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Soulé characters in the work of Ihara

Romyar Sharifi

Dedicated to Professor Yasutaka Ihara
on the occasion ofhis 80th birthday

1 Introduction

My first postdoctoral feııowship was held at the Mathematical Sciences Research Institute,
where I worked under the guidance of Yasutaka Ihara during the fall of 1999. Professor Ihara
introduced me to his study of the Galois action on the étale fundamental group of the projective
line minus three points and a \mathbb{Z}_{p} ‐Lie algebra constructed out of it. I found, and still find, the
structure of this Lie algebra both fascinating and mysterious.

Let  X=\mathbb{P}^{1}-\{0,1,\infty\} over  \mathbb{Q} and  \overline{X} be its base change to  \overline{\mathbb{Q}} . There is an exact sequence

 1arrow\pi_{1}(X^{-})arrow\pi_{1}(X)arrow G_{\mathbb{Q}}arrow 1

of étale fundemantal groups, as  \pi_{1}({\rm Spec} \mathbb{Q})=G_{\mathbb{Q}} . This provides us with a homomorphism

 G_{\mathbb{Q}}arrow Out(\pi_{1}(X^{-},x)) ,

where Out denotes the outer continuous automorphism group. By a theorem of Belyi, this map
is injective. Ihara initiated a study of this Galois action in [6].

For a prime  p , consider the maximal pro‐p quotient  \Pi=\pi_{1}^{(p)}(X^{-}) of  \pi_{1}(X^{-}) . Ihara showed
that the action of  G_{\mathbb{Q}} on  \Pi factors through the Galois group  G_{\mathbb{Q},S} of the maximal extension of
 \mathbb{Q} unramified outside  S=\{p,\infty\} . In fact, the fixed field of the kernel of

 \rho:G_{\mathbb{Q},S}arrow Out(\Pi)

is contained in the maximal pro‐p extension  M of  \mathbb{Q}(\mu_{p}) unramified outside of  S . The fixed
field of the kemel of the induced action on the abelianization of  \Pi is  K=\mathbb{Q}(\mu_{p}\infty) . We set
 G=Ga1(M/K) .

Ihara considers the lower central series of  \Pi defined by  \Pi_{1}=\Pi and  \Pi_{j+1}=[\Pi,\Pi_{j}] for
 j\geq 1 . For  r\geq 1 , the map  p induces a homomorphism

 p_{r}:Garrow Out(\Pi/\Pi_{r+{\imath}}) ,

and we ıet  F^{r}(G)=kerp_{r} . We set  gr^{r}\mathfrak{g}=F^{r}(G)/F^{r+1}(G) and

  \mathfrak{g}=\bigoplus_{\Leftarrow 1}^{\infty}gr^{r}\mathfrak{g}.
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Ihara’s Lie algebra is the graded  \mathbb{Z}_{p}‐Lie algebra  \mathfrak{g} under the commutator induced by the com‐
mutator on  G , since  [F^{r}(G),F^{s}(G)]\subseteq F^{r+s}(G) for all  r,s\geq 1 . Each graded piece  gr^{r}\mathfrak{g} is free of
finite rank over  \mathbb{Z}_{p} and via the conjugation action of  G_{\mathbb{Q}} on  G, is endowed with a  G_{\mathbb{Q}} ‐action by
the rth power of the  p‐adic cyclotomic character.

For odd r) 3, there are elements  \sigma_{r}\in gr^{r}\mathfrak{g} , which are not canonical but are in some sense

dual to classes in  H^{1}(G_{\mathbb{Q},S},\mathbb{Q}_{p}(r)) of Kummer cocycles  K_{r}:G_{\mathbb{Q},S}arrow \mathbb{Z}_{p}(r) attached to  p‐adic
ıimits of cyclotomic units known as Soulé characters. Specifically, for any positive integer  n

and odd positive integer  r, we set

 a_{n,r}= \prod_{i-1\overline{p(},i}^{p^{n}-1}(1-\zeta_{p^{n}}^{i})^{i^{r-1}}
and  K_{r}(\sigma)\in \mathbb{Z}_{p}^{\cross} is defined as the unique element such that

