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Abstract

After Professor Ihara defined the Ihara zeta function in 1966, the Ihara zeta func‐
tion was studied in various fields: number theory, algebra, random walk, combinatorics,
graph theory, quantum graph, quantum walk, Ising model etc. The Ihara zeta func‐
tion has four expressions: the Euler product, the exponential generating function, the
determinant expression of Hashimoto type, the determinant expression of Ihara type.
The determinant expression of Ihara type for the Ihara zeta function discovered by
Professor Ihara is a marked one of it, and involves extremely many informations.

In this talk, we state determinant expressions of Ihara type for the Ihara zeta
function of a graph and its variations, and then consider the relation between the
Ihara zeta function and quantum walk from viewpoint of their determinant expressions
of Ihara type. Recently, it turned out that discrete‐time quantum walks on graphs
are efficient for the graph isomorphism problem, and various approach are done in the
graph isomorphism problem. Emms et al decided spectra for the Grover transition
matrix of the Grover walk on a graph, its positive support and the positive support of
its square, and so showed that the positive support of the third power of the Grover
transition matrix outperforms the graph spectra methods in distinguishing strongly
regular graphs. Furthermore, it is found out that the Grover transition matrix is closely
related to the edge matrix appeared in the determinant expression of Hashimoto type
for the Ihara zeta function of a graph. We determine the characteristic polynomials of
them by using the determinant expressions of Ihara type for the Ihara zeta function and
the second weighted zeta function of a graph, and directly present spectra for them.
Furthermore, we state the structure of the positive support of the n th power of the
Grover transition matrix.

1 Definition of Ihara zeta function

1.1 History

1. 1966, Ihara [22]: On discrete subgroups of the two by two projective linear group over
 p ‐adic fields, J. Math. Soc. Japan 18 (1966), 219‐235.

Professor Ihara defined a  p‐adic Selberg zeta function (the Ihara‐Selberg zeta function
or the Ihara zeta function) to count the conjugacy classes of some discrete subgroup
of  PGL(2, F) over a  p‐adic field  F , and gave its determinant expression of Ihara type
(Ihara Theorem).

2.   198\theta, Serre [35]: Serre pointed out that the Ihara zeta function is a zeta function of
some regular graph.

3. 1986, Sunada [38]: Sunada gave the definition of the Ihara zeta function by using
terminologies of graph theory and the graph theoretic proof of Ihara Theorem.
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4.   199\theta, Hashimoto [18]: Hashimoto gave the determinant expression of Hashomoto type
for the Ihara zeta function of a general graph by using the edge matrix.

5. 1992, Bass [4]: Bass gave the determinant expression of Ihara type for the Ihara zeta
function of a general graph by using the adjacency matrix.

1.2 The original definition of the Ihara zeta function

Professor Ihara defined the Ihara zeta function in general situation([22]). Also, Professor
Ihara studied Ihara zeta function in papers [20,21].

Let  G be an abstract group. Then, for  x\in G , the length  \ell(x)\in \mathbb{N} of  x is defined as
follows:

 \bullet  (G, \ell, I) : for  \ell=0,1,2,

 G_{\ell}\neq\phi,  U=G_{0}<G(subgroup)

and

 G_{\ell}^{-1}=G_{\ell}, UG_{\ell}U=G_{\ell}, |U\backslash G_{\ell}|<\infty(\ell
=0,1,2, \ldots) ,

 \bullet(G, \ell, II) :

 |U\backslash G_{1}|=q+1

and

1.  G_{1}^{2}=G_{2}+(q+1)U,

2.  G_{1}G_{\ell}=G_{\ell+2}+qG_{\ell-1}(\ell\geq 2) .

Next, let  \Gamma be a subgroup of  G such that

1.  (\Gamma I)\Gamma is torsion‐free and  \Gamma\cap x^{-1}Ux=\{1\},  \forall x\in G,

2. (  \Gamma II)  |U\backslash G/\Gamma|<\infty.

Then note that  \Gamma iS isomorphic to a free group with finite number of generators.
Example
Let  G=PGL(2, k)=GL(2, k)/k^{*} , where  k is a locally compact field under a discrete

valuation. Furthermore, let  \mathcal{O}(\mathcal{P}) be a ring of integers (prime ideal) of  k . For  x\in G , we
can choose a matrix  (a_{ij})_{1\leq i,j\leq 2} such that

 a_{ij}\in \mathcal{O} and   \sum_{i,j=1}^{2}a_{ij}\mathcal{O}=\mathcal{O}.
Set

 \det(a_{ij})\mathcal{O}=\mathcal{P}^{\ell(x)}.
Then  G and  \ell satisfy  (G, \ell, I,II) by  q=N\mathcal{P} and  U=PGL(2, \mathcal{O})=GL(2, \mathcal{O})/\mathcal{O}^{*}

For any conjugacy class  \{\gamma\}\neq\{1\} of  \Gamma , let

  \deg\{\gamma\}=\min_{x\in G}\ell(x^{-1}\gamma x)>0.

An element  \gamma\neq 1\in\Gamma or a conjugacy class  \{\gamma\}\neq\{1\} is primitive if

 C_{\Gamma}(\gamma)=\langle\gamma\rangle=\{x\in G|x^{-1}\gamma x=\gamma\},

where  C_{\Gamma}(\gamma) is the centralizer of  \gamma in  \Gamma.

Professor Ihara counted the number of primitive conjugacy classes of  \Gamma.
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Definition 1 (Ihara, 1966) The Ihara zeta function is defined as follows:

 Z_{\Gamma}(u)= \prod_{P}(1-u^{\deg P})^{-1},
where  P runs over all primitive conjugacy classes of  \Gamma.

Ihara presented the following result:

  \log Z_{\Gamma}(u)=\sum_{P_{7}n\underline{>}1}\frac{u^{rn\deg P}}{m}=\sum_{7n=
1}^{\infty}\frac{N_{m}}{m}u^{m}, N_{m}=\sum_{\deg P|rn}\deg P.
Professor Ihara considered more general situation([22]).
Let  \rho be a finite dimensional representation of  \Gamma over a field of characteristic  0 . Further‐

more, let
 \chi(\gamma)=Tr\rho(\gamma), \gamma\in\Gamma.

Definition 2 (Ihara, 1966) The Ihara  L‐fUnction is defined as follows:

 \{\begin{array}{l}
\log Z_{\Gamma}(u, \chi)=\sum_{P_{7}n\geq 1}\frac{\chi(P^{m})u^{m\deg P}}
{rr\iota}=\sum_{7n=1}^{\infty}\frac{N_{m\chi}}{m}u^{m}
\log Z_{\Gamma}(0, \chi)=1.
\end{array}
Then note that

 Z_{\Gamma}(u,  \chi)=\prod_{P}\det(I_{d}-\rho(P)u^{\deg P})^{-1}, d=\deg\rho.
Now, we state the determinant expression for the Ihara  L‐fUnction. Let

 G= \sum_{i=1}^{h}Ux_{i}\Gamma(h=|U\backslash G/\Gamma) ,  S_{i_{\dot{j}}}^{(\ell)}=x_{i}^{-1}G_{\ell}x_{j}\cap\Gamma,  S_{ij}=S_{ij}^{(1)}(\ell\geq 0;1\leq i, j\leq h) .

