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Numerical range and a conjugation on a Banach
space

by

Muneo Cho and Haruna Motoyoshi

Abstract

We introduce a conjugation on a Banach space X and show properties of a conjugation.
After that we show properties of numerical ranges of operators concerning with a con-
jugation C. Next we introduce (m,C)-symmetric and (m,C)-isometric operators on a
Banach space and show spectral properties of such operators.

1 Conjugation on a Banach space

First we explain a conjugation on a complex Hilbert space.

Definition 1.1 Let ‘H be a complex Hilbert space. An operator C on H is antilinear if
it holds that, for allxz, y € H and a, b € C,

C(ax +by) =aCz +bCy.

Antilinear operator C' is said to be a conjugation if it holds that, for all x, y € H and a,
beC,
C*=1 and (Cz,Cy) = (y,z),

where I is the identity operator on H.

If C is a conjugation, then ||Cx| = ||z| for all z € H. For a bounded linear operator T’
on a complex Hilbert space H, let o(T), 0,(T), 0,(T), 05(T), 0.(T) and 0,,(T) denote the
spectrum, the point spectrum, the approximate spectrum, the surjective spectrum, the
essential spectrum and the Weyl spectrum of T', respectively. Then the following result
is important.

Theorem 1.1 (S. Jung, E. Ko and J. E. Lee, [3]) Let C' be conjugation on H. Then it
holds the following statement hold:

o(CTC) =0(T), 0,(CTC) =0,(T), 0,(CTC) = 0,(T)

0,(CTC) = (T, 0.(CTC) = 0.(T) and 0,(CTC) = 0,(T),
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where E ={z : z€ E} C C.

S. Jung, E. Ko and J. E. Lee, On complex symmetric operator matrices, J. Math. Anal.
Appl., 406(2013), 373-385. This case doesn’t need CT'C' = T*. Only relation between T'
and CT'C. Next we explain a conjugation on a Banach space.

Definition 1.2 Let X' be a complexr Banach space with the norm ||| and C' be an operator
on X. If C satisfies the following, then C' is said to be a conjugation on a Banach space
X. Forall x,y € X and o, 5 € C,

(x) C?*=1, Clax+ By) =aCxz + BCy and ||C| < 1,
where I is the identity operator on X.

Of course, from the definition it holds ||Cz| = ||z|| for all z € X.

Theorem 1.2 If C satisfies (x) on a Hilbert space H with the inner product (-, -), then
(Cx, Cy) =y, x) for all x,y € H.

Proof. Let z, y € H, a € R and let C'y = z. Since

ICz + az|| = ||C(x + aC2)|| < ||z + aCz

=||C(Cx+ az)|]| < ||Cx+ az

7

we have ||Cz + az|| = ||z + aCz||. By taking square, we have Re(Cx, z) = Re(Cz, z) and
Re (Cz,Cy) = Re (Cr,2) = Re (Cz,1) = Re (C%y,x) = Re (y,z).
By taking iz instead of x, we have Im (Cz,Cy) = Im (y,z) and (Cz,Cy) = (y,z). O

Example 1.1 Let H be a Hilbert space and X = B(H). For conjugations C,J on H,
Mgy on X is defined by

Mcy(T):=CTJ (T € B(H)=2X).
Then Mgy is a conjugation on a Banach space X .

Definition 1.3 Let C' be a conjugation on a Banach space X. The dual operator C* :
Xt — X of C is defined by
(C*(N)(x) = f(Cx) (zeX, feir),

where X* is the dual space of X and f(Cx) is the complex conjugate of f(Cx).
Theorem 1.3 If C is a conjugation on X, then C* is a conjugation on X*.

Proof. It is clear that C*2 = I* and

C*(f+9)=C"(f)+C*(g) for all f,g € X"
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For A € C and # € X, it holds (C*(\f))(x) = X f(Cz) = X (C*f)(x) and C*(\f) =
X C*(f). Since, for all f € X*, it holds

(€)@ = [f(Cx)| < [[fIIC]l = [1£ =],
we have [[C*f|| <[|f]| and [[C*[<1. O

The same results hold for spectral properties of an operator on a Banach space concerning
with a conjugation.

