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1. INTRODUCTION

This report is based on [8].

Let B(\mathcal{H}) be the space of all bounded linear operators on a Hilbert space  H , and  I

stands for the identity operator on  H . An operator  A in  B(\mathcal{H}) is said to be positive (in
symbol:  A\geq 0 ) if {Ax,  x\rangle\geq 0 for all  x\in H . In particular,  A>0 means that  A is positive
and invertible. For selfadjoint operators  A and  B , the order relation  A\geq B means that
 A-B is positive.

The Cauchy‐Schwarz inequality is one of the most useful and fundamental inequalities
in functional analysis: For all vectors  x and  y in a Hilbert space  H

(1.1)  |\langle x, y\}|^{2}\leq\{x, x\rangle\langle y, y\}.
We want to study a non‐commutative version of the Cauchy‐Schwarz inequality (1.1).
Since the product  AB of positive operators  A and  B is not always positive, we need to
deform the Cauchy‐Schwarz inequality (1.1) to be convenient. For example, the Cauchy‐
Schwarz inequality is transformed as follows: Dividing both sides in (1.1) by  \langle y,  y\rangle(\neq 0)

(1.2)  \overline{\langle x,y\}}\langle y, y\}^{-1}\langle x, y\rangle\leq\langle x, 
x\rangle
and taking square root of both sides in (1.1)

(1.3)  |\{x, y\rangle|\leq\sqrt{\langle x,x\rangle\langle y,y\}}.
Firstly, we consider the case of (1.2): Regarding a sesquilinear map  B(X, Y)=Y^{*}X
for  X,  Y\in B(\mathcal{H}) as an operator‐valued inner product, several operator versions for the
Schwarz inequality are discussed by many researchers. For example, if  X,  Y\in B(\mathcal{H}) , then
the Schwarz inequality for operators

(1.4)  X^{*}Y(Y^{*}Y)^{-1}Y^{*}X\leq X^{*}X
holds. Indeed, since  Y(Y^{*}Y+\varepsilon I)^{-1}Y^{*}\leq I for all  \varepsilon>0 and  Y(Y^{*}Y+\varepsilon I)^{-1}Y^{*} is increasing
for  \varepsilon\downarrow 0 , there exists the strong operator limit of  Y(Y^{*}Y+\varepsilon I)^{-1}Y^{*} as  \varepsilonarrow 0 and we
define

 X^{*}Y(Y^{*}Y)^{-1}Y^{*}X=s_{\varepsilonarrow 0}-1\dot{{\imath}}mX^{*}Y(Y^{*}Y+
\varepsilon I)^{-1}Y^{*}X
and write  X^{*}Y(Y^{*}Y)^{-1}Y^{*}X\in B(\mathcal{H}) . This formulation for matrices is firstly given by
Marshall and Olkin in [10]. Let  T be a positive operator and  X,  Y any two operators in
 B(\mathcal{H}) . Replacing  X and  Y in (1.4) by  \tau^{1/2}x and  \tau^{1/2}Y , respectively, we obtain
 X^{*}TY(Y^{*}TY)^{-1}Y^{*}TX\in B(\mathcal{H}) and

(1.5)  X^{*}TY(Y^{*}TY)^{-1}Y^{*}TX\leq X^{*}TX.

140



141

In [3], Bhatia and Davis showed some new operator versions of the Schwarz inequality
for a positive linear map, which is a generalization of (1.5): A map  \Phi on  B(\mathcal{H}) is called
2‐positive if

 (\begin{array}{ll}
A   B
C   D
\end{array})\geq 0 implies  (\begin{array}{ll}
\Phi(A)   \Phi(B)
\Phi(C)   \Phi(D)
\end{array})  \geq 0.

It is known that if  A is positive,  X is positive invertible and  B is any operators in  B(\mathcal{H}) ,
then

 (\begin{array}{ll}
A   B
B^{*}   X
\end{array})\geq 0 \Leftrightarrow A\geq BX^{-1}B^{*}.
From this it follows that if  T is positive and  \Phi is a 2‐positive linear map on  B(\mathcal{H}) , then

(1.6)  \Phi(X^{*}TY)\Phi(Y^{*}TY)^{-1}\Phi(Y^{*}TX)\leq\Phi(X^{*}TX)
for every  X,  Y\in B(\mathcal{H}) .