Then it is known that  \rho is extened to a representation of  \mathbb{Z}(\Gamma) :

  \rho(G_{\ell})=A_{\ell}^{\chi}=(\sum_{\gamma\in S_{ij}^{(\ell)}}\rho(\gamma))(
\ell\geq 0)
.

Here, note that
 \deg\rho=\chi(1)h.

The determinant expression for the Ihara  L‐function is given as follows.

Theorem 1 (Ihara, 1966)

 Z_{\Gamma}(u, \chi)=(1-u^{2})^{-g_{\chi}}\det(I_{d}-A_{1}^{\chi}u+qu^{2})^{-1} , (1)

where  g_{\chi}=(q-1)h\chi(1)/2 and  d=\chi(1)h.
In the case of  \rho=1,

 Z_{\Gamma}(u)=(1-u^{2})^{-(q-1)h/2}\det(I_{h}-A_{1}u+qu^{2})^{-1} , (2)

where

 A_{1}=(a_{ij}) :  a_{ij}=|x_{i}^{-1}G_{1}x_{j}\cap\Gamma|(1\leq i, j\leq h) .

The right sides are called the determinant expressions of Ihara type.
In the case that  G=PGL(2, k),  U=PGL(2, \mathcal{O}) and  \Gamma is a torsion‐free discrete subgroup

of  G,  T=G/U is the  (q+1) ‐regular tree and  K=\Gamma\backslash T=\Gamma\backslash G/U is a finite  (q+1) ‐
regular graph. Furthermore,  T is the universal covering of  K and  \Gamma=\pi_{1}(K) . Serre pointed
out that the Ihara zeta function  Z_{\Gamma}(u) is a zeta function of  a(q+1) ‐regular graph  K.

From this consideration, Sunada defined the Ihara zeta function for  PGL(2, k) by using the
terminologies of graph theory. In the next section, we state this definition.
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1.3 The definition of the Ihara zeta function by the terminologies
of graph theory

Let  G=(V(G), E(G)) be a finite (simple) connected graph and  D_{G} the symmetric digraph
corresponding to  G . Then  D_{G} is the digraph obtained from  G by replacing each edge
 uv\in E(G) two directed edges (arcs)  (u, v),  (v, u) . Set  D(G)=\{(u, v), (v, u)| uv \in E(G)\}.
For  e=(u, v)\in D(G),  u=o(e) and  v=t(e) are called the origin and terminus of  e,

respectively. Furthermore, the arc  e^{-1}=(v, u) is the inverse of  e=(u, v) .
A path  P=(e_{1}, \ldots, e_{n}) of length  n in  G is a sequence of  e_{1},  e_{n} such that   e_{i}\in

 D(G),  t(e_{i})=o(e_{i+1})(1\leq i\leq n-1) . Set  |P|=n . Furthermore, set  o(P)=o(e_{1}),  t(P)=
 t(e_{n}) . Then  P is called an  (o(P), t(P)) ‐path. A path  P=(e_{1} , e_{n}) has a backtracking if
 e_{i+1}^{-1}=e_{i} for some  i=1,  n-1 . A path  P=(e_{1}, \ldots, e_{n}) is called a cycle if  o(e_{1})=t(e_{n}) .

Two cycles  C_{1}=  (e_{1} , e_{n}) and  C_{2}= (eí ,  e_{n}' ) is equivalent if eí  =e_{i+k}(i=
 1 , n) for some  k\in N , where the subscripts are considered in  mod n . Let  [C] be the
equivalence class containing  C . Let  B^{r} be the cycle obtained by going  r times around a
cycle  B . Such a cycle is called a power of  B . A cycle  C is reduced if both  C and  C^{2} have
no backtracking. Furthermore, a cycle  C is prime if it is not a power of a strictly smaller
cycle. Note that each equivalence class of prime, reduced cycles of a graph  G corresponds
to a unique primitive conjugacy class of the fundamental group  \pi_{1}(G, v) of  G at a vertex  v

of  G.

Definition 3 (Sunada, 1986) The Ihara zeta function of a graph  G is a function of  u\in \mathbb{C}

with  |u| sufficiently small, defined by

  Z(G, u)=\prod_{[C]}(1-u^{|C|})^{-1},
where  [C] runs over all equivalence classes of prime, reduced cycles of  G ([38,39]).

2 Determinant expression of Ihara type for the Ihara
zeta function by the terminologies of graph theory

2.1 Ihara Theorem

Let  G be a connected graph  n vertices  v_{1},  v_{n} and  m edges. Then the adjacency matrix
 A(G)=(a_{ij})_{1\leq i,j\leq n} of  G is defined as follows

 a_{ij}=\{\begin{array}{l}
1 if v_{i}v_{j}\in E(G) (or (v_{i}, v_{j})\in D(G)),
0 otherwise,
\end{array}
Furthermore, the degree  \deg v=\deg_{G}v=|\{v_{j}|v_{i}v_{j}\in E(G)\}| of a vetex  v of  G is the
number of edges incident to  v . A graph  G is  k ‐regular if  \deg v=k for each vertex  v\in V(G) .
For a integer  r\in N , let  N_{r} be the number of reduced cycles of length  r in  G.

Theorem 2 (Ihara, 1966) Let  G be a connected  (q+1) ‐regular graph with  n vertices and
 m edges. Then the Ihara zeta function  Z(G, u) of  G is given as follows:

 Z(G, u)=(1-u^{2})^{-(7n-n)}\det(I_{n}-A(G)u+qu^{2}I_{n})^{-1} (3)

 = \exp(\sum_{k\geq 1}\frac{N_{k}}{k}u^{k}) . (4)
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The right side of (3) is the graph theoretic version of determinant expression of Ihara
type for the Ihara zeta function. Furthermore, (4) is the exponential generating function for
the Ihara zeta function.

Example
Let  G=K_{3} be the complete graph (or the triangle) with three vertices  v,  w,  z . Set  e=

 (v, w),  f=(w, z) and  g=(z, v) . Then  G is 2‐regular. Furthermore, all equivalence classes
of prime, reduced cycles in  G are  [C],  [C^{-1}] , where  C=(e, f, g) and  C^{-1}=(e^{-1}, g^{-1}, f^{-1}) .
By the definition of the Ihara zeta function, we have

 Z(G, u)^{-1}=(1-u^{|C|})(1-u^{|C^{-1}|})=(1-u^{3})^{2}.
Furthermore we have

 A(G)=  \{\begin{array}{lll}
0   1   1
1   0   1
1   1   0
\end{array}\}
and  m=n=3,  q=1 . By Ihara Theorem, we have

 Z(G, u)^{-1}=(1-u^{2})^{3-3}\det(I_{3}-uA(G)+u^{2}I_{3})

 =  \det  \{\begin{array}{llll}
1+   u^{2}   -u   -u
-u      u^{2}1+   -u
-u      -u   u^{2}1+
\end{array}\}
 = (1+u^{2})^{3}-2u^{3}-3u^{2}(1+u^{2})=(1-u^{3})^{2}.

