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Schrödinger operators and canonical systems
via spectral theory

by

Injo Hur

Abstract

In this survey article we explore Schrödinger operators and canonical systems via
(inverse) spectral theory. After reviewing some basic materials, we summarize sev‐
eral well‐known results on spectra of Schrödinger operators. Then (inverse) spectral
theory for Schrödinger operators and canonical systems will be investigated.

1 Schrödinger operators and their spectra

Let us start with one‐dimensional (half‐line) Schrödinger operators

S=- \frac{d^{2}}{dx^{2}}+V(x) (1)
on  L^{2}(0, \infty) , where  V are real‐valued locally integrable functions, called potentials. The
corresponding Schrödinger eigenvalue equations (SEEs, in short) are

 -y"(x, z)+V(x)y(x, z)=zy(x, z) , x\in(0, \infty) , (2)

where  z\in \mathbb{C} is a spectral parameter. It is then well known [23, 25] that each operator (1)
with boundary condition(s) at  0 and possibly at  \infty has a unique (essential) self‐adjoint
extension (or equivalently, Weyl‐Titchmarsh  m‐function, which will be discussed later).

More precisely, put a boundary condition at  0,

 y(0)\cos\alpha-y'(0)\sin\alpha=0 (3)

where  \alpha\in[0, \pi ). When no more condition at  \infty is necessary to extend, (1) is called in a
limit point case at  \infty , and otherwise, in a limit circle case at  \infty . It turns out that being
in a limit point case is equivalent to the fact that there exists a solution to the associated
SEE (2) which is not square‐integrable near  \infty . (Or  S is essentially self‐adjoint.) For a
limit circle case, all solutions to (2) are in  L^{2}(0, \infty) .

From now on we assume, for convenience, that  S is in a limit point case at  \infty and
set  \alpha=0 (so Dirichlet boundary condition at  0), unless we mention differently. In the
viewpoint of (inverse) spectral theory, we are interested in all information about spectra
for (1), denoted by  \sigma(S) , such as location, type and weight. Since  V is real‐valued,  S is
(essentially) self‐adjoint, which implies that its spectrum  \sigma is in the real line. Based on
Lebesgue decomposition (or the types of supports measured by Lebesgue measure),  \sigma_{c},
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 \sigma_{s},  \sigma_{ac},  \sigma_{sc} and  \sigma_{p} are continuous, singular, absolutely continuous, singular continuous
and point spectra respectively. Depending on the dimension of range of projection on
each subset, essential and discrete spectra are denoted by  \sigma_{ess} and  \sigma_{d} respectively.

Normally the spectra  \sigma(S) have been investigated by asymptotic behavior of  V near
 \infty , and the followings are well‐known results:

I. Unbounded potentials near  \infty (even in weak sense, i.e.,   V(x_{k_{j}})arrow\infty for some sub‐
sequence  \{x_{k_{j}}\} ). In this case  \sigma(S) has point spectrum only. This happens because its
resolvent  (z-S)^{-1} becomes compact.

II. Bounded potentials.

 \bullet Basic example is the free Schrödinger operator (with Dirichlet boundary condition
at  0) , i.e.,  V\equiv 0 . Then it is well‐known that  \sigma=[0, \infty ) and  \sigma_{s}=\emptyset.

 \bullet It is well‐known that any periodic potential has so‐called band structure, i.e., similar
to tiling its spectrum is the union of closed intervals which may touch but cannot
overlap. This spectrum is purely absolutely continuous (that is,  \sigma_{s}=\emptyset ), since
(to deal with periodic potentials) a new boundary condition at  L (when  L is the
period of  V ) similar to (3) is first introduced, and then observe that the spectrum
continuously depends on the given boundary condition. (Floquet theory!)

 \bullet Almost periodic and limit periodic potentials. Generically, their spectra would be
a Cantor set. Typical example for these is so‐called almost Mathieu operator on
 \ell^{2}(\mathbb{Z})

 S_{\omega}^{\lambda,\alpha}u(n)=u(n+1)+u(n-1)+2\lambda\cos(2\pi(\omega+n\alpha)
)u(n) ,

where  \alpha,  \omega\in \mathbb{T} and  \lambda>0 . (Purely ac when  \lambda<1 , almost surely sc when  \lambda=1 and
almost surely pure point spectrum when  \lambda>1 . Moreover, its spectrum is a Cantor
set for all irrational  \alpha and  \lambda>0 . Ten martini problem!)
All examples for almost periodic potentials had ac spectrum. So Kotani‐Last conjec‐
ture guessed this. Avila, Yuditskii and Volberg, however, disproved this conjecture,
i.e., they found some almost periodic potential which does not have ac spectrum.