In the framework of an operator‐valued inner product, the formulation of the Schwarz
operator inequality is very important, but the left‐hand sides of the Schwarz inequalities
(1.4) and (1.6) for operators are expressed as the strong‐operator limits unless  Y^{*}Y and
 \Phi(Y^{*}TY) are invertible. This fact is a cause of difficulty in application. Thus, we consider
the case of (1.3). For this, we recall the geometric operator mean, also see [2, 11]. Let  A

and  B be two positive operators in  B(\mathcal{H}) . The geometric operator mean  A\# B of  A and
 B is defined by

 A\# B=A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{2}}
A^{\frac{1}{2}}
if  A is invertible. The geometric operator mean has the monotonicity:

 0\leq A\leq C and  0\leq B\leq D implies  A\# B\leq C\# D

and the subadditivity:

 A\# B+C\# D\leq(A+C)\#(B+D) .

By monotonicity, we can uniquely extend the definition of  A\# B for all positive oper‐
ators  A and  B by setting

 A \# B=s-\lim_{\varepsilonarrow 0}(A+\varepsilon I)\#(B+\varepsilon I) .

In this case, the geometric operator mean  A\# B for positive operators  A and  B always
exists in  B(\mathcal{H}) and it has all the desirable properties as geometric mean such as mono‐
tonicity, continuity from above, transformer inequality, subadditivity and self‐duality so
on.

J.I. Fujii in [5] studied another version of the Schwarz operator inequality in terms of
the geometric operator mean, which is a main tool of our research:

Theorem A. Let  \Phi be a 2‐positive map on  B(\mathcal{H}) . Then

(1.7)  |\Phi(Y^{*}X)|\leq\Phi(X^{*}X)\# U^{*}\Phi(Y^{*}Y)U

for every  X,  Y\in B(\mathcal{H}) , where  U is a partial isometry in the polar decomposition of
 \Phi(Y^{*}X)=U|\Phi(Y^{*}X)|.

In this paper, by virtue of the Cauchy‐Schwarz operator inequality due to J.I. Fujii,
we show weighted mixed Schwarz operator inequalities in terms of the geometric opera‐
tor mean. As applications, we show the covariance‐variance operator inequality via the
geometric operator mean which differs from Bhatia‐Davis’s one. By our formulation, we
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show a Robertson type inequality associated to a unital completely positive linear maps
on  B(\mathcal{H}) .

2. WEIGHTED MIXED SCHWARZ OPERATOR INEQUALITIES

First of all, we discuss weighted mixed Schwarz operator inequalities in terms of the
geometric operator mean.

For  T\in B(\mathcal{H}),  T=W|T| is the polar decomposition of  T where  W is a partial isometry
and  |T|=(T^{*}T)^{1/2} with the kernel condition  ker(W)=ker(|T|) . Note that  WW^{*} is the

projection onto the range of  |T^{*}| , and  W^{*}W is the projection onto the range of  |T| . Then
it follows from [9] that

(2.1)  W|T|^{q}W^{*}=|T^{*}|^{q} for any  q>0.

Furuta in [9] showed the following weighted mixed Schwarz inequalities:

Theorem B (Weighted mixed Schwarz inequalities). For any operator  T in  B(\mathcal{H}) ,

 |\langle Tx, y\rangle|^{2}\leq\langle|T|^{2\alpha}x, x\}\langle|T^{*}|^{2\beta}
y, y\rangle

holds for any  x,  y\in H and for any real number  \alpha,  \beta with  \alpha+\beta=1 . Moreover, for
 1<\alpha<1 , the equality holds if and only if  |T|^{2\alpha}x and  T^{*}y are linearly dependent if and
only if Tx and  |T^{*}|^{2\beta}y are linearly dependent. For  \alpha=1 , the equality holds if and only if
Tx and  y are linearly dependent. For  \alpha=0 , the equality holds if and only if  x and  T^{*}y
are linearly dependent.

By Theorem A, we have the following weighted mixed Schwarz operator inequality,
which is an operator version of Theorem B:

Theorem 2.1 (Weighted mixed Schwarz operator inequality). Let  \Phi be a 2‐positive map
on  B(\mathcal{H}) and  T an operator in  B(\mathcal{H}) . If  X,  Y\in B(\mathcal{H}) , then

(2.2)  |\Phi(Y^{*}TX)|\leq\Phi(X^{*}|T|^{2\alpha}X)\# U^{*}\Phi(Y^{*}|T^{*}|^{2\beta}
Y)U

for any  \alpha,  \beta\in[0,1] with  \alpha+\beta=1 , where  \Phi(Y^{*}TX)=U|\Phi(Y^{*}TX)| is the polar
decomposition of  \Phi(Y^{*}TX) . In particular, in the case of  \alpha=0,1

 |\Phi(Y^{*}TX)|\leq\Phi(X^{*}W^{*}WX)\# U^{*}\Phi(Y^{*}|T^{*}|^{2}Y)U

and

 |\Phi(Y^{*}TX)|\leq\Phi(X^{*}|T|^{2}X)\# U^{*}\Phi(Y^{*}WW^{*}Y)U,

where  T=W|T| is the polar decomposition of  T.