  \frac{\sigma(a_{n,r}^{1/p^{n}})}{a_{n,r}^{1/p^{n}}}=\zeta_{p^{n}}^{\kappa_{r}(
\sigma)}
for all  n . For odd primes  p , Soulé showed that this  K_{r} generates  H^{1}(G_{\mathbb{Q},S},\mathbb{Q}_{p}(r))\cong \mathbb{Q}_{p} . The
element  \sigma_{r}\in gr^{r}\mathfrak{g} is the image of a choice of  \tilde{\sigma}_{r}\in F^{r}G such that  \kappa_{r}(\tilde{\sigma}_{r}) generates  \kappa_{r}(F^{r}G) .
Ihara showed in [7] that the latter image is nontrivial.

Deıigne made a conjecture equivalent to the statement that  \mathfrak{g}\otimes_{\mathbb{Z}_{p}}\mathbb{Q}_{p} is freely generated as a
 \mathbb{Q}_{p} ‐Lie algebra by the elements  \sigma_{r} , and Ihara [7] formulated the conjecture as it is stated here.
This conjecture, known as the Deligne‐Ihara conjecture, is in fact now a theorem: the generation
was directly proven in a paper of Hain and Matsumoto [5], and the freeness follows from the
work of Brown [3].

Ihara also studied a depth filtration on  \mathfrak{g} and, with Takao, observed a relationship between
the second depth‐graded pieces and cusp forms for  GL_{2} over  \mathbb{Q} . The higher depth‐graded
quotients relate to the structure of certain spaces of automorphic forms for  GL_{d} over  \mathbb{Q} , as
evidenced in work of Goncharov. Additional relationships are seen in work of Brown and of
Hain and Matsumoto. It is clear that much fascinating and important mathematics remains to
be discovered in these directions, though to say more would take us too far astray.

Ihara [8] asked the finer and more arithmetically interesting question of whether  \mathfrak{g} is itself
generated by the  \sigma_{r} , suggesting that the answer is false for irregular primes  p . Specifically, Ihara
conjectured that a particular relation would exist in  gr^{12}\mathfrak{g} for  p=691 , and this was verified
through work of McCallum and myself [10] and subsequent work [14]. This relation has to do
with a  mod 691 congruence between the discriminant cusp form and the weight ı2 Eisenstein
series that exists by the irregularity of 691.

For regular primes  p , I showed shortly after my stay at MSRI that  \mathfrak{g} is free on the  \sigma_{r} if  p

is regular [13], supposing the now‐proven Deligne‐Ihara conjecture. The crucial point is that
 p is regular if and only if the maximal pro‐p quotient of  G_{\mathbb{Q},S} is free pro‐p. For regular  p , the
map  p:Garrow Out(\Pi) is similarly now known to be injective, but whether this is the case for  p

irregular is a very interesting open question of Anderson and Ihara [1].
In learning about Ihara’s amazing work, I first sought to gain an understanding one of the

most fundamental theorems underlying it, found in the work of Soulé [12]. It states, in particu‐
lar, that the  K_{r} generate  H^{1}(G_{\mathbb{Q},S},\mathbb{Q}_{p}(r)) for odd  r\geq 1.
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Theorem 1 (Soulé). Let  p be an odd prime number and  r a positive integer. Then

 H^{1}(G_{\mathbb{Q},S},\mathbb{Q}_{p}(r))\cong\{\begin{array}{ll}
\mathbb{Q}_{p}   if r is odd
0   if r is even.
\end{array} (1)

The cruxes of the matter are Chem class maps of Soulé [11] that give isomorphisms

  K_{2r-1}(\mathbb{Z})\otimes_{\mathbb{Z}}\mathbb{Q}_{p}arrow H^{1}
(G_{\mathbb{Q},S},\mathbb{Q}_{p}(r))\sim

and a regulator computation of Borel [2] that shows that each  K_{2r-1}(\mathbb{Z})\otimes_{\mathbb{Z}}\mathbb{Q} with  r odd is a
one‐dimensional  Q‐vector space.

