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1. Introduction

This paper is a joint work with Dr. Masahiro Ikeda (Keio University/RIKEN) and a
part of joint works [6] and [5]. In this paper we consider the following initial-boundary
value problem

TO2u(z,t) — Au(x,t) + du(z, t) = |u(z, )P, (z,t) € Qx (0,T),
(1.1) u(z,t) =0 (x,t) € 0Q x (0,T),
u(z,0) = ef(z), Tu(x,0) = Teg(x), x €,

where Q C RY (N € N) is an unbounded domain, for instance,
Q =RY\ B(0,1), or Q)= {pweR"; p>0,weX}

with ¥ € SV~! having smooth boundary. The region Q(X) is so-called sectorial domain.
The parameters p € (1, ﬁ) and € > 0 describe the the effect of nonlinearity and
the smallness of initial data, respectively. Finally, the constant 7 € {0, 1} switches the
parabolicity and hyperbolicity of the problem (1.1).

The interest of the present paper is the lifespan of blowup solutions to (1.1) for small
initial data. Therefore we first fix the pair (f,7g), then we discuss blowup of solutions
to the problem (1.1) with sufficiently small € > 0.

The study of global existence and blowup of solutions to (1.1) has a long history.
In the case 7 = 0, the problem

(1.2) {‘MW 1) = Au(a,t) = u(z, )P, (z,t) € RV x (0,7),
u(z,0) = up(z) > 0, zeRY

is initially studied in [2] to understand the effects of dimension and nonlinearity. In [2],
it is proved that

(i) if 1 <p <1+ %, then (1.2) does not have non-trivial global-in-time solutions.

(i) if p > 1+ 2, then (1.2) possesses nontrivial global-in-time solutions for small
initial data.
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The exponent pr =1+ % is called Fujita exponent. The same consequence as (i) for
the critical case p = pp is given in Hayakawa [3], Sugitani [25] and Kobayashi-Sirao—
Tanaka [11]. The lifespan estimate of solutions to (1.2) is also studied in Lee-Ni [13]
by using the heat kernel and the maximum principle as

—GE-DT
(Lifespan of u with uy =ef) ~ {C: e ?f L<p<pr,
exp(Ce=@®=V) if p = pp.
In the case 7 = 1, the problem forms a Cauchy problem of the usual damped wave
equation
(13) OPu(z,t) — Au(x,t) + Opu(w, t) = |u(x, t)P, (x,t) € RN x (0,T),
' u(z,0) = ef(x), du(z,0) =eg(x), z € RN,
The blowup phenomena and estimates of the lifespan of solutions to (1.3) has been
studied from the work of Li—Zhou [16]. They proved the blowup of solutions with
upper lifespan estimates for 1 < p < pr when N = 1,2. The three dimensional problem
with sharp upper lifespan estimates is proved by Nishihara [22]. For general case,
Todorova—Yordanov [26] showed blowup of small solutions for 1 < p < pp. Zhang
[29] derived blowup of small solutions in the critical case p = pp. For the lifespan
estimates for the critical case p = pp, recently, Lai-Zhou [12] succeeded in proving
the sharp upper estimates by applying the consideration in [13]. The precise lifespan
estimates for semilinear damped wave equation (1.3) is the same as that of semilinear
heat equation (1.2).

Similar study of respective problems for halved spaces R* x RY~* for exterior
domains and for sectorial domains has been separately done in the literature (see e.g.,
Meier [20, 21], Levine-Meier [14, 15], Tkehata [7, 8, 9, 10], Ogawa-Takeda [23],
Pinsky [24] and Wakasugi [28]).

We point out that most of the blowup solutions in various equations (like (1.2)
and (1.3)) can be treated in the framework of Mitidieri-Pokhozhaev [17] and also their
lifespan estimates can be given by this argument with small modification (see Mitidieri—
Pokhozhaev [19, 18]). However, in the critical case p = pp in (1.2) and (1.3), their
argument does not give sharp lifespan estimates (see also, Ikeda-Ogawa [4]).

The purpose of the present paper is to propose a new test function method from
the viewpoint of ordinary differential inequalities with respect to the parameter.

Here we introduce the definition of weak solutions to (1.1) which is used in the
present paper.

