
13

Numerical range and a conjugation on a Banach
space

by

Muneo Chō and Haruna Motoyoshi

Abstract

We introduce a conjugation on a Banach space \mathcal{X} and show properties of a conjugation.
After that we show properties of numerical ranges of operators concerning with a con‐
jugation  C . Next we introduce  (m, C)‐symmetric and  (m, C) ‐isometric operators on a
Banach space and show spectral properties of such operators.

1 Conjugation on a Banach space

First we explain a conjugation on a complex Hilbert space.

Definition 1.1 Let  \mathcal{H} be a complex Hilbert space. An operator  C on  \mathcal{H} is antilinear if
it holds that, for all  x,  y\in \mathcal{H} and  a,  b\in \mathbb{C},

 C(ax+by)=\overline{a}Cx+\overline{b} Cy.

Antilinear operator  C is said to be a conjugation if it holds that, for all  x,  y\in \mathcal{H} and  a,

 b\in \mathbb{C},
 C^{2}=I and  \langle Cx,  Cy\rangle=\{y, x\},

where I is the identity operator on  \mathcal{H}.

If  C is a conjugation, then  \Vert Cx\Vert=\Vert x\Vert for all  x\in \mathcal{H} . For a bounded linear operator  T

on a complex Hilbert space  \mathcal{H} , let  \sigma(T),  \sigma_{p}(T),  \sigma_{a}(T),  \sigma_{s}(T),  \sigma_{e}(T) and  \sigma_{w}(T) denote the
spectrum, the point spectrum, the approximate spectrum, the surjective spectrum, the
essential spectrum and the Weyl spectrum of  T , respectively. Then the following result
is important.

Theorem 1.1 (S. Jung, E. Ko and J. E. Lee, [3]) Let  C be conjugation on  \mathcal{H} . Then it
holds the following statement hold:

 \sigma(CTC)=\overline{\sigma(T)}, \sigma_{p}(CTC)=\overline{\sigma_{p}(T)}, 
\sigma_{a}(CTC)=\overline{\sigma_{a}(T)},

 \sigma_{s} (CTC)  =\overline{\sigma_{s}(T)},  \sigma_{e}(CTC)=\overline{\sigma_{e}(T)} and  \sigma_{w} (CTC)  =\overline{\sigma_{w}(T)},

This work was supported by the Research Institute for Mathematical Sciences,
a Joint Usage/Research Center located in Kyoto University.
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where  \overline{E}=\{\overline{z} : z\in E\}\subset \mathbb{C}.

S. Jung, E. Ko and J. E. Lee, On complex symmetric operator matrices, J. Math. Anal.
Appl., 406(2013), 373‐385. This case doesn’t need  CTC=T^{*} . Only relation between  T

and CTC. Next we explain a conjugation on a Banach space.

Definition 1.2 Let  \mathcal{X} be a complex Banach space with the norm  \Vert\cdot\Vert and  C be an operator
on  \mathcal{X} . If  C satisfies the following, then  C is said to be a conjugation on a Banach space

 \mathcal{X} . For all  x,  y\in \mathcal{X} and  \alpha,  \beta\in \mathbb{C},

 (*)  C^{2}=I,  C(\alpha x+\beta y)=\overline{\alpha}Cx+\overline{\beta}Cy and  \Vert C\Vert\leq 1,

where I is the identity operator on  \mathcal{X}.

Of course, from the definition it holds  \Vert Cx  \Vert=\Vert x\Vert for all  x\in \mathcal{X}.

Theorem 1.2 If  C satisfies  (*) on a Hilbert space  \mathcal{H} with the inner product  \langle\cdot,  \cdot\rangle , then
{Cx,  Cy\rangle=\{y, x\} for all  x,  y\in \mathcal{H}.