By

  \exp(\sum_{k\geq 1}\frac{N_{k}}{k}u^{k})=(1-u^{3})^{-2},
we have

  \sum_{k\geq 1}\frac{N_{k}}{k}u^{k}=\log(1-u^{3})^{-2}=2(u^{3}+\frac{u^{6}}{2}+
\frac{u^{9}}{3}+\cdots)=\frac{6}{3}u^{3}+\frac{6}{6}u^{6}+\frac{6}{9}u^{9}+
Thus,

 N_{3}=N_{6}=N_{9}=  =6,  N_{k}=0 (  k\not\equiv 0 mod 3).

Next, we state the properties of the Ihara zeta function of a regular graph  G.

I. rationality.
By Theorem 2, the Ihara zeta function  Z(G, u) is a reciprocal of a polynomial.
II. functional equation([37,40]).
Let

 \Lambda_{G}(u)=(1-u^{2})^{n/2+r-1}(1-q^{2}u^{2})^{n/2}Z(G, u) ,

where  n=|V(G)|,  m=|E(G)| and  r=m-n+1 . Then we have

  \Lambda_{G}(u)=(-1)^{n}\Lambda_{G}(\frac{1}{qu}) .

III. An analogue of the Riemann hypothesis[28,29]).
Let  G be  a(q+1) ‐regular graph. If  s=\sigma+it,  Z(G, q^{-s})=0 and  {\rm Re}(s)\in(0,1) , then

 {\rm Re}(s)= \frac{1}{2}.
It is known that  G satisfies an analogue of the Riemann hypothesis if and only if  G is a
Ramanujan graph.
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Here,  a(q+1) ‐regular graph  G is Ramanujan if  G satisfies the following condition:

 \lambda\neq\pm(q+1)\Rightarrow|\lambda|\leq 2\sqrt{q}

for each eigenvalue  \lambda of  A(G) .

2.2 Determinant expression of Ihara type for the Ihara zeta func‐
tion of a general graph

Let  G be a connected graph with  n vertices and  m edges. Then the degree matrix  D=(d_{uv})
is the  n\cross n diagonal matrix defined as follows:

 d_{uv}=\{\begin{array}{ll}
\deg u   if u=v,
0   otherwise,
\end{array}
Furthermore, two  2m\cross 2m matrices  B=B(G)=((B)_{e,f})_{e,f\in D(G)} and  J_{0}=J_{0}(G)=
 ((J_{0})_{e,f})_{e,f\in D(G)} are given as follows:

(B)  e,f=\{ 1 if  t(e)=o(f) ,  (J_{0})_{e,f}=\{
1 if  f=e^{-1},

 0 otherwise,  0 otherwise.

Then the matrix  B-J_{0} is called the edge matrix of  G.

The graph theoretical versions of determinant expression for the Ihara zeta function are
given as follows([4,18]).

Theorem 3 (Hashimoto; Bass) For a connected graph  G,

 Z_{G}(u)^{-1}=\det(I_{2_{7}n}-u(B-J_{0}))

 = (1-u^{2})^{7n-n} \det(I_{n}-uA(G)+u^{2}(D-I_{n}))=\exp(-\sum_{k\geq 1}
\frac{N_{k}}{k}u^{k}) ,

where  m=|E(G)|,  n=|V(G)| , and  N_{k} is the number of reduced cycles of length  k in  G.

The first determinant expression is called Hasimoto type, and the second one is called
Ihara type.

Example
Let  G be a connected graph with four vertices  v,  w,  x,  y and five edges vw, vx, vy, wx, xy.

Then we have

 A(G)=  \{\begin{array}{llll}
0   1   1   1
1   0   1   0
1   1   0   1
1   0   1   0
\end{array}\} ,  D=  \{\begin{array}{llll}
3   0   0   0
0   2   0   0
0   0   3   0
0   0   0   2
\end{array}\}
Since there are an infinitely many equivalence classes of prime, reduced cycles in  G , we

can not obtain an explicit formula for the Ihara zeta function of  G by using the definition
of the Ihara zeta functiion. By Theorem 3, we have

 Z(G, u)^{-1}=(1-u^{2})^{5-4}\det(I_{4}-uA(G)+u^{2}(D-I_{4})

 =  \det  \{\begin{array}{llll}
1+2u^{2}   -u   -u   -u
-u   u^{2}1+   -u   0
-u   -u   1+2u^{2}   -u
-u   0   -u   u^{2}1+
\end{array}\}
 = (1-u^{2})(1-u)(1+u^{2})(1+u+2u^{2})(1-u^{2}-2u^{3}) .
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Furthermore,

  \sum_{k\geq 1}\frac{N_{k}}{k}u^{k}=4u^{3}+2u^{4}+4u^{6}+4u^{7}+
Thus,

 N_{3}=12, N_{4}=8, N_{5}=0, N_{6}=24, N_{7}=28, 

3 Definition of the second weighted zeta function as a
generalization of the Ihara zeta function

3.1 Definition of the second weighted zeta function

Let  G be connected graph with  n vertices and  m edges. Then an  n\cross n matrix  W(G)=(w_{uv})
is given as follows:

 w_{uv}=\{\begin{array}{ll}
nonzero complex number   if (u, v)\in D(G) ,
0   otherwise.
\end{array}
The matrix  W(G) is the weighted matrix of  G . Set  w(u, v)=w_{uv},  u,  v\in V(G) and
 w(e)=w_{uv},  e=(u, v)\in D(G) .

Furthermore, we define a function  \tilde{w} :  D'G )  \cross D(G)arrow \mathbb{C} as follows:

 \tilde{w}(e, f)=\{\begin{array}{ll}
w(f)   if t(e)=o(f) and f\neq e^{-1},
w(f)-1   if f=e^{-1},
0   otherwise.
\end{array}
Then, for a cycle  C=(e_{1}, e_{2}, \ldots, e_{r}) , let

 w_{C}=\tilde{w}(e_{1}, e_{2})\tilde{w}(e_{2}, e_{3})\cdots\tilde{w}(e_{r-1}, e_
{r})\tilde{w}(e_{r}, e_{1}) .

Definition 4 (Sato, 2007) The second weighted zeta function of a graph  G is defined as
follows:

  Z_{1}(G, w, u)=\prod_{[C]}(1-w_{C}u^{|C|})^{-1},
where  [C] runs over all equivalence classes of prime cycles in  G([33]) .

If  w=1 , i.e.,  w(e)=1 for each  e\in D(G) , then the second weighted zeta function is
equal to the Ihara zeta function:

 Z_{1}(G, w, u)=Z(G, u) .

If a cycle  C has a backtracking, then we have  w_{C}=0.

3.2 Determinant expression of Ihara type for the second weighted
zeta function

The determinant expression of Ihara type for the second weighted zeta function is given as
follows([33]):

Theorem 4 (Sato, 2007) Let  G be connected graph with  n vertices and  m edges, and
 W(G) a weighted matrix of G. Then the reciprocal of the second weighted zeta function of
 G is

 Z_{1}(G, w, u)^{-1}=(1-u^{2})^{m-n}\det(I_{n}-uW(G)+u^{2}(D_{w}-I_{n})) ,
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where the matrix  D_{w}=(d_{uv}) is an  n\cross n diagonal matrix with

 d_{uu}= \sum_{o(e)=u}w(e)
.