Proof. We only prove the case of  0<\alpha<1 . It follows that

 |\Phi(Y^{*}TX)|=|\Phi(Y^{*}W|T|X)|=|\Phi(Y^{*}W|T|^{\beta}|T|^{\alpha}X)| by  \alpha+\beta=1

 \leq\Phi(X^{*}|T|^{2\alpha}X)\# U^{*}\Phi(Y^{*}W|T|^{2\beta}W^{*}Y)U by Theorem A

 =\Phi(X^{*}|T|^{2\alpha}X)\# U^{*}\Phi(Y^{*}|T^{*}|^{2\beta}Y)U by (2.1)

and so we have the desired inequality (2.2). 口
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Next, we consider the equality condition in (1.7) of Theorem A. To show it, we need
some preliminaries. First of all, we recall the Moore‐Penrose inverse: For a given operator
 A\in B(\mathcal{H}) having a closed range, it is well known that the equations  AGA=A,  GAG=G,
 (AG)^{*}=AG and  (GA)^{*}=GA have a unique common solution for  G\in B(\mathcal{H}) , denoted
by   G=A\dagger and called the Moore‐Penrose inverse of  A . In [6], J.I.Fujii showed a relation
between the geometric operator mean and the Moore‐Penrose inverse:

(2.3)  A\# B\leq A^{1/2}((A^{1/2})^{\dagger}B(A^{1/2})^{\dagger})^{1/2}A^{1/2}.
We show that the equality in (2.3) holds under a kernel condition:

Lemma 2.2. Let  A and  B be positive operators in  B(\mathcal{H}) . If  A has a closed range and
 kerA\subset kerB , then

 A\# B=A^{1/2}((A^{1/2})^{\dagger}B(A^{1/2})^{\dagger})^{1/2}A^{1/2}.
Lemma 2.3. Let  A and  B be positive operators in  B(\mathcal{H}) . If  A has a closed range and
 kerA\subset ker(BA\dagger B) , then  A\# BA\dagger B=R(A)BR(A) , where  R(A) is the range projection
of A. In addition, if  kerA\subset kerB , then  A\# BA\dagger_{B}=B.

Lemma 2.4. Let  A,  B and  C be positive operators in  B(\mathcal{H}) . If  A has a closed range and
 kerA\subset kerB\cap kerC , then  A\# B=A\# C implies  B=C.

We show the following equality condition in (1.7) of Theorem A:

Theorem 2.5. Let  \Phi be a 2‐positive map on  B(\mathcal{H}) . For every  X,  Y\in B(\mathcal{H}) , let  U be a
partial isometry in the polar decomposition of  \Phi(Y^{*}X)=U|\Phi(Y^{*}X)| . If  \Phi(X^{*}X) has a
closed range, then the equality in (1.7) of Theorem  A holds if and only if  U^{*}\Phi(Y^{*}Y)U=
 |\Phi(Y^{*}X)|\Phi(X^{*}X)^{\dagger}|\Phi(Y^{*}X)|.

We note that in the case that  \Phi is the identity map in Theorem 2.5, we see that if
 \Phi(X^{*}X) has a closed range, then the equality condition  U^{*}\Phi(Y^{*}Y)U=
 |\Phi(Y^{*}X)|\Phi(X^{*}X)^{\dagger}|\Phi(Y^{*}X)| holds if and only if there exists  W\in B(\mathcal{H}) such that  YU=

 XW , that is,  \{YU, X\} is linearly dependent.