Proof. Let  x,  y\in \mathcal{H},  \alpha\in \mathbb{R} and let  Cy=z . Since

 \Vert Cx+\alpha z\Vert=\Vert C(x+\alpha Cz)\Vert\leq\Vert x+\alpha Cz\Vert=
\Vert C(Cx+\alpha z)\Vert\leq\Vert Cx+\alpha z\Vert,

we have  \Vert Cx+\alpha z\Vert=\Vert x+\alpha Cz\Vert . By taking square, we have  {\rm Re}\langle Cx,  z\rangle={\rm Re}\langle Cz,  x } and

 {\rm Re}  \{ Cx,  Cy\}={\rm Re}  \langle Cx,  z\rangle={\rm Re}  \langle Cz,  x\rangle={\rm Re}\langle C^{2}y,  x\rangle={\rm Re}\langle y,  x\rangle.

By taking ix instead of  x , we have  {\rm Im} {Cx,  Cy\rangle={\rm Im}\langle y,   x\rangle and  \{ Cx,  Cy\}=\{y, x\}.  \square 

Example 1.1 Let  \mathcal{H} be a Hilbert space and  \mathcal{X}=B(\mathcal{H}) . For conjugations  C,  J on  \mathcal{H},
 M_{CJ} on  \mathcal{X} is defined by

 M_{CJ}(T) :=CTJ (T\in B(\mathcal{H})=\mathcal{X}) .

Then  M_{CJ} is a conjugation on a Banach space  \mathcal{X}.

Definition 1.3 Let  C be a conjugation on a Banach space  \mathcal{X} . The dual operator  C^{*} :
 \mathcal{X}^{*}arrow \mathcal{X}^{*} of  C is defined by

 (C^{*}(f))(x)=\overline{f(Cx)}(x\in \mathcal{X}, f\in \mathcal{X}^{*}) ,

where  \mathcal{X}^{*} is the dual space of  \mathcal{X} and  \overline{f(Cx)} is the complex conjugate of  f(Cx) .

Theorem 1.3 If  C is a conjugation on  \mathcal{X} , then  C^{*} is a conjugation on  \mathcal{X}^{*}

Proof. It is clear that  C^{*2}=I^{*} and

 C^{*}(f+g)=C^{*}(f)+C^{*}(g) for all  f,  g\in \mathcal{X}^{*}
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For  \lambda\in \mathbb{C} and  x\in \mathcal{X} , it holds  (C^{*}(\lambda f))(x)=\overline{\lambda}\overline{f(Cx)}=\overline{\lambda}(C^{
*}f)(x) and  C^{*}(\lambda f)=
 \overline{\lambda}C^{*}(f) . Since, for all  f\in \mathcal{X}^{*} , it holds

 |(C^{*}f)(x)|=|\overline{f(Cx)}|\leq\Vert f\Vert\Vert Cx\Vert=\Vert f\Vert\Vert
x\Vert,

we have  \Vert C^{*}f\Vert\leq\Vert f\Vert and  \Vert C^{*}\Vert\leq 1.  \square 

The same results hold for spectral properties of an operator on a Banach space concerning
with a conjugation.

Theorem 1.4 Let  T\in B(\mathcal{X}) and  C be a conjugation on  \mathcal{X} . Then it holds the following

 \sigma(CTC)=\overline{\sigma(T)},  \sigma_{a}(CTC)=\overline{\sigma_{a}(T)},  \sigma_{p}(CTC)=\overline{\sigma_{p}(T)} and  \sigma_{s} (CTC)  =\overline{\sigma_{s}(T)}.

2 Numerical range of Banach space operator

In this section, we explain definition of the numerical range  V(T) of  T on a Banach space
 \mathcal{X}.

Definition 2.1 Let  \Pi be the set

 \Pi:=\{(x, f)\in \mathcal{X}\cross \mathcal{X}^{*}:\Vert f\Vert=f(x)=\Vert 
x\Vert=1\}.

For an operator  T\in B(\mathcal{X}) , the numerical range  V(T) of  T is given by

 V(T)=\{f(Tx):(x, f)\in\Pi\}.