Example
Let  G=K_{3} be the complete graph with three vertices  v,  w,  z and

 W(G)=  \{\begin{array}{lll}
0   a   b
c   0   d
p   q   0
\end{array}\}
Since there are an infinitely many equivalence classes of prime cycles in  G , we can not

obtain an explicit formula for the second weighted zeta function of  G by using the definition
of the second weighted zeta functiion. By Theorem 4, we have

 Z_{1}(G, w, u)^{-1}=(1-u^{2})^{3-3}\det(I_{3}-uW(G)+u^{2}(D_{w}-I_{3})

 =  \det  \{\begin{array}{llllllll}
1   +(a+b   -1)u^{2}      -au      -bu   
   -cu      1   +(c+d-1)u^{2}      -du   
   -pu         -qu   1   +(p+q   -1)u^{2}
\end{array}\}
 = 1+(\alpha+\beta+\gamma-bp-ac-dq)u^{2}-(adp+bcq)u^{3}

 + (\alpha\beta+\beta\gamma+\gamma\alpha-bp\beta-ac\gamma-dq\alpha)u^{4}+
\alpha\beta\gamma u^{6},

where  \alpha=a+b-1,  \beta=c+d-1 and  \gamma=p+q-1.
Next, we state one remark.
We present the determinant expression of Hashimoto type for the second weighted zeta

function([33]). Let  G be connected graph with  n vertices and  m edges, and  W(G) a weighted
matrix of  G . Then a  2m\cross 2m matrix  B_{w}=B_{w}(G)=(B_{e,f}^{(w)})_{e,f\in D(G)} is given as follows:

 B_{e,f}^{(w)}=\{\begin{array}{ll}
w(f)   if t(e)=o(f) ,
0   otherwise.
\end{array}
Then

Theorem 5 (Sato, 2007) Let  G be connected graph with  n vertices and  m edges, and
 W(G) a weighted matrix of G. Then the determinant expression of Hashimoto type for the
second weighted zeta function of  G is

 Z_{1}(G, w, u)^{-1}=\det(I_{2m}-u(B_{w}-J_{0})) .

4 The results Emms et al from viewpoint of graph iso‐
morphism problem

4.1 Historical background of quantum walk

Quantum walk was introduced from three fields:

1. Quantum probability theory: 1988, Gudder [16];

2. Quantum cellular automaton: 1996, Meyer [30];
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3. Quantum computer:

2000, Nayak and Vishwanath [31] ;

2001, Ambainis, Bach, Nayak, Vishwanath and Watrous [2];

2001, Aharonov, Ambainis, Kempe and Vazirani [1].

In the above articles, discrete‐time quantum walk was introduced and its properties were
studied.

In 2002, Childs, Farhi and Gutmann [5] defined continuous quantum walk.
In 2002, Professor Konno [23] presented the limit theorem of two‐state quantum walk on

 \mathbb{Z} . Konno distribution is quite different from the normal distribution.
Next, we state historical background of graph isomorphism problem related to quantum

walk.

1. In 2006, Emms, Hancock, Severini and Wilson [9] gave spectra for the Grover (tran‐
sition) matrix (the time evolution matrix of Grover walk) of a graph and its positive
support etc. Furthermore, they proposed a conjecture for graph isomorphism problem
of strongly regular graphs.

2. In 2008, Emms [8] defined a discrete‐time quantum walk (Grover walk) on a graph by
using the Grover matrix.

3. In 2011, Ren, Aleksic, Emms, Wilson and Hancock [32] showed that the transpose
of the positive support of the Grover matrix is equal to the edge matrix used in the
determinant expression of the Ihara zeta function.

4. In 2012, Konno and Sato [25] presented the characteristic polynomial of the Grover
matrix and its positive support by using determinant expressions of Ihara type for
the Ihara zeta function and the second weighted zeta function, and directly obtained
spectra for them .

4.2 Konno distribution

We consider a two‐state quantum walk on  \mathbb{Z} , that is, a discrete‐time quantum walk which
the particle moves at each time step either one unit to the right or the left(see [24]).

For each  k\in \mathbb{Z} , we consider the state

 \psi_{k}=\{\begin{array}{l}
\alpha_{k}
\beta_{k}
\end{array}\} \in \mathbb{C}^{2}.
This is considered as an “ inner state” of a particle. Here,

  \sum_{k=-\infty}^{\infty}||\psi_{k}||^{2}=\sum_{k=-\infty}^{\infty}
(|\alpha_{k}|^{2}+|\beta_{k}|^{2})=1
Then  \psi_{k} and  \alpha_{k},  \beta_{k} are called the qubit state and the probability amplitudes of  k , respectively.

Next, we consider an unitary matrix

 U=\{\begin{array}{ll}
a   b
c   d
\end{array}\} .

Then  |a|^{2}+|b|^{2}=|b|^{2}+|c|^{2}=1,  \overline{b}+c\overline{d}=0,  c=-A\overline{b},  d=\triangle\overline{a}(\triangle=ad-bc) . As an analogue
of the probabilities  p,q of a random walk on  \mathbb{Z} , we consider

 P=\{\begin{array}{ll}
a   b
0   0
\end{array}\} , Q=\{\begin{array}{ll}
0   0
c   d
\end{array}\} .
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The equation  U=P+Q corresponds to  1=p+q , and  P,  Q are non‐commutative versions
for  p,  q.

Furthermore, let

 \psi_{k}^{n}=\{\begin{array}{l}
\alpha_{k}^{n}
\beta_{k}^{n}
\end{array}\}
be the qubit state of the position  k(k=0, \pm 1, \pm 2, \ldots) at time  n(n=1,2, \ldots) . Then we
define the time evolution for quantum walk on  \mathbb{Z} as follows:

 \psi_{k}^{n}=P\psi_{k+1}^{n-1}+Q\psi_{k-1}^{n-1}.

For brevity, let the initial qubit state  (n=0) be given as follows:

 \psi_{0}^{0}=\phi=\{\begin{array}{l}
\alpha
\beta
\end{array}\} \in C^{2}, \psi_{k}^{0}=\{\begin{array}{l}
0
0
\end{array}\} (k\neq 0) .

where  ||\phi||^{2}=|\alpha|^{2}+|\beta|^{2}=1 . We consider quantum walk stating at the origin of  \mathbb{Z} with
the qubit state  \phi at  n=0.

In the case of  n=1 , we have

 \psi_{1}^{1}=P\psi_{2}^{0}+Q\psi_{0}^{0}=\{\begin{array}{ll}
a   b
0   0
\end{array}\}\{\begin{array}{l}
0
0
\end{array}\} + \{\begin{array}{ll}
0   0
c   d
\end{array}\}\{\begin{array}{l}
\alpha
\beta
\end{array}\}=\{\begin{array}{l}
0
c\alpha+d\beta
\end{array}\},
 \psi_{-1}^{1}=P\psi_{0}^{0}+Q\psi_{-2}^{0}=\{\begin{array}{ll}
a   b
0   0
\end{array}\}\{\begin{array}{l}
\alpha
\beta
\end{array}\} + \{\begin{array}{ll}
0   0
c   d
\end{array}\}\{\begin{array}{l}
0
0
\end{array}\}=\{\begin{array}{l}
a\alpha+b\beta
 0
\end{array}\} .