Soulé also showed that  H^{2}(G_{\mathbb{Q},S},\mathbb{Q}_{p}(r)) vamishes. This is equivalent to showing that the
group  H^{2}(G_{\mathbb{Q},S},\mathbb{Z}_{p}(r)) is finite. For even  r, Mazur and Wiles [9] proved that the exact order of
the latter group is highest power of  p dividing the numerator of the rth Bernoulli number over
 r . That  H^{2}(G_{\mathbb{Q},S},\mathbb{Z}_{p}(r)) vanishes for odd  r is equivalent to Vandiver’s conjecture that  p does
not divide the the cıass number of  \mathbb{Q}(\mu_{p})^{+}.

I hoped to find an elementary proof of Soulé’s result. However, this result says that the zeros
of certain Kubota‐Leopoldt  p‐adic  L‐functions cannot be negative even integers. The relevant
nonzero  p‐adic  L‐value at  1-r corresponding to an odd  r\geq 3 is  (1-p^{r-1})B_{r}/r . It is not
even known in general that the zeros cannot be negative integers. In the case that  p is regular,
including  p=2 , the  p‐adic  L‐functions have no zeros, so any obstruction is lifted. Thus, we
can prove Soulé’s theorem from relatively basic principles. That is the goal of this write‐up,
and what follows is an edited combination of some notes I wrote during and refined after my
stay at MSRI that accomplish this goal.

I thank Yasutaka Ihara for his guidance as I conducted this work and for introducing me to
his amazing results. I am deeply grateful to him for the tremendous support he gave me as I
began my career.

2 The result

We aim to prove the following theorem for a regular prime  p . Most of the subtlety in proving
it lies in the case  p=2. We prove it for all  p at the same time, noting where the arguments
simplify for odd  p . Even for  p=2 , the result is certainly not new: it is, for instance, easily
subsumed by the work in [15].

Let  G_{\mathbb{Q},S} denote the Galois group of the maximal extension of  \mathbb{Q} unramified outside  S=

 \{p,\infty\}.

Theorem 2. Let  p be a regular prime number and  r a nonzero integer. Then

 H^{1}(G_{\mathbb{Q},S},\mathbb{Q}_{p}(r))\cong\{\begin{array}{ll}
\mathbb{Q}_{p}   if r is odd
0   if r is even
\end{array} (2)

and  H^{2}(G_{\mathbb{Q},S},\mathbb{Q}_{p}(r))=0.

Let  n be a positive integer. If  p=2 , we suppose that  n\geq 3 . Set  F=\mathbb{Q}(\mu_{p^{n}}) , and let
 F^{+} denote its maximal totally real subfield. Let  G_{F,S} denote the Galois group of the maximal
extension of  F unrammified outside of the unique prime  1-\zeta_{p^{n}} over  p.
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Set  N=Ga1(F/\mathbb{Q}) . Let  \sigma\in N denote the image of complex conjugation. Write   N=\Delta\oplus\Gamma

as follows. If  p is odd, then  \Gamma is the cyclic Sylow  p‐subgroup of order  p^{n-1} , and  \Delta is the cyclic
subgroup of order  p-1 . If  p=2 , then  \Gamma is the cyclic group of order  2^{n-2} generated by an
element  \tau such that  \tau(\zeta_{2^{n}})=\zeta_{2^{n}}^{-3} , and  \Delta=\langle\sigma\rangle has order 2.

Let  U_{S}= \mathbb{Z}[\frac{1}{p},\mu_{p^{n}}]^{\cross} denote the group of  p‐units in  F , and set  U=U_{S}/U_{S}^{p^{n}} . As  p is regular,
all abelian unramified outside  p extensions of  F of exponent dividing  p^{n} are generated by the
 p^{n}th roots of  p‐units in  F . Kummer theory then provides a canonical isomorphism

 U\cong H^{1}(G_{F,S},\mu_{p^{n}})

taking an element to the class of its Kummer cocycle. Moreover, the group of cyclotomic p‐
units that is generated as an  N‐module by  \lambda_{m}=1-\zeta_{p^{n}} has pnme‐to‐p index in the group  U_{S} of
aıl  p‐units, in that this index is exactly the class number of  F^{+} . In other words,  H^{1}(G_{F,S},\mu_{p^{n}})
is the cyclic  (\mathbb{Z}/p^{n}\mathbb{Z})[N] ‐module generated by the Kummer class of  \lambda_{m} , and this is the entirety
of our use of the regularity assumption on  p.

