u_{x}^{(1)}=u_{y}^{(1)} , and hence  u_{x}^{(2)}=u_{y}^{(2)} . Therefore, we
complete the proof.  \square 

Proposition 3.1. Assume that  \phi :  \mathbb{R}^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}^{n} is continuous and  \phi(x, y)=f_{1}(x, y)-
 f_{2}(x, y) . Let  \theta :  \mathbb{R}arrow \mathbb{R} be a strictly monotone increasing and continuous function.
Then,  \phi is an  C ‐function associated with the second‐order cone if and only if  \phi_{\theta}(x, y)=
 \theta^{soc}(f_{1}(x, y))-\theta^{soc}(f_{2}(x, y)) is an  C ‐function associated with second‐order cone.
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Proof. By Lemma 3.1, we have

 \phi(x, y)=0

 \Leftrightarrow f_{1}(x, y)=f_{2}(x, y)

 \Leftrightarrow \theta^{soc}(f_{1}(x, y))=\theta^{soc}(f_{2}(x, y))

 \Leftrightarrow \phi_{\theta}(x, y)=0.

Hence, we obtain the conclusion.  \square 

Note that from Proposition 3.1, some new complementarity functions associated with
 \mathcal{K}^{n} appeared in [30, Propsition 4.1‐4.2] can be deduced by setting  \theta(t)=t^{p} with positive
odd integer  p . Applying Proposition 3.1 to  \varphi_{NR}^{p} , we achieve a new complementarity
functions associated with  \mathcal{K}^{n} via defining  \varphi_{NR}^{p} :  \mathbb{R}^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}^{n} by

  \varphi_{NR}^{p}(x, y)=\frac{(x+y)^{p}-|x-y|^{p}}{2^{p}} (7)

where  p>1 is a positive odd integer,  x,  y\in \mathbb{R}^{n} . It is clear that this  C‐function is sym‐
metric in  x and  y , that is,  \varphi_{NR}^{p}(x, y)=\varphi_{NR}^{p}(y, x) for all  x,  y\in \mathbb{R}^{n} . Furthermore,  \varphi_{NR}^{p}(x, y)
is continuously differentiable.

Proposition 3.2. Let  \varphi_{NR}^{p} be defined as in (7) with  p>1 being a positive odd integer
and  g^{soc}(z)=z^{p},  h^{soc}(z)=|z|^{p} be the vector‐valued functions corresponding to  g(t)=t^{p}
and  h(t)=|t|^{p} for  t\in \mathbb{R} , respectively. Then,  \varphi_{NR}^{p} is continuously differentiable at any
 (x, y)\in \mathbb{R}^{n}\cross \mathbb{R}^{n} . Moreover, we have

  \nabla_{x}\varphi_{NR}^{p}(x, y)=\frac{1}{2^{p}}(\nabla g^{soc}(w)-\nabla 
h^{soc}(v)) ,

  \nabla_{y}\varphi_{NR}^{p}(x, y)=\frac{1}{2^{p}}(\nabla g^{soc}(w)+\nabla 
h^{soc}(v)) ,

where  v  :=v(x, y)=x+y,  w  :=w(x, y)=x-y , and

 \nabla g^{soc}(v)=\{\begin{array}{ll}
pv_{1}^{p-1}I   if v_{2}=0;
{[}Matrix]   if v_{2}\neq 0;
\end{array}
  \overline{v}_{2} = \frac{v_{2}}{\Vert v_{2}\Vert},

 a_{1} (  v )  =   \frac{(\lambda_{2}(v))^{p}-(\lambda_{1}(v))^{p}}{\lambda_{2}(v)-\lambda_{1}(v)
},
 b_{1} (  v )  =   \frac{p}{2}[(\lambda_{2}(v))^{p-1}+(\lambda_{1}(v))^{p-1}],
 c_{1} (  v )  =   \frac{p}{2}[(\lambda_{2}(v))^{p-1}-(\lambda_{1}(v))^{p-1}],
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and