If  k\neq\pm 1 , then, since  k\pm 1\neq 0,

 \psi_{k}^{1}=P\psi_{k+1}^{0}+Q\psi_{k-1}^{0}=\{\begin{array}{ll}
a   b
0   0
\end{array}\}\{\begin{array}{l}
0
0
\end{array}\} + \{\begin{array}{ll}
0   0
c   d
\end{array}\}\{\begin{array}{l}
0
0
\end{array}\}=\{\begin{array}{l}
0
0
\end{array}\} .

In the case of  n=2 , we have

 \psi_{0}^{2}=P\psi_{1}^{1}+Q\psi_{-1}^{1}=\{\begin{array}{ll}
a   b
0   0
\end{array}\}\{\begin{array}{l}
0
c\alpha+d\beta
\end{array}\}  +  \{\begin{array}{ll}
0   0
c   d
\end{array}\}\{\begin{array}{l}
a\alpha+b\beta
 0
\end{array}\}=\{\begin{array}{l}
b(c\alpha+d\beta)
c(a\alpha+b\beta)
\end{array}\} .

Similarly, we have

 \psi_{2}^{2}=\{\begin{array}{l}
0
d(a\alpha+b\beta)
\end{array}\} , \psi_{-2}^{2}=\{\begin{array}{l}
a(c\alpha+d\beta)
0
\end{array}\} .

If  k\neq 0,  \pm 2 , then, since  k\pm 1\neq\pm 1,

 \psi_{k}^{2}=\{\begin{array}{l}
0
0
\end{array}\} .

Now, let  X_{n} be the quantum walk at time  n . Then the probability which there exits a
particle in the position  k at time  n is defined as follows:

 P(X_{n}=k)=||\psi_{k}^{n}||^{2}=|\alpha_{k}^{n}|^{2}+|\beta_{k}^{n}|^{2}.

Example (Hadamard walk)
If

  U=\frac{1}{\sqrt{2}}  \{\begin{array}{ll}
1   1
1   1
\end{array}\} ,   \{\begin{array}{l}
\alpha
\beta
\end{array}\}=\frac{1}{\sqrt{2}}  \{\begin{array}{l}
1
\dot{i}
\end{array}\} ,

then this discrete‐time quantum walk is called the Hadamard walk. Then the probabilities
are given as follows:
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In general, Konno [23] presented the weak limit theorem with respect to   narrow\infty for
two‐state quantum walk on  \mathbb{Z}.

Theorem 6 (Konno) Let

 \{\begin{array}{l}
\alpha
\beta
\end{array}\}  (|\alpha|^{2}+|\beta|^{2}=1) .

For quantum walk stating at the origin of  \mathbb{Z} with the above qubit state  \phi at  n=0,

  \frac{X_{n}}{n}arrow Z(narrow\infty) (weak convergence),

that is,

 n arrow\infty 1\dot{{\imath}}mP(u\leq\frac{X_{n}}{n}\leq v)=\int_{u}^{v}
\frac{\sqrt{1-|a|^{2}}}{\pi(1-z^{2})\sqrt{|a|^{2}-z^{2}}}\{1-(|\alpha|^{2}-
|\beta|^{2}+\frac{a\alpha\overline{b}\overline{\beta}+\overline{a}
\overline{\alpha}b\beta}{|a|^{2}}z\}dz.
Example (Hadamard walk) In the Hadamard walk,

 n arrow\infty 1\dot{{\imath}}mP(u\leq\frac{X_{n}}{n}\leq v)=\int_{u}^{v}
\frac{1}{\pi(1-z^{2})\sqrt{1-z^{2}}}dz.
4.3 Discrete‐time Grover walk on a graph

Let  G be a connected graph with  m edges. Then we state a discrete‐time Grover walk over
 D(G) along Emms [8].

For each arc  e=(u, v)\in D(G) , we indicate the pure state  \vec{x}_{e}=\vec{x}_{uv} such that  \{\vec{x}_{e}|e\in
 D(G)\} is a normal orthogonal system on the Hilbert space  \mathbb{C}^{2_{7}n} . The transition from an arc
 (u, v) to an arc  (w, x) occurs if  v=w . The state of quantum walk is defined as follows:

  \psi=\sum_{(u,v)\in D(G)}\alpha_{uv}\vec{x}_{uv}, \alpha_{uv}\in \mathbb{C}.
The probability which there exists a particle in the arc  (u, v) is given as follows:

 P(\vec{x}_{e})=\alpha_{uv}\overline{\alpha_{uv}}.

Here,

  \sum \alpha_{uv}\overline{\alpha_{uv}}=1.
 (u,v)\in D(G)

In the classical discrete‐time random walk, the relation of the states  \psi_{t+1},  \psi_{t} is given by

 \psi_{t+1}=U\psi_{t}

through some unitary matrix U. Similarly, the time evolution of quantum walk over  D(G)
is defined by using the Grover matrix  U=(U_{(w,x),(u,v)}) ( see [15]):

 U_{(w,x),(u,v)}=\{\begin{array}{ll}
2/\deg v   if v=w, x\neq u,
2/\deg v-1   if v=w, x=u,
0   otherwise
\end{array}
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This quantum walk is called the (discrete‐time) Grover walk on  G . Note that the Grover
matrix is unitary.

Example
Let  G be the graph with  V(G)=\{u, v, w, x\} and  D(G)=\{(u, v), (v, u), (v, w), (w, v), (v, x), (x, v)\}.

Furthermore, we arrange arcs of  D(G) as follows:  (u, v),  (v, u),  (w, v),  (v, w),  (x, v),  (v, x) .
Then the Grover matrix  U is

 U=[-1/32_{0}^{0}2/30/3 000001 -1/32_{0}^{0}2/30/3 000001 -1/32_{0}^{/3}2_{0}
^{0}/3 000001]
If  \psi_{t}=a\vec{x}_{uv}-b\vec{x}_{wv}  (a^{2}+b^{2}= 1) , then  \psi_{t+1}=U\psi_{t}=aU\vec{x}_{uv}-bU\vec{x}_{wv} . Since

 \vec{x}_{uv}=t(100000),\vec{x}_{wv}=t(001000) ,

 \psi_{t+1}  =  a^{t}(0-1/302/302/3)-b^{t}(02/30 —1/302/3  )

 = (-1/3a-2/3)\vec{x}_{vu}+(2/3a+1/3b)\vec{x}_{vw}+2/3(a-b)\vec{x}_{vx},

where  (-1/3a-2/3)^{2}+(2/3a+1/3b)^{2}+4/9(a-b)^{2}=a^{2}+b^{2}=1.

4.4 A conjecture for graph isomorphism problem

Two graphs  G,  H are isomorphic  (G\cong H) if there exists a bijection  f :  V(G)arrow V(H)
such that  uv\in E(G) if and ony if  f(u)f(v)\in E(H) . Then the graph isomorphism problem
is given as follows:

Problem 1 For two graphs  G and  H , determine whether  G\cong H.