Theorem 1.4 Let T € B(X) and C be a conjugation on X. Then it holds the following

o(CTC) =0(T), 0,(CTC) =0,(T), 0,(CTC) =0,(T) and o,(CTC) = 04(T).
2 Numerical range of Banach space operator

In this section, we explain definition of the numerical range V(T) of T' on a Banach space
X.

Definition 2.1 Let IT be the set

I:={(z,f) € X x X"+ ||f|| = f(z) = [Jzf| = 1}
For an operator T € B(X), the numerical range V(T') of T is given by
V(T) = {f(T2) : (s,f) €T},

Defitinion 2.2 For T € B(X);

o T is Hermitian if V(T') C R.

o T is positive if V(T) C [0,00). In this case, we write T > 0.

e T is normal if there exist Hermitian operators H and K such that T = H + iK and
HK =KH.

e T is hyponormal if there exist Hermitian operators H and K such that T = H + 1K
and i(HK — KH) > 0.

Theorem 2.1 If (z, f) € I, then (Cx,C*f) € II.

Proof. Let (z, f) € Il. Then ||f]| = f(z) = ||z|]| = 1.

(€ N)(Cx) = f(C?x) = f(x) =1
Since ||Cz|| = ||z|| = 1, we have

IC*fIl = sup [(C*f)(x)] = sup [f(Cx)| < [[fI|Cx] =1.

flzll=1 flzll=1
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Therefore, we have ||C*f]] <1 and ||C*f]| = 1 and so (Cz,C*f) e Il. O

Theorem 2.2 Let X be a complex Banach space, T € B(X) and C be a conjugation on
X. Then V(CTC) = V(T).

Proof. Let z € V(CTC). Then there exists (x, f) € II such that z = f(CTCz). We
obtain z = (C*f)(T'Cx). Since (Cz,C*f) € II, we have z € V(T') and V(CTC) C V(T)
Therefore, we have V(T') = V(C?*TC?) c V(CTC) and V(CTC) =V(T) O

Theorem 2.3 Let T € B(X) and C be a conjugation on X. Then following results hold.
(1) T is Hermitian if and only if CTC is Hermitian.

(2) T is positive if and only if CTC' is positive.

(3) T is normal if and only if CTC is normal.

(4) T is hyponormal if and only if CTC is hyponormal.

(5) T is compact if and only if CTC is compact.

Definition 2.3

e Denote by V,,(T') the set of all z € C such that there exists a sequence (xy, f,,) € II which
satisfies w-limx, = 0 and im f,,(Tx,) = z. The set V,,(T) is said to be the sequential
essential numerical range of T'.

e For an operator T € B(X), the the essential numerical range Vo(T) of T is given by

Ve(T) := {F(T) : F e B@), |F|| = F(I) =1, F(C(X)) = {0}},

where C(X) is the set of all compact operators on X.
e Denote by W.(T) the set of all z € C with the property that there are nets (z,) C
X, (fa) C X" suth that || fo]| = fa(za) =1 (Ya), 1o — 0 (weakly) and fo(x4) — z. The

set Wo(T) is said to be the spatial essential numerical range of T.
Theorem 2.4 For any conjugation C, w-limz, =0 if and only if w-lim Cz, = 0.

Proof. Assume w- lim x,, = 0. Then, for any f € X*, since C*f € X*, we have f(Cz,) =
n—oo

(C* f)(x,) — 0. Hence w- lim Cx, = 0. Since z,, = C?x,,, the converse is clear. [J

n—ro0

Theorem 2.5 For any conjugation C, V,(CTC) = V,(T) and W.(CTC) = W(T).