 \nabla h^{soc}(w)=\{\begin{array}{ll}
pw_{1}|w_{1}|^{p-2}I   if w_{2}=0;
{[}Matrix]   if w_{2}\neq 0;
\end{array}
  \overline{w}_{2} = \frac{w_{2}}{\Vert w_{2}\Vert},

 a_{2}(w) =  \frac{|\lambda_{2}(w)|^{p}-|\lambda_{1}(w)|^{p}}{\lambda_{2}(w)-
\lambda_{1}(w)},
 b_{2}(w) =  \frac{p}{2}[\lambda_{2}(w)|\lambda_{2}(w)|^{p-2}+\lambda_{1}(w)
|\lambda_{1}(w)|^{p-2}] ,

 c_{2}(w) =  \frac{p}{2}[\lambda_{2}(w)|\lambda_{2}(w)|^{p-2}-\lambda_{1}(w)
|\lambda_{1}(w)|^{p-2}] ,

Proof. From the definition of  \varphi_{NR}^{p} , it is clear to see that for any  (x, y)\in \mathbb{R}^{n}\cross \mathbb{R}^{n},

  \varphi_{NR}^{p}(x, y)=\frac{1}{2^{p}}[(\lambda_{1}(v))^{p}u_{v}^{(1)}+
(\lambda_{2}(v))^{p}u_{v}^{(2)}]-\frac{1}{2^{p}}[|\lambda_{1}(w)|^{p}u_{w}^{(1)}
+|\lambda_{2}(w)|^{p}u_{w}^{(2)}]
(8)

 = \frac{1}{2^{p}}(g^{soc}(v)-h^{soc}(w)) .

For  p\geq 3 , since both  |t|^{p} and  t^{p} are continuously differentiable on  \mathbb{R} , by [5, Proposition
5] and [19, Proposition 5.2], we know that the function  g^{soc} and  h^{soc} are continuously
differentiable on  \mathbb{R}^{n} . Moreover, it is clear that  v(x, y)=x+y,  w(x, y)=x-y are
continuously differentiable on  \mathbb{R}^{n}\cross \mathbb{R}^{n} , then we conclude that  \varphi_{\bullet R}^{p} is continuously differ‐
entiable. Moreover, from the formula in [5, Proposition 4] and [19, Proposition 5.2], we
have

 \nabla g^{soc}(v)=\{\begin{array}{ll}
pv_{1}^{p-1}I   if v_{2}=0;
{[}Matrix]   if v_{2}\neq 0;
\end{array}
 \nabla h^{soc}(w)=\{\begin{array}{ll}
pw_{1}|w_{1}|^{p-2}I   if w_{2}=0;
{[}Matrix]   if w_{2}\neq 0;
\end{array}

where

 a_{1}(v)= \frac{(\lambda_{2}(v))^{p}-(\lambda_{1}(v))^{p}}{\lambda_{2}(v)-
\lambda_{1}(v)},
  \overline{v}_{2}=\frac{v_{2}}{\Vert v_{2}\Vert},  a_{2}(w) \frac{|_{1}|_{\lambda_{2}(w)|^{p}-|\lambda_{1}(w)|^{p}}}{\lambda_{2}
(w)-\lambda_{1}(w)}\overline{w}_{2}=\frac{w_{2}}{||w_{2},=},
 b_{1}(v)= \frac{p}{2}[(\lambda_{2}(v))^{p-1}+(\lambda_{1}(v))^{p-1}],  b_{2}(w)= \frac{p}{2}[\lambda_{2}(w)|\lambda_{2}(w)|^{p-2}+\lambda_{1}(w)
|\lambda_{1}(w)|^{p-2}],
 c_{1}(v)= \frac{p}{2}[(\lambda_{2}(v))^{p-1}-(\lambda_{1}(v))^{p-1}],  c_{2}(w)= \frac{p}{2}[\lambda_{2}(w)|\lambda_{2}(w)|^{p-2}-\lambda_{1}(w)
|\lambda_{1}(w)|^{p-2}].