It is known that this problem is very difficult. Also, there is the following problem.

Problem 2 For any two graphs  G and  H , is there an invariant  f(G) of graphs such that
 G\cong H if and only if  f(G)=f(H) ‘?

Until now, such invariants are not found.
The characteristic polynomial  \Phi(G;\lambda)=\det(\lambda I-A(G)) of a graph  G is not an invariant

for problem 2. It is known that there exist  G,  H such that  \Phi(G;\lambda)=\Phi(H;\lambda) and   G\not\cong
 H([3]) . Furthermore, the Ihara zeta function of a graph is not an invariant for problem 2.
There exist  G,  H such that  Z(G, u)=Z(H;u) and  G\not\cong H([6]) .

Through quantum walk, decision algorithms for graph isomorphism and new approach
for graph isomorphism problem are proposed by Shiau, Joynt and Coopersmith [36], Emms,
Severini, Wilson,and Hancock [10], Douglas and Wang [7], Gamble, Friesen, Zhou, Joynt
and Coopersmith [11]. Furthermore, Emms, Hancock, Severini and Wilson [9] proposed a
conjecture which is partially affirmative for problem 2.

For a real square matrix  A=(a_{ij}) , the positive support  A^{+}=(a_{i_{\dot{j}}}^{+}) of A is defined as
follows:

 a_{ij}^{+}=\{\begin{array}{l}
1 if a_{ij}>0,
0 otherwise.
\end{array}
Then
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Conjecture 1 (Emms, Hancock, Severini and Wilson, 2006) Let  G,  H be strongly
regular graphs with same parameters. Then

 G\cong H\Leftrightarrow Spec((U(G)^{3})^{+})=Spec((U(H)^{3})^{+}) ,

where Spec (F)iS the set of spectra (eigenvalues) of a square matrix  \Gamma , and  U(G) is the
Grover matrix of  G.

A graph  G is a strongly regular graph with parameters  n,  k,  \lambda,  \mu or an  (n, k, \lambda, \mu) ‐graph
if the following four conditions are satisfied([14]):

1.  |V(G)|=nG

2. For each vertex  v of  G,  \deg v=kG

3. any two adjacent vertices  u,  v are adjacent to the  \lambda common verticesG

4. any non‐adjacent vertices  x,  y are adjacent to the  \mu common vertices. @

Note that an  (n, k, \lambda, \mu) ‐graph is a  k‐regular graph. For example, the complete bipartite
graph  K_{n,n} is  a(2n, n, 0, n) ‐graph.

The above conjecture does not hold for regular graphs. There are 4‐regular graphs  G,  H

with 14 vertices such that  G\not\cong H and Spec  ((U(G)^{3})^{+})=Spec((U(H)^{3})^{+})([9]) . By using
a computer, Emms et al [10] showed that the conjecture holds for some strongly regular
graphs. If the conjecture holds, then Spec  ((U(G)^{3})^{+}) or  \Phi((U(G)^{3})^{+};\lambda) are invariants for
problem 2 in a small family of graphs (possibly infinite set).

5 Konno‐Sato Theorem

5.1 Konno‐Sato Theorem

Now, we give an explicit formula for the characteristic polynomial of the Grover matrix of
a graph([25]).

Let  G be a connected graph with  n vertices and  m edges. Then an  n\cross n matrix

 T(G)=(T_{uv})_{u,v\in V(G)} is defined as follows:

 T_{uv}=\{\begin{array}{ll}
1/(\deg u)   if (u, v)\in D(G) ,
0   otherwise.
\end{array}
This matrix  T(G) is the transition matrix of the simple random walk on  G.

Then

Theorem 7 (Konno and Sato, 2012) Let  G be a connected graph with  n vertices  v_{1},  v_{n}

and  m edges. Then the characteristic polynomial for the Grover matrix  U of  G is given by

 \det(\lambda I_{2_{7}n}-U)=(\lambda^{2}-1)^{m-n}\det((\lambda^{2}+1)I_{n}-
2AT(G)) (5)

 = \frac{(\lambda^{2}-1)^{7n-n}\det((\lambda^{2}.+1)D-2\lambda A(G))}{d_{v_{1}}
\cdot\cdot d_{v_{n}}} . (6)

Proof. By Theorem 4. Q.E.D.
By Theorem 7.(5), we express spectra of the Grover matrix  U by using those of  T(G) ([9]).

Corollary 1 (Emms, Hancock, Severini and Wilson, 2006) Let  G be a connected graph
with  n vertices and  m edges. Then the spectra of the Grover matrix  U are given as follows:
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1.  2n eigenvalues:

 \lambda=\lambda_{T}\pm i\sqrt{1-\lambda_{T}^{2}},
where  \lambda_{T} are spectra of  T(G) ;

2.  2(m-n) eigenvalues:  \pm 1 with same multiplicities.

Proof. By Theorem 7.(5), we have

  \det(\lambda I_{2_{7}n}-U)=(\lambda^{2}-1)^{m-n}\prod_{\lambda_{T}\in 
Spec(T(G))}(\lambda^{2}+1-2\lambda_{T}\lambda)
.

Solving  \lambda^{2}+1-2\lambda_{T}\lambda=0 , we obtain

 \lambda=\lambda_{T}\pm i\sqrt{1-\lambda_{T}^{2}},
and so the result follows. Q.E.D.

By Theorem 7.(6), we obtain the following result for a regular graph(c.f., [9]).

Corollary 2 (Emms, Hancock, Severini and Wilson, 2006) Let  G be a connected k‐
regular graph with  n vertices and  m edges. Then the spectra of the Grover matrix  U are
given as follows:

1.  2n eigenvalues:

  \lambda=\frac{\lambda_{A}\pm i\sqrt{k^{2}-\lambda_{A}^{2}}}{k},
where  \lambda_{A} are spectra of the adjacency matrix  A(G) of  G ;

2.  2(m-n) eigenvalues:  \pm 1 with same multiplicities.

Proof. At first, we have  D=kI_{n} . By Theorem 7.(6),

  \det(\lambda I_{2_{7}n}-U)=\frac{(\lambda^{2}-.1.)^{rn-n}}{d_{V_{1}}\cdot 
d_{v_{n}}}\prod_{\lambda_{A}\in Spec(A(G))}(k\lambda^{2}+k-2\lambda_{A}\lambda) .

Solving  k\lambda^{2}+k-2\lambda_{A}\lambda=0 , we obtain

  \lambda=\frac{A_{A}\pm\dot{i}\sqrt{k^{2}-\lambda_{A}^{2}}}{k},
and so, the result follows. Q.E.D.

5.2 Positive support of the Grover matrix

At fist, we state the relation between the Ihara zeta function and the Grover matrix([32]).

Theorem 8 (Ren, Aleksic, Emms, Wilson and Hancock) Let  G be a connected graph
with  n vertices and  m edges. Suppose that the minimum degree  \delta(G) of  G is not less than
2. Then the transpose of the positive support of the Grover matrix  U of  G is equal to the
edge matrix appeared in the determinant expression of Hashimoto type for the Ihara zeta
function of  G :

 B-J_{0}=(tU)^{+}.