Defitinion 2.2 For  T\in B(\mathcal{X}) ;
 \bullet  T is Hermitian if  V(T)\subset \mathbb{R}.
 \bullet  T is positive if   V(T)\subset[0, \infty ). In this case, we write  T\geq 0.
 \bullet  T is normal if there exist Hermitian operators  H and  K such that  T=H+iK and
 HK=KH.

 \bullet  T is hyponormal if there exist Hermitian operators  H and  K such that  T=H+iK

and  i(HK-KH)\geq 0.

Theorem 2.1 If  (x, f)\in\Pi , then  ( Cx,  C^{*}f)\in\Pi.

Proof. Let  (x, f)\in\Pi . Then  \Vert f\Vert=f(x)=\Vert x\Vert=1.

 (C^{*}f) (Cx)=\overline{f(C^{2}x)}=\overline{f(x)}=1

Since  \Vert Cx\Vert=\Vert x\Vert=1 , we have

  \Vert C^{*}f\Vert=\sup_{\Vert x\Vert=1}|(C^{*}f)(x)|=\sup_{\Vert x\Vert=1}
|f(Cx)|\leq\Vert f\Vert\Vert Cx\Vert=1.
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Therefore, we have  \Vert C^{*}f\Vert\leq 1 and  \Vert C^{*}f\Vert=1 and so  (Cx,  C^{*}f)\in\Pi.  \square 

Theorem 2.2 Let  \mathcal{X} be a complex Banach space,  T\in B(\mathcal{X}) and  C be a conjugation on
 \mathcal{X} . Then  V(CTC)=\overline{V(T)}.

Proof. Let  z\in V(CTC) . Then there exists  (x, f)\in\Pi such that  z=f(CTCx) . We
obtain  z=(C^{*}f) (TCx). Since  (Cx,   C^{*}f)\in\Pi , we have  z\in\overline{V(T)} and  V (CTC)  \subset\overline{V(T)}
Therefore, we have  V(T)=V(C^{2}TC^{2})\subset V(CTC) and  V (CTC)  =\overline{V(T)}  \square 

Theorem 2.3 Let  T\in B(\mathcal{X}) and  C be a conjugation on  \mathcal{X} . Then following results hold.
(1)  T is Hermitian if and only if CTC is Hermitian.
(2)  T is positive if and only if CTC is positive.
(3)  T is normal if and only if CTC is normal.
(4)  T is hyponormal if and only if CTC is hyponormal.
(5)  T is compact if and only if CTC is compact.

Definition 2.3

 \bullet Denote by  V_{\omega}(T) the set of all  z\in \mathbb{C} such that there exists a sequence  (x_{n}, f_{n})\in\Pi which
satisfies w‐   \lim x_{n}=0 and   \lim f_{n}(Tx_{n})=z . The set  V_{\omega}(T) is said to be the sequential
essential numerical range of  T.

 \bullet For an operator  T\in B(\mathcal{X}) , the the essential numerical range  V_{e}(T) of  T is given by

 V_{e}(T) :=\{\mathcal{F}(T) : \mathcal{F}\in B(\mathcal{X})^{*}, \Vert \mathcal
{F}\Vert=\mathcal{F}(I)=1, \mathcal{F}(C(\mathcal{X}))=\{0\}\},

where  C(\mathcal{X}) is the set of all compact operators on  \mathcal{X}.

 \bullet Denote by  W_{e}(T) the set of all  z\in \mathbb{C} with the property that there are nets  (x_{\alpha})\subset
 \mathcal{X},  (f_{\alpha})\subset \mathcal{X}^{*} suth that  \Vert f_{\alpha}\Vert=f_{\alpha}(x_{\alpha})=1(^{\forall}\alpha ),  x_{\alpha}arrow 0 (weakly) and  f_{\alpha}(x_{\alpha})arrow z . The
set  W_{e}(T) is said to be the spatial essential numerical range of  T.