III. Decaying potentials, i.e.,  V(x)arrow 0 as  xarrow\infty.

 \bullet [Weyl]   \int_{n}^{n+1}|V(x)|dxarrow 0\Rightarrow\sigma_{ess}=[0, \infty ).

 \bullet [  L^{1} ‐potential] If  V is integrable near  \infty , then  \sigma_{S}\cap(0, \infty)=\emptyset.

 \bullet [  L^{2} ‐potential, Deift & Killip] If  V is square‐integrable,  \sigma_{ac}=[0, \infty ).

 \bullet

  potent\dot{{\imath}}alV(x)=2kg\frac{s\dot{{\imath}}n2kxr]V}{x}
hasapo\dot{{\imath}}sp[Neumann a
 ndW

igue (  x)=O( \frac{1}{1+x,nt})\Rightarrow\sigma_{p}ectrum  \cap(0, \infty atk^{2}. )  \neq\emptyset . Typical Neumann
 \bullet [Naboko] If  |V(x)| \leq\frac{C(x)}{1+x} where   C(x)arrow\infty , then  \sigma_{pp}=\overline{\sigma}_{p}=[0, \infty ).

 \bullet Sparse potentials have  (0, \infty) as purely singular continuous spectrum.
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2 Weyl  m‐functions and Herglotz functions

Let’s talk about so‐called Weyl‐Titchmarsh  m‐fUnctions for Schrödinger operators (1).
Similar to (3) put a boundary condition at  0,

 y(0)\cos\alpha-y'(0)\sin\alpha=0

where  \alpha\in[0, \pi ). For   0<b<\infty , we place another boundary condition at  b,

 y(b)\cos\beta+y'(b)\sin\beta=0 (4)

with another real number  \beta in  [0, \pi ). Note that  \beta is used as a parameter for (4). When
  b=\infty , So‐called Weyl theory says that, if (1) is in a limit point case at  \infty , no more
boundary condition except (3) is needed. However, if (1) is in a limit circle case at  \infty,

that is, every solution of (2) is in  L^{2}(0, \infty) , then it is necessary to have a limit type
boundary condition at  \infty as follows: Put  f(x, z)  :=u_{\alpha}(x, z)+m(z)v_{\alpha}(x, z) , where  u_{\alpha} and
 v_{\alpha} are the solutions to (2) satisfying the initial conditions,   u_{\alpha}(0, z)=v_{\alpha}'(0, z)=\cos\alpha and
 -u_{\alpha}'(0, z)=v_{\alpha}(0, z)=\sin\alpha . Then  m(z) is on the limit circle if and only if

 Narrow\infty 1\dot{{\imath}}mW_{N}(\overline{f}, f)=0 (5)

where  W_{N} is the Wronskian at  N , that is,  W_{N}(f, g)=f(N)g'(N)-f'(N)g(N) and  \overline{f} is
the complex conjugate of  f . Similar to the case when  0<b<\infty,  \beta is made use of as a
parameter for these boundary conditions at  \infty . See [5, 24] for more details.

Then (1) with (3) and possibly either (4) or (5) has a unique  m‐function  m_{\alpha,\beta}^{S} and it
can be expressed by

 m_{0,\beta}^{S}(z)= \frac{\tilde{y}'(0,z)}{\tilde{y}(0,z)} or  m_{\alpha,\beta}^{S}(z)=(\begin{array}{lll}
cos\alpha   s\dot{{\imath}}n   \alpha
-s\dot{{\imath}}n\alpha   cos\alpha   
\end{array}) .  m_{0,\beta}^{S}(z) (6)

where  \tilde{y} is a solution to (2) which is square‐integrable near  \infty when (1) is in a limit point
case at   b=\infty , or which is satisfying either (4) when   0<b<\infty or (5) when (2) is
in a limit circle case at   b=\infty . Here means the action of a  2\cross 2 matrix as a linear

fractional transformation (which will be reviewed soon). For convenience  m_{\alpha,\beta}^{S} are called
Schrödinger  m‐functions. They are Herglotz functions, that is, they map the upper half
plane  \mathbb{C}^{+} holomorphically to itself. See e.g. [14] for all these properties of  m_{\alpha,\beta}^{S}.

Before going further, let us recall the action of linear fractional transformations, based
on [20]. A linear fractional transformation is a map of the form

 z \mapsto\frac{az+b}{cz+d}
with  a,  b,  c,  d\in \mathbb{C} , ad—bc  \neq 1 . This can be expressed very easily via matrix notation by

 A \cdot z=\frac{az+b}{cz+d}, A=(\begin{array}{ll}
a   b
c   d
\end{array}) .