By Theorem 3 and Theorem 8, we obtain the characteristic polynomial for the positive
support  U^{+} of the Grover matrix of a graph.
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Theorem 9 Let  G be a connected graph with  n vertices and  m edges. Then the charac‐
teristic polynomial for the positive support  U^{+} of the Grover matrix of a graph is given
 by

 \det(\lambda I_{2_{7}n}-U^{+})=(\lambda^{2}-1)^{rn-n}\det((\lambda^{2}-1)I_{n}-
\lambda A(G)+D) .

Proof. By Theorem 3 and Theorem 8,

 \det(I_{2m}-uU^{+}) = \det(I_{2m}-u(tB-tJ_{0}))

 = \det(I_{2m}-u(B-J_{0}))

 = (1-u^{2})^{m-n}\det(I_{n}-uA(G)+u^{2}(D-I_{n})) .

Now, set   u=1/\lambda . Then we have

  \det(I_{2m}-\frac{1}{\lambda}U^{+})=(1-\frac{1}{\lambda^{2}})^{m-n}\det(I_{n}-
\frac{1}{\lambda}A(G)+\frac{1}{\lambda^{2}}(D-I_{n})) .

Thus,
 \det(\lambda I_{2_{7}n}-U^{+})=(\lambda^{2}-1)^{7n-n}\det((\lambda^{2}-1)I_{n}-
\lambda A(G)+D) .

Q.E.D.
By Theorem 9, we express spectra for the positive support  U^{+} of the Grover matrix of

a regular graph by using those of the adjacency matrix  A(G)(c.f., [9]) .

Corollary 3 (Emms, Hancock, Severini and Wilson, 2006) Let  G be a connected k‐
regular graph with  n vertices and  m edges. Then the spectra of the positive support  U^{+} of
the Grover matrix  U are given as follows:

1.  2n eigenvalues:

  \lambda=\frac{\lambda_{A}}{2}\pm i\sqrt{k-1-\lambda_{A}^{2}/4},
where  \lambda_{A} are spectra of the adjacency matrix  A(G) of  G ;

2.  2(m-n) eigenvalues:  \pm 1 with same multiplicities.

Proof. By Theorem 9,

 \det(\lambda I_{2_{7}n}-U^{+}) = (\lambda^{2}-1)^{7n-n}\det((\lambda^{2}+k-1)I_
{n}-\lambda A(G))

 = ( \lambda^{2}-1)^{7n-n}\prod_{\lambda_{A}\in Spec(A(G))}(\lambda^{2}+k-1-
\lambda_{A}\lambda) .

Solving  \lambda^{2}+k-1-\lambda_{A}\lambda=0 , we have

  \lambda=\frac{\lambda_{A}}{2}\pm i\sqrt{k-1-\lambda_{A}^{2}/4}.
Q.E.D.

5.3 Positive support of the square of the Grover matrix

At fist, we state the structure theorem for the positive support  (U^{2})^{+} of the square of the
Grover matrix  U of a graph([12]).

Theorem 10 (Godsil and Guo, 2011) Let  G be a connected  k ‐graph with  m edges, and
suppose that  k>2 . Then

 (U^{2})^{+}=(U^{+})^{2}+I_{2m}.
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By Theorem 9 and Theorem 10, we obtain the characteristic polynomial for the positive
support  (U^{2})^{+} the square of the Grover matrix of a graph([19]).

Theorem 11 (Higuchi, Konno, Sato and Segawa, 2013) Let  G be a connected  k ‐graph
with  n vertices and  m edges, and suppose that  k>2 . Then the characteristic polynomial
for the positive support  (U^{2})^{+} of the square of the Grover matrix of a graph is given by

 \det(\lambda I_{2rn}-(U^{2})^{+})=(\lambda-2)^{2m-2n}\det((k-2+\lambda)^{2}
I_{n}-(\lambda-1)A(G)^{2}) .

By Theorem 11, we express spectra for the positive support  (U^{2})^{+} of the square of the
Grover matrix of a regular graph by using those of the adjacency matrix  A(G)(c.f., [9]) .

Corollary 4 (Emms, Hancock, Severini and Wilson, 2006) Let  G be a connected k‐
regular graph with  n vertices and  m edges. Suppose that  k>2 . Then the spectra of the
positive support  (U^{2})^{+} of the square of the Grover matrix  U are given as follows:

1.  2n eigenvalues:

  \lambda=\frac{\lambda_{A}^{2}-2k+4}{2}\pm i\lambda_{A}\frac{\sqrt{4k-4-
\lambda_{A}^{2}}}{2},
where  \lambda_{A} are spectra of the adjacency matrix  A(G) of  G ;

2.  2(m-n) eigenvalues: 2.

Proof. By Theorem 11, we have

 \det(\lambda I_{2_{7}n}-(U^{2})^{+})  =  (\lambda-2)^{2rn-2n}\det((k-2+\lambda)^{2}I_{n}-(\lambda-1)A(G)^{2})

 = ( \lambda-2)^{2rn-2n}\prod_{\lambda_{A}\in Spec(A(G))}((k-2+\lambda)^{2}-
(\lambda-1)\lambda_{A}^{2}) .

Similarly to Corollaries 1,2,3, we obtain the result. Q.E.D.
Now, we state a reason why Spec  (U),  Spec(U^{+}),  Spec((U^{2})^{+}) are not invariants for

problem 2.
Let  G,  H be two  (n, k, \lambda, \mu) ‐graph (strongly regular graph). Then it is known that

Spec  (A(G))=Spec(A(H))=\{k, \theta, \tau\},

where

  \theta=\frac{(\lambda-\tau)+\sqrt{\triangle}}{2}, \tau=\frac{(\lambda-\tau)+
\sqrt{\triangle}}{2}, \triangle=(\lambda-\tau)^{2}+4(k-\mu)
and the multiplicities of  \theta,  \tau are determined by  n,  k,  \lambda,  \mu([14]) .

By Corollaries 1,2,3 and 4, the eigenvalues of  U,  U^{+},  (U^{2})^{+} is decided by the eigenvalues
of the adjacency matrix. Thus,

Spec (U(G))=Spec(U(H)),  Spec(U(G)^{+})=Spec(U(H)^{+}),  Spec((U(G)^{2})^{+})=Spec((U(H)^{2})^{+}) .

Therefore, Spec  (U),  Spec(U^{+}),  Spec((U^{2})^{+}) can not decide whether  G\cong H.

By this fact, Emms et al [9] explored the spectra of the positive support of the cube of
the Grover matrix.

5.4 Positive support of the cube of the Grover matrix

We present the structure theorem of  (U^{3})^{+} as Theorem 10.
Let  G be a graph. Then the girth  g(G) of  G is the minimum length of prime, reduced

cycles in  G . Then the structure theorem of  (U^{3})^{+} is given as follows([19]):
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Theorem 12 (Higuchi, Konno, Sato and Segawa, 2013) Let  G be a connected  k ‐graph
with  n vertices and  m edges, and suppose that  k>2 and  g(G)>4 . Then

 (U^{3})^{+}=(U^{+})^{3}+tU^{+}.