As an application, we have the following equality condition of Theorem 2.1:

Theorem 2.6. Let  \Phi be a 2‐positive map on  B(\mathcal{H}) and  T an operator in  B(\mathcal{H}) . For
every  X,  Y\in B(\mathcal{H}) , let  U be a partial isometry in the polar decomposition of  \Phi(Y^{*}TX)=
 U|\Phi(Y^{*}TX)| and  \alpha,  \beta\in[0,1] with  \alpha+\beta=1 . If  \Phi(X^{*}|T|^{2\alpha}X) has a closed range,
then the equality in (2.2) of Theorem 2.1 holds if and only if  U^{*}\Phi(Y^{*}|T^{*}|^{2\beta}Y)U=
 |\Phi(Y^{*}TX)|\Phi(X^{*}|T|^{2\alpha}X)^{\dagger}|\Phi(Y^{*}TX)|.

3. VARIANCE‐COVARIANCE 1NEQUALITY

We recall the notion of the covariance and the variance of operators defined by Fujii,
Furuta, Nakamoto and Takahasi [7]. In 1954, the noncommutative probability theory is
founded by H. Umegaki as an application of the theory of von Neumann algebra in [12].
An operator  A\in B(\mathcal{H}) plays the role of a random variable, that is, for every unit vector
 x\in \mathcal{H} , the functional {Ax,  x } on the operatyor algebra may be thought as an expectation
at a state  x (with  \Vert x\Vert=1 ). The covariance of operators  A and  B at a state  x is introduced
by

(3.1)  cov_{x}(A, B)=\langle A^{*}Bx,  x\rangle-\langle A^{*}x,   x\rangle  \langle Bx ,  x\rangle,
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and the variance of  A at a state  x by

 var_{x}(A)=\langle A^{*}Ax, x\rangle-|\langle Ax, x\rangle|^{2}.

The following variance‐covariance inequality is an application of the Cauchy‐Schwarz in‐
equality:

(3.2)  |cov_{x}(A, B)|\leq\sqrt{var_{x}(A)var_{x}(B)}.

In [3], Bhatia and Davis studied a noncommutative analogue of variance and covariance
in statistics, which is a generalization of the covariance (3.1) at a state: Let  \Phi be a
unital completely positive linear map on  B(\mathcal{H}) . The convariance  cov(A, B) between two
operators  A and  B is defined by

 cov(A, B)=\Phi(A^{*}B)-\Phi(A)^{*}\Phi(B) .

The variance of  A is defined by

var  (A)=cov(A, A)=\Phi(A^{*}A)-\Phi(A)^{*}\Phi(A) .

Since  \Phi is completely positive, then the variance of  A is positive, i.e.,  var(A)\geq 0 . Bha‐
tia and Davis showed the following counterpart of the variance‐covariance inequality in
the context of noncommutative probability, which is a generalization of the variance‐
covariance inequality (3.2): For all  A,  B\in B(\mathcal{H}) ,

 cov(A, B)var(B)^{-1}cov(A, B)^{*}\in B(\mathcal{H})
and

 cov(A, B)var(B)^{-1}cov(A, B)^{*}\leq var(A) .

By virtue of the geometric operator mean, we show the following variance‐covariance
inequality:

Theorem 3.1. Let  \Phi be a unital completely positive linear map on  B(\mathcal{H}) and  A,  B two
operators in  B(\mathcal{H}) . Then

(3.3)  |cov(A, B)|\leq U^{*}var(A)U\#var(B) ,

where  cov(A, B)=U|cov(A, B)| is the polar decomposition of  cov(A, B) .

Proof. It follows from [3, Theorem 1] that the  2\cross 2 operator matrix

 (\begin{array}{ll}
var(A)   cov(A,B)
cov(A,B)^{*}   var(B)
\end{array})
is positive. Then we have

 0\leq(\begin{array}{ll}
U^{*}   0
0   1
\end{array})  (\begin{array}{ll}
var(A)   cov(A,B)
cov(A,B)^{*}   var(B)
\end{array})  (\begin{array}{ll}
U   0
0   1
\end{array})
 = (\begin{array}{ll}
U^{*}var(A)U   U^{*}U|cov(A,B)|
|cov(A,B)|U^{*}U   
\end{array})=(\begin{array}{ll}
U^{*}var(A)U   |cov(A,B)|
|cov(A,B)|   var(B)
\end{array}) .

var(B)

Since  A \# B=\max\{X\geq 0:(\begin{array}{ll}
A   X
X   B
\end{array}) \geq 0\} , we have the desired inequality (3.3).  \square 
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4. COMUTATION RELATION AND COVARIANCE