For an  N‐module  A , let  A^{+} denote the maximal submodule fixed under the complex conju‐
gation  \sigma . If  p=2, this coincides with the invariant group  A^{\Delta}.

Proposition 3. There is an exact sequence  ofN‐modules

 0arrow\mu_{p^{n}}arrow Uarrow(\mathbb{Z}/p^{n}\mathbb{Z})[N]^{+}arrow 0

that is canonically split if  p is odd.

Proof. Note that  \sigma(\lambda_{m})/\lambda_{n}=-\zeta_{p^{n}} . Hence the submodule (  \sigma —ı)U of  U is isomorphic to
 \mu_{p^{n}} . The quotient  U/(\sigma-1)U is necessarily isomo1phic to a quotient  A of  \mathbb{Z}/p^{n}\mathbb{Z}[N]^{+} , and we
remark that

 \log_{p^{n}}|\mathbb{Z}/p^{n}\mathbb{Z}[\Gamma]|=d^{+},
where  d^{+}=[F^{+} : \mathbb{Q}] . On the other hand, Dirichlet’s Unit Theorem says that  \log_{p^{n}}|U|=d^{+}+
 1 . Hence  A\cong \mathbb{Z}/p^{n}\mathbb{Z}[N]^{+} . Finally, if  p is odd, then  (\sigma-1)U=\mu_{p^{n}} is canonically a direct
summand of  U via the projection map given by   \frac{\sigma-1}{2}.  \square 

Proposition 4. Let  r be an integer. If  p is odd, then we have

 H^{1}(G_{F,S},\mathbb{Z}/p^{n}\mathbb{Z}(r))^{N}\cong\{\begin{array}{ll}
\mathbb{Z}/p^{n}\mathbb{Z}   if r is odd
(\mathbb{Z}/p^{n}\mathbb{Z}(r))^{N}   if r is even.
\end{array}
and if p=2, we have

 H^{1}(G_{F,S},\mathbb{Z}/2^{n}\mathbb{Z}(r))^{N}\cong\{\begin{array}{ll}
\mathbb{Z}/2^{n-1}\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z}   if r is odd
(\mathbb{Z}/2^{n}\mathbb{Z}(r))^{N}\oplus \mathbb{Z}/2\mathbb{Z}   if r is even.
\end{array}
Proof. Note that  H ı  (G_{F,S},\mathbb{Z}/p^{n}\mathbb{Z}(r))^{N}=U(r-{\imath})^{N} . We have

 (\mathbb{Z}/p^{n}\mathbb{Z}(r))^{N}\cong\{\begin{array}{ll}
(\mathbb{Z}/p^{n}\mathbb{Z}(r))^{\Gamma}   if r is even
\mu_{p}(\mathbb{Q})   if r is odd,
\end{array} (3)
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and

 (\mathbb{Z}/p^{n}\mathbb{Z}[N]^{+}(r-1))^{N}\cong\{\begin{array}{ll}
\mu_{p}(\mathbb{Q})   if r is even
\mathbb{Z}/p^{n}\mathbb{Z}   if r is odd.
\end{array} (4)

For odd  p , the fact that the exact sequence in Proposition 3 is a direct sum then yields the result.
Suppose that  p=2 , and consider the exact sequence

 0arrow(\mathbb{Z}/2^{n}\mathbb{Z}(r))^{N}arrow U(r-1)^{N}arrow j(\mathbb{Z}
/2^{n}\mathbb{Z}[\Gamma](r-1))^{N}arrow dH^{1}(N,\mathbb{Z}/2^{n}\mathbb{Z}(r)) ,

which we have from Proposition 3. We claim that  j is either surjective or has cokemel of order
2, which is obvious from (4) if  r is even. Proposition 3 tells us that

 U\cong \mathbb{Z}/2^{n}\mathbb{Z}[N]/((\sigma-1)(\tau+3)) .