If  \lambda\geq 1 for an  (n, k, \lambda, \mu) ‐graph  G , then we have  g(G)=3 , and so we can not use
Theorem 12 to resolve the conjecture.

Anyway we present an explicit formula for the characteristic polynomial for the positive
support of the cube of the Grover matrix under the same conditions as Theorem 12([27]).

Theorem 13 (Konno, Sato and Segawa, 2014) Let  G be a connected  k ‐graph with  n

vertices and  m edges, and suppose that  k>2 and  g(G)>4 . Then the characteristic
polynomial for the positive support  (U^{3})^{+} of the cube of the Grover matrix of  G is given by

 \det(\lambda I_{2_{7}n}-(U^{3})^{+})=(\lambda-4)^{rn-n}\det((\lambda^{2}I_{n}-
\lambda(A^{3}-(3k-4)A)

 + (A^{4}-k^{2}A^{2}+2(k-1)(k^{2}-2k+2)I_{n}) ,

where  A=A(G) .

Thus,

Corollary 5 (Segawa, 2014) Let  G be a connected  k ‐graph with  n vertices and  m edges,
and suppose that  k>2 and  g(G)>4 . Then the spectra of the positive support  (U^{3})^{+} of the
cube of the Grover matrix  U are given as follows([34]):

1.  2n eigenvalues:

  \lambda = \frac{1}{2}\{\lambda_{A}(\lambda_{A}^{2}-3k+4)

 \pm \sqrt{\lambda_{A}^{6}-2(3k-2)\lambda_{A}^{4}+(13k^{2}-24k+16)\lambda_{A}-
8(k-1)(k^{2}-2k+2)}\},
where  \lambda_{A} are spectra of the adjacency matrix  A(G) of  G ;

2.  2(m-n) eigenvalues:  \pm 2.

From the above result, an approach for the conjecture is as follows: Let  G,  H be
 (n, k, \lambda, \mu) ‐graphs and  k>2 . If there are such graphs  G,  H such that  G\not\cong H and  g(G)>4,
 g(H)>4 , then the conjecture does not hold.

But, there exist at most four strongly regular graphs  G with  g(G)>4.

5.5 A counterexample for the conjecture

In 2015, Godsil, Guo and Myklebust [13] gave a counterexample for the conjecture.
The generalized quadrangle of order  (s, t) is an incidence structure such that

1. Any point belongs to  (s+1) lines, and

2. any line contains  (t+1) points.

Then it is known that the line intersection graph of the generalized quadrangle of order
 (s, t) is  a((t+1)(st+1), s(t+1), t-1, s+1) ‐graph (strongly regular graph). Furthermore,
it is known that there exist two non‐isomorphic generalized quadrangles of order  (5^{2},5) :

 H(3,5^{2}), FTWKB(5) .

Now, let  X and  Y be the line intersection graph of  H(3,5^{2}) and FTWKB (5), respec‐
tively. Then  X,  Y are (756, 130, 4, 26)‐graphs and  X\not\cong Y.

Godsil et al [13] showed that

Spec  ((U(X)^{3})^{+})=Spec((U(Y)^{3})^{+}) .

by using computer. Thus, Emms et al conjecture does not hold!!
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5.6 Further remark

Recently, we consider Konno problem([25]):

Problem 3 (Konno, 2012) For  \forall n\in \mathbb{N} , determine the characteristic polynomial for the
positive support  (U^{n})^{+} of the  n th power of the Grover matrix of a graph  G.

Konno problem is a quite difficult problem.
Konno problem is equivalent to the following problem:

Problem 4 For  \forall n\in \mathbb{N} , determine a determinant expression of Ihara type for the following
zeta function:

 \zeta_{k}(G, u)=\det(I_{2_{7}n}-u(U^{k})^{+}), m=|E(G)|.

Let  G be a connected  r‐regular graph with  n vertices and  m edges. By Theorems 11
and 13, we obtain the following results:

1.  r=2 :

 \zeta_{2}(G, u)^{-1}=(1-2u)^{2_{7}n-2n}\det((1+u(r-2))^{2}I_{n}-(1-u)A(G)^{2})
(r>2) ;

2.  r=3 :

 \zeta_{3}(G, u)^{-1}=(1-4u^{2})^{rn-n}\det(I_{n}-u(A^{3}-(3r-4)A)

 + u^{2}(A^{4}-k^{2}A^{2}+2(r-1)(r^{2}-2r+2)I_{n})(r>2, g(G)>4) ,

where  A=A(G) .

Furthermore, we can give the structure theorem for the positive support  (U^{n})^{+} of the
 n th power of the Grover matrix of a graph  G under some conditions([26]).

Theorem 14 (Konno, Sato and Segawa, 2018) Let  G be a connected  r ‐graph with  g(G)>
 2k-2 . Then

 ( U^{k})^{+}=\sum_{j=0}^{k}(\epsilon_{j}(U^{+})^{j}+\tau_{j}J_{0}(U^{+})^{j})+
\sum_{\dot{j}=0}^{k-1}(\epsilon_{-j^{t}}(U^{+})^{j}+\tau_{-j^{t}}(J_{0}(U^{+})
^{j})) ,

where  \epsilon_{j},  \tau_{j}=0,1(j=0, \pm 1, \ldots, \pm(k-1), k) .

This structure theorem is not explicit.

Corollary 6 (Konno, Sato and Segawa, 2018)

 (U^{4})^{+}=J_{0}(U^{+})^{2}J_{0}+I+(U^{+})^{4},

 (U^{5})^{+}=\{\begin{array}{ll}
J_{0}(U^{+})^{3}J_{0}+J_{0}U^{+}J_{0}+U^{+}+(U^{+})^{5}   Of 3\leq r\leq 6,
J_{0}(U^{+})^{3}J_{0}+(U^{+})^{2}J_{0}+J_{0}U^{+}J_{0}+U^{+}   
+J_{0}(U^{+})^{2}+(U^{+})^{5}   Of r\geq 7,
\end{array}

 (U^{6})^{+}=\{\begin{array}{ll}
J_{0}(U^{+})^{4}J_{0}+J_{0}(U^{+})^{2}J_{0}+I+(U^{+})^{2}+(U^{+})^{6}   if r=3,
4,
J_{0}(U^{+})^{4}J_{0}+(U^{+})^{3}J_{0}+J_{0}(U^{+})^{2}J_{0}+I+(U^{+})^{2}   
+J_{0}(U^{+})^{3}+(U^{+})^{6}   if 5\leq r\geq 11,
J_{0}(U^{+})^{4}J_{0}+(U^{+})^{3}J_{0}+I+(U^{+})^{2}+J_{0}(U^{+})^{3}   
+(U^{+})^{6}   if r\geq 12.
\end{array}
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From now on, we shall study Konno problem, and then we would like to consider the
relation between the Ihara zeta function and quantum walk.

Finally, we state a few comments. We challenge the conjecture for graph isomorphism
problem by using the Ihara zeta function, and our attempt is mistake. From this approach
for the conjecture, we show that the Ihara zeta function is very strong, and we are sure that
the Ihara zeta function makes a new field in the world of quantum walk. From now on, the
Ihara zeta function will be developed in various fields more and more.
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