This notation has a natural interpretation: Identify  z\in \mathbb{C}\subset \mathbb{C}\mathbb{P}^{1} with its homogeneous
coordinates  z=[z : 1  ] and apply the matrix  A to the vector  (_{1}^{z} ) whose components are
these homogeneous coordinates. The image vector  A(_{1}^{z} ) then reveals what the homoge‐
neous coordinates of the image of  z under the linear fractional transformation are.
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Even though Schrödinger  m‐functions are Herglotz functions, the converse is not true.
To verify this let us see that, because of the Herglotz representation, not all Herglotz
functions can have the asymptotic behavior which Schrödinger  m‐functions should do.
Indeed, Everitt [6] showed that, when  z\in \mathbb{C}^{+} is large enough,  m_{\alpha,\beta}^{S} satisfy the asymptotic
behavior

 m_{0,\beta}^{S}(z)=i\sqrt{z}+o(1) (7)

for  \alpha=0 , or

 m_{\alpha,\beta}^{S}(z)= \frac{\cos\alpha}{\sin\alpha}+\frac{1}{s\dot{{\imath}}
n^{2}\alpha}\frac{i}{\sqrt{z}}+O(|z|^{-1}) (8)

for  \alpha\in(0, \pi) . See also [1, 9] for more developed versions of the asymptotic behavior of
 m_{\alpha,\beta}^{S} . Given a Herglotz function  F , it can be expressed by

 F(z)=A+ \int_{\mathbb{R}_{\infty}}\frac{1+tz}{t-z}d\rho(t) (9)

where  A is a real number and   d\rho is a finite positive Borel measure on  \mathbb{R}_{\infty} , the one‐point
compactification of the set of all real numbers  \mathbb{R} . (See e.g. (2.1) in [19].) Then (9)
indicates that any Herglotz function with a measure   d\rho having a positive point mass at
 \infty cannot satisfy (7) nor (8), and therefore it is not a Schrödinger  m‐function. However,
for   d\rho to be a measure associated with (1) (or so called spectral measure), a more issue is
on the asymptotic behavior of   d\rho near  \infty . See two sections 17 and 19 of [18] for details.

Now let us see why these  m‐functions are useful in order to investigate the spectra
of Schrödinger operators. First, it turns out that in Borg and Marchenko [2, 15] this
Weyl  m‐function uniquely determines the potential  V and the boundary condition at  0.

Moreover, this  m‐function characterizes its spectrum of  S as follows: let  \Omega=\{t\in \mathbb{R} :

  \lim_{\epsilon\downarrow 0}{\rm Im} m_{\alpha,\beta}^{S}(x+i\epsilon) exists} (recall that  |\mathbb{R}\backslash \Omega|=0 , i.e.,  \Omega is Lebesgue measure zero).

 \bullet  \Sigma=\{t\in\Omega : 0<{\rm Im} m_{\alpha,\beta}^{S}(x)\leq\infty\}
 \bullet  \Sigma_{ac}=\{t\in\Omega : 0<{\rm Im} m_{\alpha,\beta}^{S}(x)<\infty\}

 \bullet\Sigma_{s}=\{t\in\Omega:{\rm Im} m_{\alpha,\beta}^{S}(x)=\infty\}
 \bullet  d \rho(x)=\lim_{\epsilon\downarrow 0}\frac{1}{\pi}{\rm Im} m_{\alpha,\beta}^{S}
(x+i\epsilon)dt in  weak-* sense

 \bullet   \rho(\{x\})=\lim_{\epsilon\downarrow 0}\in{\rm Im} m_{\alpha,\beta}^{S}(x+
i\epsilon)

where  \Sigma_{(\cdot)} presents almost the support of the related spectral measure  \rho by Lebesgue
decomposition (i.e., absolute and singular parts of this measure) and this  m recovers  \rho

in weak sense. All this means that these  m‐functions have the full information for the

spectra of (1).

