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nonlinear nonself mappings in Hilbert spaces
and applications

AARRT:/EJNKRTF JIGHEIG (toshiharu kawasaki@nifty.ne.jp)
(Toshiharu Kawasaki, Nihon University; Tamagawa University)

Abstract

In [17] Takahashi introduced the concept of demimetric mappings in Banach
spaces and Alsulami and Takahashi [2] showed strong convergence theorems for demi-
metric mappings in Hilbert spaces. On the other hand, in [7] Kawasaki and Takahashi
introduced the concept of widely more generalize hybrid mappings in Hilbert spaces.
Such a mapping is not demimetric generally even if the set of fixed points of the
mapping is nonempty. In this paper, we extend the class of demimetric mappings to
a more broad class of mappings in Banach spaces and prove a strong convergence the-
orem applicable to the class of widely more generalized hybrid mappings in a Hilbert
space. Using this result, we obtain strong convergence theorems which are connected
to the class of widely more generalized hybrid mappings in a Hilbert spaces.

1 Introduction

Let E be a Banach space and let C' be a nonempty subset of E. For a mapping T" from
C into E, we denote by F(T) the set of all fixed points of 7. Suppose that F is smooth.
Then the duality mapping J on E is single-valued. Let &k € (—o0,1). A mapping T from
C into E with F(T') # 0 is said to be k-demimetric [17] if

(1—Fk)||z — Tz|)* < 2{x — q, J(x — Tx))

for any x € C and ¢ € F(T). Let H be a real Hilbert space and let C' be a nonempty,
closed and convex subset of H. A mapping T : C' — H is called nonexpansive if

[Tz =Tyl < |lz —yl, Vz,yeC.
For a > 0, a mapping A : C — H is called a-inverse strongly monotone if

A mapping U : C — H is called demiclosed if a sequence {z,} in C satisfies that z,, — w
and x,, —Ux, — 0, then w = Uw holds. For example, if C' is a nonempty, closed and convex



subset of H and a nonself mapping 7' : C' — H is nonexpansive, then T is demiclosed; see
[3]. Let H be a Hilbert space and let G be a mapping from H into 27 and let D(G) =
{zr € H| Gz # 0}. Then D(G) is said to be the effective domain of G. A multi-valued
mapping G is said to be monotone if (x — y,u —v) > 0 for all z,y € D(G), u € Gz and
v € Gy. A monotone mapping is said to be maximal if its graph is not properly contained
in the graph of any other monotone mapping. For a maximal monotone operator G on H
and r > 0, we may define a single-valued operator J, = (I +rG)~': H — D(G), which
is called the resolvent of G for 7 > 0. Let G be a maximal monotone operator on H and
let G0 = {z € H: 0 € Gz}. Tt is known that the resolvent J, is nonexpansive and
G0 = F(J,) for all > 0; see [15].

Moreover Alsulami and Takahashi [2] showed the following strong convergence theorem.

Theorem 1.1 ([2]). Let H be a real Hilbert space, let C be a nonempty, closed and convex
subset of H, let {k;}}L, C (—o0,1), let {T;}}L, be a finite family of k;-demimetric and
demiclosed mappings from C into H, let {u;}¥, C (0,00), let {B;}Y., be a finite family
of pi-inverse strongly monotone mappings from C into H, let G be a mazimal monotone
operator on H and let J, = (I + rG)™! be the resolvent of G for r > 0. Suppose that
(ﬂjjvil F(T])) N (ﬂf\il(BI + G)_IO) #0. Let z; € C and let {z,} be a sequence generated
by

2 = 35 G((1 = AT + AT,
wn = 0L 03dn, (I = 110 Bi) T,

Yn = QnTp + 6nzn + Y Wn,
Co={2€C|lyn— 2|l < llza — 2[l},
Qn={z2€C|{x,— 2,21 —x,) >0},
Tny1 = Po,ng.T1

for any n € N, where a,b,c € (0,00), {\.},{m} C (0,00), {&}L,, {oi}l, € (0,1) and
{an}, {8}, {m} € (0,1) satisfy

a<A, <min{l —Fk; |j=1,...,.M}, b<mn, <2min{y,; |i=1,...,N},

M N
Zgj :Zo—i: 1 and Cianaﬂmr}/nvo‘n‘i’ﬁn"”}/n =1
=1 i=1

Then {z,} is convergent to a point zy € (ﬂ;\il F(T])> N (ﬂf\il(BZ + G)_lo), where 2y
P(m;‘ilF(T,-))m( f‘;l(Bi+G)*10)$1‘

On the other hand, in [7] Kawasaki and Takahashi introduced the concept of widely
more generalize hybrid mappings. Let H be a Hilbert space, let C' be a nonempty subset of
H and let a, 3,7, 0,¢,(,n € R. A mapping T from C' into H is said to be («a, 3,7, 0,¢,¢,n)-
widely more generalized hybrid if

al| Tz = Tyl|* + Bllz — Tyl* + [Tz —y||* + 6[lx — y|?