Definition 1. For (f,79) € H}(Q) x L*(Q2), the function u : Q x [0,7) — R is called
the weak solution of (1.1) with initial data (f,g) in (0,T) if u belongs the following
class

o JOUO.T): Hy () N C((0,1); L*(%)) if =0,
T 0M[0,7): L2() N C([0,T); HE(Q)) N C([0,T); L*#(Q)) if 7 =1



and satisfies u(0) = f, 79;u(0) = 7g and for every ¢ € C*(Q x [0,7)) with ¢ = 0 on
o0 x [0,7),

. T p T T
/(Tg+f)g0dx+/ /\u|pg0dafdt:/ /V?L-Vgpdxdtf/ /(T@tquu)@tgpdxdt.
Ja Jo Ja Jo Ja Jo Ja

Remark 1.1. Existence of local-in-time weak solutions to (1.1) in the sense verifies by
the standard argument of mild solutions

Ut) =e®rf + fot e8|y (s)|P ds in L?(Q) if =0,
u(t) = e AUy + j(f e"DAN(U(s))ds in HY(Q) x L*(Q) if =1,

where A(u,v) = (—v, —Apu + v) and N (u,v) = (0, |u|?). The domains of Ap and A
are given by D(Ap) = H*(Q)N HI(Q) and D(A) = D(Ap) x H}(£2). In this argument
N

we require p < 175 (see e.g., Cazenave-Haraux [1]).

The main result of this paper could be Proposition 2.1, which provides a sufficient
condition on the shape of domain and the parameter p for the blowup phenomena of
small solutions to (1.1). In Section 2, a positive harmonic function satisfying Dirichlet
boundary condition plays a crucial role. The profile of this function can be regarded
as the one of the shape of Q. In Section 3, we give a result of lifespan estimates of
blowup solutions in specified domains (Propositions 3.1, 3.2 and 3.3) as corollaries of
Proposition 2.1.

2. Analysis of blowup via a test function method

Here we assume that there exists a positive harmonic function ® satisfying Dirichlet
boundary condition, that is, ® € C'(£2) N C*°(2) satisfies

(2.1) Bx)>0 z€Q,
0

Moreover, existence of a nonnegative auxiliary function w € C?(Q) satisfying that there
exists £ > 0 such that

(2.2) |Vw(z)]? < kw(x), |Aw| <k

is required. Note that unboundedness of €2 is required to ensure the existence of ®.

Remark 2.1. Here we give examples of the choices of the pair (P, w) as follows:

1, |x[?) if Q =RY (N €N),
TN, |z|?) ifQ={r=(r1,...,75) ERY ; 25 >0},
1T—]z)> M, (Jz| = 1)?) if Q={2x e RY; |z| > 1} (N > 3),

(
(@) = E
(log |z|, (|z] — 1)?) if Q={reR?; |z| >1}.
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The following assertion is the essential tool of the present work, which is derived
via a test function method with a harmonic function ® satisfying Dirichlet boundary
condition.

Proposition 2.1. Suppose that there exists a pair (®,w) such that ® and w satisfy (2.1)
and (2.2), respectively. Assume that (f,7g9) € Hy(Q) x L*(Q) and (g + f)® € L*(Q)
with

(2.3) co = /Q(Tg + f)®dx > 0.

If the function

/ 1*17

T . P P

(2.4) W(T) = / / (1 + VwV|> ®dr| dR
1 {zeQ; w(z)<R} P

diverges as T — oo, then the solution of (1.1) with ¢ < 1 blows up until T =
h’l(Cs’(p’l)), where C' 1s a positive constant depending only on N, p, f, 7g.

Remark 2.2. Proposition 2.1 asserts that blowup phenomena of solutions to (1.1) with
small initial data are governed by the relation between the structure of the positive
harmonic function ® satisfying Dirichlet boundary condition and the exponent of non-
linearity p.

Proof of Proposition 2.1. Here we fix two kinds of functions n € C'*°([0,00)) and n* €
L™ ((0,00)) as follows, which will be used in the cut-off functions:

=1 if s €10,1/2] ,

. . . . 0 if s €10,1/2),
n(s) { is decreasing if s € (1/2,1) 7%(s) = (5) ifse[1/200)

) if s € [1,00), me) 1e » 00)-

For p > 1, we define for R > 0,

’l/)R(‘Tvt) = [n(sR(Ivt))]Zp,v (Ivt) € RN X [01 00)7
V() = [n*(se(z, )7, (z,t) € RY x [0,00)

with

w(x)* + ¢
—
We also set P(R) = supp¥rN(Q x [0, R]). The second function is useful in the sense of
the equality < (n(s)) = q[n*(s)]?"'n/(s). This kind of test functions with w(z) = |z|
is introduced in Mitidieri-Pokhozhaev [17].