3 Canonical systems and de Branges theory

In the previous subsection we saw that not every Herglotz function is an  m‐fUnction
of a Schrödinger operator. To see a general connection between Herglotz functions and
differential equations let us consider more generally a half‐line canonical system,

 Ju'(x, z)=zH(x)u(x, z) , x\in(0, \infty) (10)
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where  H is a positive semidefinite  2\cross 2 matrix whose entries are real‐valued, locally
integrable functions and  J=(\begin{array}{ll}
0   -1
1   0
\end{array}). A canonical system (10) is called trace‐normed if
Tr  H(x)=1 for almost all  x in  (0, \infty) . For (10) we always place a boundary condition
at  0,

 u_{1}(0, z)=0 (11)

where  u_{1} is the first component of  u=(\begin{array}{l}
U1
u_{2}
\end{array}). Similar to (6), its  m‐function,  m_{H} , can be
expressed by

 m_{H}(z)= \frac{\tilde{u}_{2}(0)}{\tilde{u}_{1}(0)}
where ũ  =  (\begin{array}{l}
\overline{u}_{1}
\overline{u}_{2}
\end{array}) is a solution to (10) satisfying

  \int_{0}^{\infty} ũ
 *

(x)H(x)ũ(x)dx  <\infty . (12)

Here
 *

means the Hermitian adjoint. Such a solution satisfying (12) is called  H ‐integrable.
See [26, 27] for all these properties of (10).

One of the difficulties with canonical systems is that we may not define an operator
related to this system. Especially, when  H is not invertible, we cannot obtain an operator,
but a relation. However, it is well‐known that we are able to apply (self‐adjoint) spectral
theory on the relation from (10) See [10] for more details.

Recall that there were three cases when defining Schrödinger  m‐fUnctions and in each
case we needed a special solution to formulate the corresponding  m‐function. For (10)
an  H‐integrable solution, however, is only needed, since (10) is half‐line and a half‐line
trace‐normed canonical system is always in a limit point case at  \infty . In other words,
there is only one  H‐integrable solution up to a multiplicative constant. See the original
argument by [3] for more details.

More importantly De Branges [4] and Winkler [26] showed the one‐to‐one correspon‐
dence between Herglotz functions and canonical systems, i.e., for a given Herglotz func‐
tion, there exists a unique half‐line trace‐normed canonical system with (11), such that
its  m‐function  m_{H} is the given Herglotz function. This one‐to‐one correspondence is es‐
sential in order to cope with canonical systems rather than Herglotz functions or their
 m‐fUnctions.

4 Inverse spectral theory for Schrödinger operators
and canonical systems

In spectral theory of operators, we would like to inspect the spectra of given operators.
Reversely, for a given subset of the real line or more generally a given spectral measure
(which looks like  \rho in the previous section), we would want to characterize the operators
which have the given set as their spectra. Now let’s summarize these inverse spectral
theories on Schrödinger operators and canonical systems.

 \bullet Not all Herglotz functions are Schrödinger  m‐fUnctions, which we saw due to the
asymptotic behavior near  \infty.

 \bullet There is 1‐1 correspondence between (trace‐normed) canonical systems and Herglotz
functions.
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 \bullet There are several complete descriptions for Schrödinger  m‐functions (see [7, 8, 13,
16, 17, 18, 21] for more details), but they are difficult to apply.

 \bullet There is 1‐1 correspondence between Jacobi operators (which are considered as gen‐
eralization of discrete version of Schrödinger operators) in [22] and spectral measures
having infinite but compact support.

 \bullet For the discrete Schrödinger operators, there is no general inverse spectral theory.

Based on these facts, we may ask ourselves why we have difficult inverse spectral theory
of Schrödinger operators rather than discrete ones. To see this reason we would like to
present two recent results in [11, 12].

Theorem 4.1 (Theorem 3.1 in [11]) The space of Schrödinger  m ‐functions with some
fixed boundary condition  \alpha at  \theta is dense in the space of all Herglotz functions.

This theorem is actually stronger than it is, in the sense that the potentials  V can be cho‐
sen from smooth functions. Also this asserts that we have enough Schrödinger  m‐fUnctions
or Schrödinger operators compared to all Herglotz functions or canonical systems, respec‐
tively. Unlike this continuous setting, for discrete one we do not have the density.

Theorem 4.2 (Theorem 4.2 in [12]) There is a Jacobi operator whose  m ‐function can‐
not be approximated by the  m ‐functions for discrete Schrödinger operators in the sense of
the local uniform convergence.

Even though we have very nice inverse spectral theory for Jacobi operators, due to the
rarity of discrete Schrödinger operators compared to Jacobi ones, it is extremely difficult
to have a general inverse spectral theory for discrete ones.

To show these two theorems we characterize the canonical systems corresponding to
Schrödinger operators and discrete Schrödinger operators respectively (which are Propo‐
sition 4.1 in [11] and Theorem 3.2 in [12] respectively). Most importantly these charac‐
terizations are very easy to apply. Indeed, by looking at several conditions we can easily
check if the given canonical systems are related to (discrete) Schrödinger operators. With
the convergence from de Branges on canonical systems we are able to show the density or
no‐density of the continuous or discrete Schrödinger operators. Please see [11, 12] for all
details.
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