1.1
telle — T2 + clly — Tyl + nll(z — Tz) — (y — Ty)||> < 0 (1.1)
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for all z,y € C. Such a mapping is not demimetric generally even if F'(T') # (.

In this paper, we extend the class of demimetric mappings to a more broad class of
mappings which contains widely more generalize hybrid mappings in Banach spaces and
prove a strong convergence theorem applicable to the class of widely more generalized hy-
brid mappings in a Hilbert space. Using this result, we obtain strong convergence theorems
which are connected to the class of widely more generalized hybrid mappings in a Hilbert
spaces.

2 Preliminaries

The following lemma is used in the proof of our main result.

Lemma 2.1 ([18]). Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let k € (—o00,1) and let T be a k-demimetric mapping of C' into H such that
F(T) is nonempty. Let A be a real number with 0 < X < 1—Fk and define S = (1=X)I+AT.
Then S is a quasi-nonexpansive mapping of C' into H.

Let G be a maximal monotone mapping on H and let J, = (I +rG)™! be the resolvent
of G for r > 0. Then J, is firmly nonexpansive, that is,

o = Jeyll? < (& = g, vz — )
for any z,y € H; for instance, see [15]. In this paper the following lemmas are used.

Lemma 2.2 ([2]). Let H be a real Hilbert space, let C be a nonempty closed conver subset
of H, let a > 0, let B be an a-inverse strongly monotone mapping from C into H, let G
be a mazimal monotone operator on H and let J, be the resolvent of G for r > 0. Suppose
that B'0N G710 #£ 0. Let A > 0 and z € C. Then the following are equivalent:

(1) z € F(J.(I — AB));

(i) z€(B+G)0;

(i) ze€ B0NG0.

Lemma 2.3 ([13]). Let H be a real Hilbert space, let G be a mazimal monotone operator
on H and let J, be the resolvent of G for r > 0. Then the following holds:

s—t
| Jsz — Jyz||* < STst -, Jyx — Jyx)

for any s,t >0 and x € H.
By Lemma 2.3 we obtain

s—t
| Jsx — Juz|| < %Hx — Jsz|| (2.1)

for any s,t >0 and x € H.



Lemma 2.4 ([15]). Let H be an inner product space and let {x,} be a bounded sequence
in H. Suppose that {z,} is convergent to © weakly. Then the following inequality hold:

|z]] < liminf ||z,]|.
n—oo

3 Generalized demimetric mappings

Let E be a smooth Banach space and let C' be a nonempty subset of £. A mapping T
from C into E with F(T') # 0 is said to be generalized demimetric if there exists § € R
such that

o — Tal < 0(x — g,J(z — Ta))

for all z € C and ¢ € F(T'), where J is the duality mapping on . In particular, T is called

f-generalized demimetric.
Remark 3.1. Let k € (—o00,1). A k-demimetric mapping is ﬁ—generalized demimetric.
Conversely, if 8 > 0, then a 6-generalized demimetric is (1 — %)—demimetric. If 6 = 0, then
T = I. Conversely, I is 0-generalized demimetric for any 6 € R.

Let H be a Hilbert space, let C' be a nonempty subset of H and let o, 3,7, 9,¢,(,n € R.
Then a mapping T from C into H satisfying (1.1) is said to be («,3,7,96,¢, {,n)-widely

more generalized hybrid, i.e.,

ol Tz = Ty|]* + Bl — Tyl* + y[ITz — y|* + ]|z — yl|®

3.1
tellz = Tl + Clly — Tyl + nll(z — Ta) — (y — Ty)||> < 0 (3.1)
for all z,y € C.

Lemma 3.1. Let H be a Hilbert space, let C' be a nonempty subset of H and let T be an
(o, 8,7, 6, ¢, ¢, n)-widely more generalized hybrid mapping from C into H with F(T) # 0.
Suppose that T satisfies one of the following conditions:

(1) a+p+y+d6>0anda+y+e+n>0;
(2) a+p+y+6>0anda+8+(+n>0;
3) a+pf+y+d>0and2a+B+v+e+(+2n>0.
Then T is generalized demimetric.
The following three lemmas are crucial in the proof of our main result.

Lemma 3.2. Let E be a smooth Banach space, let C' be a nonempty and closed subset of
E and let T be a 0-generalized demimetric mapping from C into E. Then F(T) is closed.
Lemma 3.3. Let E be a smooth Banach space, let C' be a nonempty and convex subset of
E and let T be a 0-generalized demimetric mapping from C into E. Then F(T) is convez.