By taking differentiation on both sides about  x and  y for (8), respectively, and applying
the chain rule for differentiation, it follows that

  \nabla_{x}\varphi_{NR}^{p}(x, y) = \frac{1}{2^{p}}(\nabla g^{soc}(w)-\nabla h^
{soc}(v)) ,

  \nabla_{y}\varphi_{NR}^{p}(x, y) = \frac{1}{2^{p}}(\nabla g^{soc}(w)+\nabla h^
{soc}(v)) ,
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Hence, we complete the proof.  \square 

Lastly, we collect a list of known complementarity functions associated with second‐
order cone. Especially, some of them could be employed to symmetric cone comple‐
mentary problems. Applying Proposition 3.1 may create more new complementarity
functions.

1.  \phi_{NR}(x, y)=x-(x-y)_{+} (Fukushima, Luo, and Tseng [19]),

2.  \phi_{FB}(x, y)=(x^{2}+y^{2})^{1/2}-x-y (Fukushima, Luo, and Tseng [19]),

3.  \phi_{CSS}(x, y)=x-(x-y)_{+}+(x)_{+}\circ(y)_{+} (Chen, Sun, and Sun [12]),

4.   \phi_{MS}(x, y)=x\circ y+\frac{1}{2\alpha}\{[(x-\alpha y)_{+}]^{2}-x^{2}+[(y-
\alpha x)_{+}]^{2}-y^{2}\},  \alpha>1 (Kong,  Tuncel\lrcorner,
and Xiu [28]),

5.  \phi_{KK}(x, y)=[(x-y)^{2}+\tau(x\circ y)]^{1/2}-x-y,  \tau\in(0,4) (Chen and Pan [10]),

6.  \phi_{TLM}(x, y)=(x)_{+}\circ(y)_{+}+[(x)_{-}]^{2}+[(y)_{-}]^{2} (Tang, Liu, and Ma [35]),

7.  \phi_{PNR}(x, y)=\lambda\phi_{NR}(x, y)+(1-\lambda)[(x)_{+}\circ(y)_{+}],  \lambda\in(0,1) (Kum, and Lim [29]),

8.  \phi_{PFB}(x, y)=\lambda\phi_{FB}(x, y)+(1-\lambda)[(x)_{+}\circ(y)_{+}],  \lambda\in(0,1) (Kum, and Lim [29]),

9.  \phi_{PGFB}(x, y)=[\lambda(|x|^{p}+|y|^{p})+(1-\lambda)|x+y|^{p}]^{1/p}-x-y,  \lambda\in(0,2),p=2 or

 \lambda\in(0,1],p\in(1,2)\cup(2, +\infty) (Hu, Huang, and Lu [23]),

10.   \phi_{EP1}(x, y)=-(x\circ y)+\frac{1}{2\alpha}[(x+y)_{+}]^{2},  \alpha\in(0,1] (Chen and Pan [11]),

11.   \phi_{EP2}(x, y)=-(x\circ y)+\frac{1}{2\beta}\{[(x)_{-}]^{2}+[(y)_{-}]^{2}\},  \beta\in(0,1) (Chen and Pan [11]),

12.  \phi_{FB}^{p}(x, y)=(|x|^{p}+|y|^{p})^{1/p}-x-y,  p\in(1, +\infty) (Pan, Kum, Lim, and Chen [33]),

13.  \phi_{NR}^{p}(x, y)=x^{p}-[(x-y)_{+}]^{p},  p>1 is odd integer (Ma, Chen, Huang, and Ko [30]),

14.  \phi_{D-FB}^{p}(x, y)=(x^{2}+y^{2})^{p/2}-(x+y)^{p},  p>1 is odd integer (Ma, Chen Huang, and
Ko [30]).
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