Proof. Let z € V,(CTC). There exists a sequence {(z,, fn)}°2; of II such that w-
lim z,, = 0 and hm fn(CTCxy) = 2. We have

n—o0

lim (C* f,)(TCx,) = hm fn(CTCxy) =

n—oo
Since (Cx,,C*f,) € II and w-lim Cz, = 0 by Theorem2.4, we obtain z € V,(T) and
n—r0o0

V,(CTC) C V,(T). Hence we have V,(T) = V,,(C*TC?) C V,(CTC) and V,,(CTC) =
V,(T). The proof of W.(CTC) = W.(T) is almost the same. O




Theorem 2.6 For any conjugation C, V.(CTC) = V.(T).

Proof. Let F(CTC) € V,(CTC). Then there exists F € B(X)* such that || F|| = F(I) =
1, F(C(X)) = {0}. Since

|C*F(D)| = |F(CTO)| < ||IF] - [leTC] < ||IT|

and

C*F(I)=FCIC)=F(I)=1=1,
we have ||[C*F|| = 1. Moreover, by Theorem 2.3 (5), C*F(C(X)) = {0}. Therefore, we
obtain F(CTC) € V.(T) and so V,(CTC) C V.(T). Hence we have V,(T) = V,(C*TC?) C

V.(CTC) and V,(CTC) = V.(T). O

Theorem 2.7 Let T € B(X) and C be a conjugation on X.Then following results hold.
(1) x € ker(T') if and only if Cx € ker(CTC).

(2) x € R(T) if and only if Cx € R(CTC).

(3) R(T) is closed if and only if R(CTC) is closed.

Proof. (1) If € ker(T), then we have (CTC)Cx = CTx = 0 and hence Cz € ker(CTC).
Conversely, if Cx € ker(CTC'), then we obtain z = C?z € ker(C*T'C?) = ker(T).

(2) Let « € R(T). Since Py € X ; x = Ty, it follows that Cx = CTy = CTC(Cy) and
hence Cz € R(CTC). Conversely, if Cx € R(CTC), then x = C*z € R(C*TC?) = R(T).
(3)Let R(T) be closed and {z,} C R(CTC) be a Cauchy sequence. By Theorem 2.7 (2),
it follows Cx,, € R(C*TC?) = R(T). Since

1Czy — Cayl| < |C|Xm — znl| — 0 as m,n — oo,

{Cz,} C R(T) is a Cauchy sequence. Since R(T) is closed, *zy € R(T) ; g = lim Cx,.
n—o0

Then z, = C?x, — Czo and by Theorem 2.7 (2), we have Czqg € R(CTC). Therefore,
R(CTC) is closed. Conversely if R(CTC) is closed, then R(T) = R(C?*TC?) is closed.
O

Definition 2.4 Let 0.,,(T) denote the set of all z € C such that there exists a sequence
{z,} of unit vectors which satisfies x, — 0 (weakly) and (T — z)x,, — 0. The set 0eq,(T)
1s said to be the essential approximate point spectrum of T

Theorem 2.8 For T € B(X) and any conjugation C, 0eqp(CTC) = Geap(T).

Proof. Let z € 04p(CTC). Take a sequence {z,} of unit vectors such that =, — 0
(weakly) and (CTC — z)z,, — 0 as n — co. We have

T —2)Cx, = (CTC — 2)x, — 0 as n — 0.

Thus we obtain (T' — z)Cx, — 0 as n — oo. Since ||Cz,|| = ||z,|| = 1 and Cx,, — 0
(weakly), we have Z € 0qp(T) and hence 0.,,(CTC) C 0eqpy(T). Therefore, we obtain
Teap(T) = Oeap(C?*TC?) C 0eap(CTC) and 0¢qp(CTC) = 0eqp(T). O

17



18

Definition 2.5 An operator T € B(X) is Fredholm if and only if there exists operators
S1,85 € B(X) such that TSy — I and SoT — I are compact operators. The essential
spectrum o, of T is the set of all z € C such that T — z is not Fredholm.

We have the following results.

Theorem 2.9 For T € B(X) and a conjugation C on X, T is Fredholm if and only if
CTC is Fredholm.

Theorem 2.10 For T € B(X), 0.(CTC) = o.(T).