Lemma 3.4. Let E be a smooth Banach space, let C' be a nonempty subset of F, let T be
a 0-generalized demimetric mapping from C into E and let k € R. Then (1 — k) + T is
Or-generalized demimetric from C into E.
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4 Main result

Now we can prove a strong convergence theorem for countable families of generalized
demimetric mappings and inverse strongly monotone mappings in Hilbert spaces.

Theorem 4.1. Let H be a Hilbert space, let C' be a nonempty, closed and convex subset of
H, let {0;}32, C R\{0}, let {T}}32, be a countable family of 0;-generalized demimetric and
demiclosed mappings from C into H, let {k;}32, C R satisfying 0;r; > 0, let {p:}32, C
(0,00), let {B;}2, be a countable family of u;-inverse strongly monotone mappings from
C into H, let {G;}32, be a countable family of maximal monotone operators on H and let
Jir = (I+7G;)™! be the resolvent of G; fori € N and r > 0. Suppose that (ﬂ;’il F(T])) N
(N2, (B; + G;)710) # 0. Let 1 € C and let {x,} be a sequence generated by

zn =300 & (L= A + A1),
W =327 0idig, (I = 1in Bi)Tn,

Yn = QpTy + ﬂnzn + YWy,
Co={2€C|llyn — 2| < llzn — 2|},
Qn= {Z cCl(xy— 2,01 —n) > O}a

Tnt1 = Po,no, 11
for anyn € N, where a,b,c € (0,00), {\jn}, {min} CR, {&}, {0} C(0,1) and {o,}, {Bn}, {1} C
(0,1) satisfy

o< 2L < 21nf{—
9jm

jEN}, b<mnin<2inf{y; |ie N},

Z@ZZUZZL CganaﬁTHq/n (lnd Oén+ﬁn+’yn:1
j=1

=1
Then {z,} is convergent to a point zy € (ﬂj’;l F(Tj)> N (N2, (Bi + G;)710), where zo =

Plnge, piry)n(ne, (Bi+6o-10) 71

5 Application

In this section, using Theorem 4.1, we obtain a strong convergence theorem for count-
able families of widely more generalize hybrid mappings and inverse strongly monotone
mappings in Hilbert spaces.

Lemma 5.1. Let H be a Hilbert space, let C' be a nonempty subset of H and let T be an
(a, B,7,0,¢,(,n)-widely more generalized hybrid mapping from C into H. Suppose that T
satisfies one of the following conditions:

(1) a+B+~v+d>0anda+y+e+n>0;



(2) a+pB+y+d>0anda+8+C+n>0;
3) a+p+y+d>0and2a+B+v+e+(+2n>0.
Then T is demiclosed.

Theorem 5.1. Let H be a Hilbert space, let C' be a nonempty, closed and convex subset
of H, let {T;}32, be a countable family of (o, Bj,7;, 05, €5, (i, mj)-widely more generalized
hybrid mappings from C into H. Suppose that T; satisfies one of the following conditions:

(1) aj+ﬂj+’yj+(5j20,ozj+’yj+8j+77j>0andozj+’yj7£0;
(2) a;+Bj+7+0; =20, a5+ B+ ¢ +n; >0 and aj + G5 # 0;
B) a;+8+7+9;>0,20;+0; +v; +e;+ ¢ +2n; >0 and 2a; + B; +y; # 0.

For (1), (2), (3), put

2o +) 2(a; + ) 2(2a; + B + ;)
Tttt ai BG4 20+ 6+ e+ G+ 20

respectively. Let {r;}32, C R satisfying 0jk; > 0, let {pi}2, C (0,00), let {B;}2, be a
countable family of pi-inverse strongly monotone mappings from C into H, let {G;}2, be
a countable family of maximal monotone operators on H and let J;, = (I +rG;)~" be the
resolvent of G; fori € N and r > 0. Suppose that (ﬂjil F(TJ)) N(NZ,(B; + Gi)~0) # 0.
Let 1 € C and let {z,} be a sequence generated by

Z] V&L =X + AT,
Wn, = Zz 1 0idi, mn(I NinBi )a;m
Yn = QnTp + ﬂnzn + YnWn,
Co={z€C||lyn—2ll < llzn — 2[[},
Qn={z€C|{x,— 2,21 —x,) >0},

Tn+1 = Po,ng,T1

for any n € N, where a,b,c € (0,00), {\;j.} CR, {n;,} C(0,00), {&},{o:} C(0,1) and
{an}, {Bn}, { "} C (0,1) satisfying

Ain
a < —— §21nf{

Kj

jEN}, b<mni,<2inf{y |ieN}

0;k;

Zé-j = Zai - 17 CS amﬁny’)/n and an+ﬁn+7n =1
j=1 i=1
Then {x,} is convergent to a point zy € (ﬂ;’il F(T])) N (N2, (Bi + Gi)10), where zo =

Pz, pry))n(ne, (Bt -10)T1-
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