Let u be a weak solution of (1.1) with initial data (ef,eg) in (0,7.). Without loss
of generality, we assume that 7, > R, with R, > 1 satisfying for every R > R,

sr(z,t)

Co

> 0.
2

In— /Q (rg + [)un(-0) de >



This is possible by a consequence of the dominated convergence theorem. For R €
! e)s Y =

(R, T:), take v = Oy as a test function which satisfies Dirichlet boundary condition
in view of (2.1). Noting that by (2.2),

|T®02 R — POYR —
2 2, 1
< 27 (" (s ntsn) + 201 = 1)1/ (s3)?) @05 + 2 o (s (o) el
2 /

+ 2 smln(sm)ldu] + 20f — 1)/ (s 2T

A(PYg)|

12 w1l
7 )@[z/)R]P + §|Vw -VO|[Yr]
o Vw -V 1
< T (1 + q)|> Plyz]e,

where C'is a positive constant depending only on NV, p, [|]|w2.((0,0c)) and k, we see from
the definition of weak solutions and Hoélder’s inequality that

R
(2.5) EIRJr/ /|u|p(I)1/}Rd:r,dt
0 JQ

R
= / / u(ﬂI)Ofl/)R — ®Oppp — A((I)'L/JR)> dx dt
o Jao

1
o

<C <RP’/ 7' ® du dt) (/ / |u[P Dy, da dt) 7
P(R)

o) = 1.+ [7012) 2]

Remark that the previous computation requires A® = 0. Now we define

‘R 0 dp
Y(R) = / </ / u|P<1>¢;da;dt> W R <R<T.
Jo 0 Ja P

Then as in [6, Lemma 3.9], we have Y € C'([R,,T.)) and

where

R
/ / WP duh dedt,  Y(R) < / / P g da dt.
0 Q

On the other hand, by the definition of P(R), we have

R
// O ® dz dt g// O d dr dt = R/ or'd dz.
P(R) 0 J{zeQ; w(z)<R} {z€Q ; w(z)<R}

Therefore (2.5) is reduced to the following ordinary differential inequality with respect
to the parameter R:

p—1
(2.6) (= + Y(R))p <cv (/ 0" dx) Y'(R).
2 (2€Q ; w(z)<R}
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Solving the above equation, we deduce

0< (% + Y(R))l_p

£ 1— R , 1-p
< (% +Y(R.)) " p— 1)0*1’/ (/ or <I>d:z¢> dp
. {zeQ; w(z)<p}

1— R , 1-p
< <E> - (p— 1)C’_p/ (/ er <I>d:1:) dp.
2 2k {z€Q ; w(z)<p}

If (2.4) is satisfied, then we have R < R, such that

1— Re , 1-p
(@) o 1)0—P/ (/ % <1>d1,-> dp.
2 « {zeQ; w(z)<p}

Since R € [R,,T;) is arbitrary, we obtain T. < R..

3. The result of the problem in particular cases

In this section we give blowup results for the following cases:
e the whole space case {2 = RV
o thecase Q=Q, = {z e RV ; |z| > 1} (N > 2)
o the case Q= Q(X) = {pw e RV ; p> 0,w € X} with ¥ C SV (N > 2)

as application of Proposition 2.1.

3.1 The case Q) =RV

The following assertion is well-known as mentioned in Introduction.

Proposition 3.1 (The case of Q = RY). Let (f,7g) € H'(RY) x L*(RY) with

Tg+f€L1(RN),/ (tg+ f)dz > 0.
RN

If 1 < p < pp, then the solution u of (1.1) blows up until

T Ce G2 fl<p<l+Z,
exp(Ce= P V) ifp=142.