Theorem 2.4 For any conjugation  C , w‐   \lim x_{n}=0 if and only if w‐   \lim Cx_{n}=0.

Proof. Assume  w-1\dot{{\imath}}mx_{n}narrow\infty=0 . Then, for any  f\in \mathcal{X}^{*} , since  C^{*}f\in \mathcal{X}^{*} , we have  f(Cx_{n})=

 (C^{*}f)(x_{n})arrow 0 . Hence  w-1\dot{{\imath}}mCx_{n}narrow\infty=0 . Since  x_{n}=C^{2}x_{n} , the converse is clear.  \square 

Theorem 2.5 For any conjugation  C,  V_{\omega}(CTC)=\overline{V_{\omega}(T)} and  W_{e}(CTC)=\overline{W_{e}(T)}.

Proof. Let  z\in V_{\omega}(CTC) . There exists a sequence  \{(x_{n}, f_{n})\}_{n=1}^{\infty} of  \Pi such that w‐

 narrow\infty 1\dot{{\imath}}mx_{n}=0 and   \lim_{narrow\infty}f_{n}(CTCx_{n})=z . We have

  \lim_{narrow\infty}(C^{*}f_{n})(TCx_{n})=\lim_{narrow\infty}f_{n}(CTCx_{n})=
\overline{z}.

Since  (Cx_{n}, C^{*}f_{n})\in\Pi and  w- \lim_{narrow\infty}Cx_{n}=0 by Theorem2.4, we obtain  \overline{z}\in V_{\omega}(T) and

 V_{\omega}(CTC)\subset V_{\omega}(T) . Hence we have  V_{\omega}(T)=V_{\omega}(C^{2}TC^{2})\subset V_{\omega}(CTC) and  V_{\omega}(CTC)=
 V_{\omega}(T) . The proof of  W_{e}(CTC)=W_{e}(T) is almost the same.  \square 
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Theorem 2.6 For any conjugation  C,  V_{e}(CTC)=\overline{V_{e}(T)}.

Proof. Let  \mathcal{F}(CTC)\in V_{e}(CTC) . Then there exists  \mathcal{F}\in B(\mathcal{X})^{*} such that  \Vert \mathcal{F}\Vert=\mathcal{F}(I)=
 1,  \mathcal{F}(C(\mathcal{X}))=\{0\} . Since

 |C^{*}\mathcal{F}(T)|=|\mathcal{F}(CTC)|\leq\Vert \mathcal{F}\Vert\cdot\Vert 
CTC\Vert\leq\Vert T\Vert

and

 C^{*}\mathcal{F}(I)=\overline{\mathcal{F}(CIC)}=\overline{\mathcal{F}(I)}=
\overline{1}=1,
we have  \Vert C^{*}\mathcal{F}\Vert=1 . Moreover, by Theorem 2.3 (5),  C^{*}\mathcal{F}(C(\mathcal{X}))=\{0\} . Therefore, we
obtain  \mathcal{F}(CTC)\in\overline{V_{e}(T)} and so  V_{e}(CTC)\subset\overline{V_{e}(T)} . Hence we have   V_{e}(T)=V_{e}(C^{2}TC^{2})\subset
 V_{e}(CTC) and  V_{e}(CTC)=\overline{V_{e}(T)}.  \square 

Theorem 2.7 Let  T\in B(\mathcal{X}) and  C be a conjugation on  \mathcal{X} . Then following results hold.
(1)  x\in ker(T) if and only if  Cx\in ker(CTC) .
(2)  x\in R(T) if and only if  Cx\in R(CTC) .
(3)  R(T) is closed if and only if  R(CTC) is closed.