In this section, we discuss the near relation of the variance‐covariance inequality with
the Heisenberg uncertainty principle in quantum physics. In [4], Enomoto pointed out that
the variance‐covariance inequality (3.2) is exactly the generalized Schrödinger inequality:
Let  A and  B be (not necessarily bounded) selfadjoint operators on a Hilbert space  \mathcal{H} . Let
 D(AB) and  D(BA) be the domain of  AB and  BA , respectively. Let  \{A, B\} and  [A, B]
be the Jordan product  AB+BA and the commutator AB—BA, respectively. Then

 | cov_{x}(A, B)|^{2}=(\frac{1}{2}\langle\{A, B\}x, x\rangle-\langle Ax, 
x\rangle\langle Bx, x\rangle)^{2}+(\frac{1}{2i}\{[A, B]x, x\})^{2}
for every unit vector  x\in D(AB)\cap D(BA) . In particular, the following Robertson type
inequality holds:

  \sqrt{var_{x}(A)var_{x}(B)}\geq\frac{1}{2}|\langle[A, B]x, x\}|
and the following Schrödinger type inequality holds:

  var_{x}(A)var_{x}(B)\geq|\frac{1}{2}\{\{A, B\}x, x\rangle-\langle Ax, x\rangle
\langle Bx, x\rangle|^{2}+\frac{1}{4}|\langle[A, B]x, x\rangle|^{2}
We show a Robertson type inequality associated to a unital completely positive linear

map on  B(\mathcal{H}) :

Theorem 4.1 (Robertson type inequality). Let  \Phi be a unital completely positive linear
map on  B(\mathcal{H}) . Then for every selfadjoint operators  A,  B\in B(\mathcal{H}) , there exists an isometry
 V\in B(\mathcal{H}) such that

 U^{*} var(A)U\#var(B)\geq V^{*}(\frac{\Phi([A,B])-[\Phi(A),\Phi(B)]}{2i})_{+}V,
where  cov(A, B)=U|cov(A, B)| is the polar decomposition of  cov(A, B) and  X_{+} is the
positive part of a selfadjoint operator  X\in B(\mathcal{H}) .

Proof. It follows from [1, Proposition 2.1] that there exists an isometry  V\in B(\mathcal{H}) such
that  {\rm Re}(-icov(A, B))_{+}\leq V|-icov(A, B)|V^{*} and so

 V^{*}{\rm Re}(cov(A, B))_{+}V\leq|cov(A, B)|.

Since  {\rm Im}( cov(A, B))=\frac{1}{2i}(\Phi(AB-BA)-(\Phi(A)\Phi(B)-\Phi(B)\Phi(A))) , we have

 |cov(A, B)|=|-icov(A, B)|
 \geq V^{*}{\rm Re}(-icov(A, B))_{+}V

 =V^{*}{\rm Im}(cov(A, B))_{+}V

 =V^{*}( \frac{\Phi([A,B])-[\Phi(A),\Phi(B)]}{2i})_{+}V.
Hence we have the desired inequality by Theorem 3.1.  \square 

Under the restricted condition, we have a Schrödinger type inequality associated to a
unital completely positive linear map on  B(\mathcal{H}) :
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Corollary 4.2 (Schrödinger type inequality). Let  \Phi be a unital completely positive linear
map on  B(\mathcal{H}) and  A,  B\in B(\mathcal{H}) two selfadjoint operators. If  \Phi(AB)-\Phi(A)\Phi(B) is
normal, then

 U^{*}var(A)U\#var(B)

  \geq(\frac{1}{4}(\Phi(\{A, B\})-\{\Phi(A), \Phi(B)\})^{2}+(\frac{\Phi([A,B])-[
\Phi(A),\Phi(B)]}{2i})^{2})^{\frac{1}{2}}
  \geq\frac{1}{2}|\Phi([A, B])-[\Phi(A), \Phi(B)]|,

where  cov(A, B)=U|cov(A, B)| is the polar decomposition of  cov(A, B) .

Proof. For every selfadjoint  A,  B\in B(\mathcal{H}) , we have

 |cov(A, B)|=|{\rm Re}(cov(A, B))+i{\rm Im}(cov(A, B))|

 =( \frac{1}{4}(\Phi(\{A, B\})-\{\Phi(A), \Phi(B)\})^{2}+(\frac{\Phi([A,B])-
[\Phi(A),\Phi(B)]}{2i})^{2}+\frac{1}{2}(X^{*}X-XX^{*}))^{\frac{1}{2}}
where  X=\Phi(AB)-\Phi(A)\Phi(B) . Since  X is normal, it follows that  X^{*}X=XX^{*} and so
we have the desired inequality by Theorem 3.1. 口
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