Proof. As in Remark 2.1, we choose

O(r)=1, wx) =z
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which satisfy (2.1) and (2.2), respectively. Then the function h in (2.4) is given by

T ) o 1=p
h(T) :/ / <1+ M) Odr| dR
1 {zeRN ; w(z)<R} P

T
— |B(0, 1)\1710/ R > D4R
1

1-S(p-1)

M(Tl U 1) ifl<p<ltl
1B(0,1)]' 7 log T ifp=1+%

where |B(0,1)] = fB(O 1y dz. Therefore Proposition 2.1 implies the desired upper bound
for the lifespan of solution w. O

3.2 Exterior problem Q = Q; (N > 2)

Next assertion is a blowup result of small solutions to (1.1) in the exterior domain ;.
Proposition 3.2 (The case of Q = ). Let (f,79) € Hy(Q1) x L*(Qy) with

Jo,(rg + A = |2 N)dz >0, if N >3,

1
(Tg+f) 10g|-77| eL (Ql)v {f91(79+f) 10g|]}|dI > 07 ZfN =2.

If 1 < p < pp, then the solution u of (1.1) blows up until

Niy—
-5

Cce Gt ifN>31<p<l+2
exp(Ce™P~D) fN>3, p=1+2%
C(e! log(e‘l))% ifN=21<p<2,
exp(exp(Ce~ D)) if N =2p=2.

Remark 3.1. The cases N > 3 and N =2, 1 < p < 2 are known (See Pinsky [24]). T
main contribution of the paper [5] is the two-dimensional critical case N =p = 2.

Proof of Proposition 3.2. First we treat the case N > 3. We choose
O(z) =1— |27, w(z) = (jz| - 1)%
Then we easily see that ¢ satisfies A® = 0 and
Vw> = 4w, |Aw|<2N+4, |[Vw-V®| <2(N —2)d.

By direct computation the function h in (2.4) can be estimated as follows:

T 1-p
WT) > C / ( / 1 d:r) dR.
1 {z€RN ; |z|<2R2}

By Proposition 2.1, we obtain the same conclusion as the case of ) = RV,
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If N =2, then we change the choice of ® as
O = log |z].

Then noting that
|z -1

7]

[Vw - VO| =2 < 2log|z| < 29,

we deduce that the function h in (2.4) is estimated as follows:

T
h(T) > C/ (RlogR)' " dR
J1

S CT*?(logT)'? if1<p<2,
| CloglogT if p=2.

Proposition 2.1 implies the desired upper bound for the lifespan of solution . O

3.3 Problems in Q(X) = {pw e RY; p>0,we X} (N >2)

Finally, we treat the case of sectorial domain Q = Q(X). By using Friedrichs exten-
sion, we can find local-in-time weak solutions to (1.1) for every (f,7¢g) € H3(Q(Z)) x
L2(2(X)). The condition on essential selfadjointness of Laplacian A endowed with
domain

D ={ueCeRY\{0}); u=0o0ndN%) (= Qo%))}

is written in [6].

To state the result for sectorial domain, First we state the assertion for the first eigen-
value and eigenfunction of the Laplace—Beltrami operator in ¥ endowed with Dirichlet
boundary condition (see [27, Chapter IX] for detail).

Lemma 1. The Laplace—Beltrami operator — Ay, in L*(%) endowed with domain H? ()N
Hi(X) is selfadjoint and all resolvent operator of —Ay. are compact. The first eigen-
value As; is nonnegative and simple, and the corresponding eigenfunction s, is positive
in ¥. Moreover, Ny, is positive if and only if ¥ # SN-1.

Here we define v as a smallest root of the quadratic equation v2+ (N —2)y— Ay = 0.
Then the positive harmonic function on Q(X) satisfying Dirichlet boundary condition
is given as follows.

Lemma 2. Set

Dy(2) = [ (fxl) reqr).

Then Oy, satisfies

Adx(z) =0 x € QY),
D) > 0 r e Q)
Dy(z) =0 x € 0Q(D),
z-VOy(z) =7Py(x) x € Q).



According to the blowup result with upper lifespan estimates for the case of Q =
() is the following. The critical exponent for (1.1) in Q(X) seems to depend on
which comes from the first eigenvalue of Laplace—Beltrami operator —Asy.

Proposition 3.3 (The case of Q = Q(X)). Let (f,7g) € H} (X)) x LA QX)) with
(tg+ f)®x € L'(Q(E)), / (rg+ f)®y dz > 0.
o)

If 1 < p < pp, then the solution v of (1.1) blows up until

(AL _Namyr
T:{C6 <P“(2)) 2f1<p<1;mv%w
exp(Ce" V) if p=1+ 57
Proof. Tt is verified by choosing ® = @5, and w(x) = |z|* O
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