Proof. (1) If  x\in ker(T) , then we have  (CTC)Cx=CTx  =0 and hence  Cx\in ker(CTC) .
Conversely, if  Cx\in ker(CTC) , then we obtain  x=C^{2}x\in ker(C^{2}TC^{2})=ker(T) .
(2) Let  x\in R(T) . Since  \exists_{y}\in \mathcal{X} ;  x=Ty , it follows that  Cx=CTy  =CTC(Cy) and
hence  Cx\in R(CTC) . Conversely, if  Cx\in R(CTC) , then  x=C^{2}x\in R(C^{2}TC^{2})=R(T) .
(3)Let  R(T) be closed and  \{x_{n}\}\subset R(CTC) be a Cauchy sequence. By Theorem 2.7 (2),
it follows  Cx_{n}\in R(C^{2}TC^{2})=R(T) . Since

 \Vert Cx_{m}-Cx_{n}\Vert\leq\Vert C\Vert\Vert x_{m}-x_{n}\Vertarrow 0 as  m,  narrow\infty,

 \{Cx_{n}\}\subset R(T) is a Cauchy sequence. Since  R(T) is closed,  \exists_{X_{0}}\in R(T) ;  x_{0}= \lim_{narrow\infty}Cx_{n}.
Then  x_{n}=C^{2}x_{n}arrow Cx_{0} and by Theorem 2.7 (2), we have  Cx_{0}\in R(CTC) . Therefore,
 R(CTC) is closed. Conversely if  R(CTC) is closed, then  R(T)=R(C^{2}TC^{2}) is closed.
 \square 

Definition 2.4 Let  \sigma_{eap}(T) denote the set of all  z\in \mathbb{C} such that there exists a sequence
 \{x_{n}\} of unit vectors which satisfies  x_{n}arrow 0 (weakly) and  (T-z)x_{n}arrow 0 . The set  \sigma_{eap}(T)
is said to be the essential approximate point spectrum of  T.

Theorem 2.8 For  T\in B(\mathcal{X}) and any conjugation  C,  \sigma_{eap}(CTC)=\overline{\sigma_{eap}(T)}.

Proof. Let  z\in\sigma_{eap}(CTC) . Take a sequence  \{x_{n}\} of unit vectors such that  x_{n}arrow 0

(weakly) and  (CTC-z)x_{n}arrow 0 as   narrow\infty . We have

 C(T-\overline{z})Cx_{n}=(CTC-z)x_{n}arrow 0 as  narrow\infty.

Thus we obtain  (T-\overline{z})Cx_{n}arrow 0 as   narrow\infty . Since  \Vert Cx_{n}\Vert=\Vert x_{n}\Vert=1 and  Cx_{n}arrow 0
(weakly), we have  \overline{z}\in\sigma_{eap}(T) and hence  \sigma_{eap}(CTC)\subset\sigma_{eap}(T) . Therefore, we obtain
 \sigma_{eap}(T)=\sigma_{eap}(C^{2}TC^{2})\subset\sigma_{eap}(CTC) and  \sigma_{eap} (CTC)  =\sigma_{eap}(T) .  \square 
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Definition 2.5 An operator  T\in B(\mathcal{X}) is Fredholm if and only if there exists operators
 S_{1},  S_{2}\in B(\mathcal{X}) such that  TS_{1}-I and  S_{2}T-I are compact operators. The essential
spectrum  \sigma_{e} of  T is the set of all  z\in \mathbb{C} such that  T-z is not Fredholm.

We have the following results.

Theorem 2.9 For  T\in B(\mathcal{X}) and a conjugation  C on  \mathcal{X},  T is Fredholm if and only if
CTC is Fredholm.

Theorem 2.10 For  T\in B(\mathcal{X}),  \sigma_{e}(CTC)=\overline{\sigma_{e}(T)}.

These definitions (numerical range, Fredholm, essential spectrum and others) are from the
following paper: Barraa and Müller; On the essential numerical range, Acta Sci. Math.
(Szeged) 71 (2005), 285‐298.

3  (m, C)‐Symmetric Operators on a Banach space

We introduce and show some properties of  (m, C) ‐symmetric operators on a Banach space.