Recalling that  \mathbb{Z}/2^{n}\mathbb{Z}(1) sits inside  U as  (\sigma-1)U , we view  \mathbb{Z}/2^{n}\mathbb{Z}[\Gamma](r-1) as a  \Gamma‐submodule
(but not an  N‐submodule) of  U(r-1) via this isomorphism.

Under the above identification,  x\in(\mathbb{Z}/2^{n}\mathbb{Z}[\Gamma](r-1))^{N} implies  (\sigma+1)x\in U(r-1)^{N} and
hence

 j((\sigma+1)x)=2x.

If  x\in(\mathbb{Z}/2^{n}\mathbb{Z}[\Gamma](r-1))^{N} then  dx(\tau)=0 by definition, and  dx(\sigma)=((-1)^{r-1}\sigma-1)x inside
 U(r-1) .

If  r is odd, then we must consider  x=N_{r} , where

 N_{r}= \sum_{i=0}^{2^{n-2}-1}(-3)^{i(r-1)_{T^{i}}},
and we see that

 dN_{r}( \sigma)=(\sigma-1)N_{r}=\sum_{i=0}^{2^{n-2}-1}(-3)^{ir}=-2^{n-2}(\sigma
-1)
considered as an element of  U(r-1) , or  dN_{r}(\sigma)=-2^{n-2} considered as an element of  \mathbb{Z}/2^{n}\mathbb{Z}(r-
1). Furthermore, we must view the cochains in the image of  d moduıo coboundaries. For

 a\in \mathbb{Z}/2^{n}\mathbb{Z}(r) , we have  \tau(a)=a if and only if  a\equiv 0mod 2^{n-2} . In this case, we have

 \sigma(a)-a=-2a\equiv 0mod 2^{n-1}

Hence we see that when  r is odd, the image of  d has order 2, and we therefore conclude the
same about the cokernel of  j.

If  r is even, then we must consider  x=2^{n-1}N_{r} , and it is easy enough to see that  dx(\sigma)=0,
so the cokemel of  j is trivial.

Let  J denote the image of  j . To finish the proof of the proposition, it remains to show that
the sequence

 0arrow(\mathbb{Z}/2^{n}\mathbb{Z}(r))^{N}arrow U(r-1)^{N}arrow Jarrow 0
splits. To see this, we lift any element  x of  J to an element  x\in \mathbb{Z}/2^{n}\mathbb{Z}[\Gamma](r-1)^{\Gamma}\subset U(r-1)^{\Gamma},
and then  a+x\in U(r-1)^{N} for some  a\in(\mathbb{Z}/2^{n}\mathbb{Z}(r))^{\Gamma} . Noting equation (3), this immediately
yields the splitting when  r is even. When  r is odd, we must have  a\equiv 0mod 2^{n-2} in order that
 a be fixed under  \Gamma, in which case  2^{n-1}(a+x)=0 for  n\geq 3 . Hence, we have the sphtting.  \square 
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We now prove our main result.

Proofof Theorem 2. We have the following sequence of low degree terms in a Hochschild‐Serre
spectral sequence

 0arrow H^{1}(N,\mathbb{Z}/p^{n}\mathbb{Z}(r))arrow H^{1}(G_{\mathbb{Q},S},
\mathbb{Z}/p^{n}\mathbb{Z}(r))arrow H^{1}(G_{F,S},\mathbb{Z}/p^{n}\mathbb{Z}(r))
^{N}arrow H^{2}(N,\mathbb{Z}/p^{n}\mathbb{Z}(r)) .

The orders of the first and last of these groups are bounded with respect to  n . If  p is odd, this
follows as they are (cychc) Tate cohomology groups with the same order as  \hat{H}^{0}(N,\mathbb{Z}/p^{n}\mathbb{Z}(r)) .
In general, this follows by use of the spectral sequence

 H^{s}(\Delta,H^{t}(\Gamma,\mathbb{Z}/p^{n}\mathbb{Z}(r)))\Rightarrow H^{s+t}(N,
\mathbb{Z}/p^{n}\mathbb{Z}(r)) .