These definitions (numerical range, Fredholm, essential spectrum and others) are from the
following paper: Barraa and Miiller; On the essential numerical range, Acta Sci. Math.
(Szeged) 71 (2005), 285-298.

3 (m,C)-Symmetric Operators on a Banach space

We introduce and show some properties of (m, C')-symmetric operators on a Banach space.

Definition 3.1 For an operator T € B(X) and a conjugation C' on X, we define an
operator a,, (T;C) by

(T3 C) = Zm:(—nf (m> CT™ 0T,

/=0 J
An operator T is said to be (m,C)-symmetry if a,,(T; C) = 0.
It hold that
CTC ap(T;C) — an(T;C)T = apmt (T;C).
Hence if T is (m, C)-symmetry, then T is (n, C)-symmetry for every n > m.
Example 3.1 If Q is an n-nilpotent operator on X, then @ is (2n — 1, C)-symmetry for
any conjugation C.
Proof. By the definition, we have
2n—1

Qo1 (Q:C) = > (—1) <2”]_ 1) c™ ol
=0 -

J

When 0 < j <n — 1, we have Q> '=7 = 0. When j > n, we obtain @7 = 0. Therefore,
we conclude o, —1(Q;C) =0. O



Example 3.2 Let T € B(H) satisfy Z(—l)j <m> CT™ I CT? =0 for some conjugation
. J
7=0
C on a Hilbert space H. We define a conjugation Mq(S) on H by Ma(S) := CSC (S €
B(H)). Let an operator Lr(S) be Lp(S) =TS (S € B(H)). Then Ly is an (m, Mc)-
symmetric operator on a Banach space B(H).

Definition 3.2 A pair (T, S) of operators T, S € B(H) is said to be C-doubly commuting
if TS =ST and S-CTC =CTC - S.

o If (T, S) is C-doubly commuting, then it holds that

n

(T +8,0) =Y (j) an(T;C) a;(S: C)

J=0

and
n

a,(TS;C) = (?) CTC - ayp_{(T;C)a;(S;C) - S".

J=0

Theorem 3.1 Let T be (m, C)-symmetry and S be (n, C)-symmetry. If (T, S) is C-doubly
commuting, then T + S is (m +n — 1,C)-symmetry.

Proof. We have

m+4n—1
Omina(T+8:C) = > (-1) ( +a ) 1) Omin-1-5(T;C) - a;(; C).
j=0

When j > n, we have o;(S;C') = 0. When j < n—1, we obtain c,,4+,—1-;(T; C') = 0 since
m+n—1—7>m+n—1—(n—1) =m. Therefore, we conclude o ,—1 (T +5;C) = 0.
O

By Example 3.1 and Theorem 3.1, we have the following Theorem 3.2.

Theorem 3.2 Let T be (m,C)-symmetry and Q be n-nilpotent. If (T, Q) is C-doubly
commuting, then T + @Q is (m + 2n — 2, C)-symmelry.

Theorem 3.3 Let T be (m,C)-symmetry. Then
(1) T™ is (m, C)-symmetry for any n € N.

(2) If T is invertible, then T~ is (m, C)-symmetry.
Proof. (1) Since a,,(T;C') = 0 and

((L" — bn)m = (a — b)m(a”—l 4 a™2p 4t b2 + bn_1>m
(a — b)m(goam(n—l) + glam(n—l)—lb Lt €m(n71)bm(n_1))
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where §; are coefficients (i = 0,...,m(n — 1)), it follows that
m(n—1) . 4
(T C) = Y T D7, (T;C) - TV = 0.
§=0

Hence the operator T" is (m, C')-symmetry.
(2) Suppose that T is invertible and (m, C)-symmetry. Since «,,(T;C) = 0, we have

0

or e (am(T; C)> T
cT e ( i(—l)ﬂ' <",L> CTm IO T ) 7=
i=0 J

Xm;(—l)j (7;‘) Ty - (7).