Definition 3.1 For an operator  T\in B(\mathcal{X}) and a conjugation  C on  \mathcal{X} , we define an
operator  \alpha_{m}(T;C) by

 \alpha_{m}(T;C)  := \sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
\dot{j}
\end{array})  CT^{m-j}CT^{j}.

An operator  T is said to be  (m, C) ‐symmetry if  \alpha_{m}(T;C)=0.

It hold that

CTC  \alpha_{m}(T;C)-\alpha_{m}(T;C)T=\alpha_{m+1}(T;C) .

Hence if  T is  (m, C) ‐symmetry, then  T is  (n, C) ‐symmetry for every  n\geq m.

Example 3.1 If  Q is an  n ‐nilpotent operator on  \mathcal{X} , then  Q is  (2n-1, C) ‐symmetry for
any conjugation  C.

Proof. By the definition, we have

  \alpha_{2n-1}(Q;C):=\sum_{j=0}^{2n-1}(-1)^{j}  (2n   -1j)  CQ^{2n-1-j}CQ^{j}.

When  0\leq j\leq n-1 , we have  Q^{2n-1-j}=0 . When  j\geq n , we obtain  Q^{j}=0 . Therefore,
we conclude  \alpha_{2n-1}(Q;C)=0.  \square 
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Example 3.2 Let  T\in B(\mathcal{H}) satisfy   \sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
j
\end{array})  CT^{m-j}CT^{j}=0 for some conjugation

 C on a Hilbert space  \mathcal{H} . We define a conjugation  M_{C}(S) on  \mathcal{H} by  M_{C}(S)  :=CSC  (S\in
 B(\mathcal{H})) . Let an operator  L_{T}(S) be  L_{T}(S)  :=TS(S\in B(\mathcal{H})) . Then  L_{T} is an  (m, M_{C}) ‐
symmetric operator on a Banach space  B(\mathcal{H}) .

Definition 3.2 A pair  (T, S) of operators  T,  S\in B(\mathcal{H}) is said to be  C ‐doubly commuting
if  TS=ST and  S.  CTC=CTC\cdot S.

 \bullet If  (T, S) is  C‐doubly commuting, then it holds that

  \alpha_{n}(T+S;C)=\sum_{j=0}^{n}  (\begin{array}{l}
n
\dot{j}
\end{array})  \alpha_{n-j}(T;C)\alpha_{j}(S;C)

and

  \alpha_{n}(TS;C)=\sum_{j=0}^{n}  (\begin{array}{l}
n
j
\end{array})  CT^{j}C\cdot\alpha_{n-j}(T;C)\alpha_{j}(S;C)\cdot S^{n-j}.

Theorem 3.1 Let  T be  (m, C) ‐symmetry and  S be  (n, C) ‐symmetry. If  (T, S) is  C ‐doubly
commuting, then  T+S is  (m+n-1, C) ‐symmetry.

Proof. We have

  \alpha_{m+n-1}(T+S;C)=\sum_{j=0}^{m+n-1}(-1)^{j}  (\begin{array}{ll}
m+n   -1
j   
\end{array})  \alpha_{m+n-1-j}(T;C)\cdot\alpha_{j}(S;C) .

When  j\geq n , we have  \alpha_{j}(S;C)=0 . When  j\leq n-1 , we obtain  \alpha_{m+n-1-j}(T;C)=0 since
 m+n-1-j\geq m+n-1-(n-1)=m . Therefore, we conclude  \alpha_{m+n-1}(T+S;C)=0.
 \square 

By Example 3.1 and Theorem 3.1, we have the following Theorem 3.2.

Theorem 3.2 Let  T be  (m, C) ‐symmetry and  Q be  n ‐nilpotent. If  (T, Q) is  C ‐doubly
commuting, then  T+Q is  (m+2n-2, C) ‐symmetry.