The orders of the groups  H^{i}(N,\mathbb{Z}/p^{n}\mathbb{Z}(r)) are bounded by the product of the orders of a finite
number of terms in this sequence. All of these terms are cyclic of bounded order.

Let  h_{i}(n)=\log_{p}|H^{i}(G_{\mathbb{Q},S},\mathbb{Z}/p^{n}\mathbb{Z}(r))| , and let

 H^{i}=H^{i}(G_{\mathbb{Q},S},\mathbb{Q}_{p}/\mathbb{Z}_{p}(r))

for  0\leq i\leq 2 . Proposition 4 tells us that as  n varies,  H^{1}(G_{\mathbb{Q},S},\mathbb{Z}/p^{n}\mathbb{Z}(r)) is the direct sum of a
cyclic group of increasingly large order with a group of bounded order when  r is odd and is a
group of bounded order when  r is even. From this, we have immediately that

  \lim_{narrow\infty}\frac{h_{{\imath}}(n)}{n}=\{\begin{array}{l}
1 if r is odd
0 if r is even.
\end{array}
We aıso remark that  H^{1}(G_{\mathbb{Q},S},\mathbb{Z}/p^{n}\mathbb{Z}(r)) surjects onto the  p^{n} ‐torsion in  H^{1} , and the kemel

of this surjection is isomorphic to the finite cyclic group  H^{0} for sufficiently large  n since  r is
nonzero. This follows from the exact sequence

 0arrow \mathbb{Z}/p^{n}\mathbb{Z}(r)^{N}arrow H^{0}arrow p^{n}H^{0}arrow H^{1}
(G_{\mathbb{Q},S},\mathbb{Z}/p^{n}\mathbb{Z}(r))arrow H^{1}arrow p^{n}H^{1},
since  H^{0}=\mathbb{Z}/p^{n}\mathbb{Z}(r)^{N} for sufficiently large  n . Hence the divisible part of Hı is isomorphic
to  \mathbb{Q}_{p}/\mathbb{Z}_{p} if  r is odd and is trivial if  r is nonzero even. But the  \mathbb{Z}_{p} ‐corank of the divisible

part of Hı is exactly the dimension of  H^{1}(G_{\mathbb{Q},S},\mathbb{Q}_{p}(r)) as a  \mathbb{Q}_{p} ‐vector space, and therefore
 H^{1}(G_{\mathbb{Q},S},\mathbb{Q}_{p}(r)) is exactly as stated in the theorem.

Now consider the partial Euler‐Poincaré characteristic

 \chi(n)=h_{0}(n)-h_{1}(n)+h_{2}(n) .

By Poitou‐Tate duality, we have

 \chi(n)=\log_{p}(|\mathbb{Z}/p^{n}\mathbb{Z}(r)|^{-1}|\mathbb{Z}/p^{n}
\mathbb{Z}(r)^{+}|)=\{\begin{array}{ll}
\delta-n   if r is odd
0   if r is even,
\end{array}
where  \delta=0 if  p is odd and  \delta=1 if  p=2 . Now let

 a= \lim_{narrow\infty}\frac{\chi(n)}{n}=\{\begin{array}{ll}
-1   if r is odd
0   if r is even.
\end{array}
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As

  \lim_{narrow\infty}\frac{h_{0}(n)}{n}=0 and   \lim_{narrow\infty}\frac{h_{{\imath}}(n)}{n}=-a,
we see that

  \lim_{narrow\infty}\frac{h_{2}(n)}{n}=0.
Since  H^{2}(G_{\mathbb{Q},S},\mathbb{Z}/p^{n}\mathbb{Z}(r)) surjects onto the  p^{n} ‐torsion of  H^{2} , we conclude that the divisible
part of  H^{2} is zero. Hence  H^{2}(G_{\mathbb{Q},S},\mathbb{Q}_{2}(r))=0.  \square 
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