J

=

Therefore, the operator T is (m, C')-symmetry. O

Next we show spectral properties of (m,C')-symmetric operators. It needs the following
result.

Theorem 3.4 (C. Schmoeger, [5]) Let T € B(X) and [ be a polynomial. Then
(1) 0a(f(T)) = f(ou(T)) and (2) 0eap(f(T)) C f(eap(T)).

Theorem 3.5 Let T € B(X) be (m,C)-symmetry.
(1) If z € 04(T) (0,(T)), then Z € 04(T) (0,(T)).
(2) If 2 € Oeap(T), then Z € 0eap(T).

Proof. (1) Let z € 0,(T). Then there exists a sequence {z,} of unit vectors such that
(T — 2)x, — 0 as n — oo. Since

an(T: €)= Y (-1 () €10 = 2w -,
=0
we have
0= lim a,(T;C)x, = lim (CTC — z)"x,.

By Theorem 3.5 for a polynomial f(x) = 2™, we obtain 0 € 0,(CTC — z) and hence
z € 0,(CTC). By Theorem 1.7, it holds z € o,(T). O

Theorem 3.6 If T is (m,C)-symmetry, then ker(T) C C(ker(T™)).

Proof. If x € ker(T), then we obtain

CT"Cz = S (=1)7*! <m> CT™ I CTig =0
Z( ) j

J=1

and T™Cx = 0. Hence we have Cx € ker(T™) and x € C(ker(7T™)). O



4 (m,C)-Isometric Operators on a Banach space

We introduce and show some properties of an (m, C)-isometric operators on a Banach
space.

Definition 4.1 For an operator T' € B(X) and a conjugation C' on X, we define an
operator B (T;C) by

m

Au(T5C) =3 (=1 <77> T

An operator T is said to be (m,C)-isometry if Bm(T;C) = 0.

It hold that
CTC Bu(T;C)T = Bn(T;C) = B (T C).

Hence if T is a (m, C)-isometry, then 7" is a (n, C)-isometry for every n > m. It holds
similar results.

Example 4.1 Let T € B(H) satisfy Z(fl)j (m) CT™CT™ 9 =0 for some conju-
. J
7=0
gation C on a Hilbert space H. We define a conjugalion Mc on H by Mc(S) := CSC
(S € B(H)). Let an operator Ly be Ly(S) :=TS (S € B(H)). Then Lr is an (m, Mc)-
isometric operator on a Banach space B(H).

Theorem 4.1 Let T is (m,C)-isometry. Then

(1) 0 & oa(T).

(2) If z € 04(T), then 7' € 0, (T).

The statement (2) holds for 0,(T") and ey, (7). Therefore, if T' is (m, C)-isometry, then
1) > 1

Proof. (1) Assume that there exists a sequence {x,} of unit vectors such that Tx, — 0
as n — oo. Since it holds

0=3,(T;C) = mi:(—l)j @) CT™C-T™ 7 + (-1)",
j=0

we have lim Iz, = 0. Hence, it’s a contradiction and 0 & o,(T).

n—o0

(2) Let z € 0,(T'). Then there exists a sequence {z,,} of unit vectors such that (T —z)x, —
0. Since it holds

m

(: CTC — 1)z, = <Z(—1)J‘+1 C‘) CTm (T — zmj)> 0 — 0,

J=0
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we have 0 € 0,((zCTC — 1)™). By Theorem 3.5 for a polynomial f(z) = 2™, we obtain
0 € 0,(2CTC —1). By (1), since z # 0, we have 21 € 0,(CTC) and hence, by Theorem
1.7, it holds 27! € 0,(T). O

We have the following results.

Theorem 4.2 Let T be (m,C)-isometry and Q be n-nilpotent. If (T, Q) is C-doubly
commuting, then T + @Q is (m + 2n — 2, C')-isometry.

Theorem 4.3 Let T be (m,C)-isometry. Then
(1) T™ is (m, C)-isometry for any n € N.
(2) If T is invertible, then T~ is (m, C)-isometry.

Please see following references for details.
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