Theorem 3.3 Let  T be  (m, C) ‐symmetry. Then
(1)  T^{n} is  (m, C) ‐symmetry for any  n\in \mathbb{N}.

(2) If  T is invertible, then  T^{-1} is  (m, C) ‐symmetry.

Proof. (1) Since  \alpha_{m}(T;C)=0 and

 (a^{n}-b^{n})^{m} = (a-b)^{m}(a^{n-1}+a^{n-2}b+ \cdot \cdot \cdot +ab^{n-2}+
b^{n-1})^{m}
 = (a-b)^{m}(\xi_{0}a^{m(n-1)}+\xi_{1}a^{m(n-1)-1}b+ \cdot \cdot \cdot +\xi_{m(n
-1)}b^{m(n-1)})
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where  \xi_{i} are coefficients  (i=0, \ldots, m(n-1)) , it follows that

  \alpha_{m}(T^{n};C)=\sum_{j=0}^{m(n-1)}\xi_{j}CT^{m(n-1)-j}C\cdot\alpha_{m}(T;
C)\cdot T^{j}=0.
Hence the operator  T^{n} is  (m, C) ‐symmetry.
(2) Suppose that  T is invertible and  (m, C)‐symmetry. Since  \alpha_{m}(T;C)=0 , we have

 0 = CT^{-m}C(\alpha_{m}(T;C))T^{-m}
 = CT^{-m}C ( \sum_{j=0}^{m}(-1)^{j} (\begin{array}{l}
m
j
\end{array})CT^{m-j}CT^{j})T^{-m}
 =   \sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
\dot{j}
\end{array})  C(T^{-1})^{j}C\cdot(T^{-1})^{m-j}.

Therefore, the operator  T^{-1} is  (m, C) ‐symmetry.  \square 

Next we show spectral properties of  (m, C) ‐symmetric operators. It needs the following
result.

Theorem 3.4 (C. Schmoeger, [5]) Let  T\in B(\mathcal{X}) and  f be a polynomial. Then

(1)  \sigma_{a}(f(T))=f(\sigma_{a}(T)) and (2)  \sigma_{eap}(f(T))\subset f(\sigma_{eap}(T)) .

Theorem 3.5 Let  T\in B(\mathcal{X}) be  (m, C) ‐symmetry.
(1) If  z\in\sigma_{a}(T)(\sigma_{p}(T)) , then  \overline{z}\in\sigma_{a}(T)(\sigma_{p}(T)) .
(2) If  z\in\sigma_{eap}(T) , then  \overline{z}\in\sigma_{eap}(T) .

Proof. (1) Let  z\in\sigma_{a}(T) . Then there exists a sequence  \{x_{n}\} of unit vectors such that
 (T-z)x_{n}arrow 0 as   narrow\infty . Since

  \alpha_{m}(T;C)=\sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
\dot{j}
\end{array})  (CTC-z)^{m-j}(T-z)^{j},

we have

 0=n arrow\infty 1\dot{{\imath}}m\alpha_{m}(T;C)x_{n}=\lim_{narrow\infty}(CTC-z)
^{m}x_{n}.
By Theorem 3.5 for a polynomial  f(x)=z^{m} , we obtain  0\in\sigma_{a}(CTC-z) and hence
 z\in\sigma_{a}(CTC) . By Theorem 1.7, it holds  \overline{z}\in\sigma_{a}(T) .  \square 

Theorem 3.6 If  T is  (m, C) ‐symmetry, then  ker(T)\subset C(ker(T^{m})) .

Proof. If  x\in ker(T) , then we obtain

 CT^{m}Cx= \sum_{j=1}^{m}(-1)^{j+1}  (\begin{array}{l}
m
\dot{j}
\end{array})  CT^{m-j}CT^{j}x=0

and  T^{m}Cx=0 . Hence we have  Cx\in ker(T^{m}) and  x\in C(ker(T^{m})) .  \square 
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4  (m, C)‐Isometric Operators on a Banach space

We introduce and show some properties of an  (m, C) ‐isometric operators on a Banach
space.

Definition 4.1 For an operator  T\in B(\mathcal{X}) and a conjugation  C on  \mathcal{X} , we define an
operator  \beta_{m}(T;C) by

 \beta_{m}(T;C)  := \sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
\dot{j}
\end{array})  CT^{m-j}CT^{m-j}

An operator  T is said to be  (m, C) ‐isometry if  \beta_{m}(T;C)=0.

It hold that

CTC  \beta_{m}(T;C)T-\beta_{m}(T;C)=\beta_{m+1}(T;C) .

Hence if  T is  a(m, C) ‐isometry, then  T is  a(n, C) ‐isometry for every  n\geq m . It holds
similar results.

Example 4.1 Let  T\in B(\mathcal{H}) satisfy   \sum_{j=0}^{m}(-1)^{j}  (\begin{array}{l}
m
\dot{j}
\end{array})  CT^{m-j}CT^{m-j}=0 for some conju‐

gation  C on a Hilbert space  \mathcal{H} . We define a conjugation  M_{C} on  \mathcal{H} by  M_{C}(S)  :=CSC

 (S\in B(\mathcal{H})) . Let an operator  L_{T} be  L_{T}(S)  :=TS(S\in B(\mathcal{H})) . Then  L_{T} is an  (m, M_{C}) ‐
isometric operator on a Banach space  B(\mathcal{H}) .

Theorem 4.1 Let  T is  (m, C) ‐isometry. Then
(1)  0\not\in\sigma_{a}(T) .
(2) If  z\in\sigma_{a}(T) , then  \overline{z}^{-1}\in\sigma_{a}(T) .

The statement (2) holds for  \sigma_{p}(T) and  \sigma_{eap}(T) . Therefore, if  T is  (m, C) ‐isometry, then
 \Vert T\Vert\geq 1.

Proof. (1) Assume that there exists a sequence  \{x_{n}\} of unit vectors such that  Tx_{n}arrow 0
as   narrow\infty . Since it holds

 0= \beta_{m}(T;C)=\sum_{j=0}^{m-1}(-1)^{j}  (\begin{array}{l}
m
\dot{j}
\end{array})  CT^{m-j}C\cdot T^{m-j}+(-1)^{m}I,

we have  narrow\infty 1\dot{{\imath}}mIx_{n}=0 . Hence, it’s a contradiction and  0\not\in\sigma_{a}(T) .

(2) Let  z\in\sigma_{a}(T) . Then there exists a sequence  \{x_{n}\} of unit vectors such that  (T-z)x_{n}arrow
 0 . Since it holds

 (zCTC-1)^{m}x_{n}=( \sum_{j=0}^{m}(-1)^{j+1} (\begin{array}{l}
m
\dot{j}
\end{array})CT^{m-j}C(T^{m-j}-z^{m-j}))x_{n}arrow 0,
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we have  0\in\sigma_{a}((zCTC-1)^{m}) . By Theorem 3.5 for a polynomial  f(x)=z^{m} , we obtain
 0\in\sigma_{a} (  z CTC—l). By (1), since  z\neq 0 , we have  z^{-1}\in\sigma_{a}(CTC) and hence, by Theorem
1.7, it holds  \overline{z}^{-1}\in\sigma_{a}(T) .  \square 

We have the following results.

Theorem 4.2 Let  T be  (m, C) ‐isometry and  Q be  n ‐nilpotent. If  (T, Q) is  C ‐doubly
commuting, then  T+Q is  (m+2n-2, C) ‐isometry.

Theorem 4.3 Let  T be  (m, C) ‐isometry. Then
(1)  T^{n} is  (m, C) ‐isometry for any  n\in \mathbb{N}.

(2) If  T is invertible, then  T^{-1} is  (m, C) ‐isometry.

Please see following references for details.
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