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1 Introduction

The Allen‐Cahn equation [1] is an important phenomenological model used to describe
the motion of antiphase boundaries in binary alloys. For a bounded domain  \Omega\subset \mathbb{R}^{d} , the

equation can be obtained as the  L^{2}‐gradient flow of the energy functional

 E(u)= \int_{\Omega}\frac{\varepsilon}{2}|\nabla u|^{2}+\frac{1}{\varepsilon}
F(u)dx
where  \varepsilon>0 is a small parameter related to the interfacial thickness of the thin regions

separating the alloys, and  F is a double well potential. The typical example is a smooth

potential  F(s)=(s^{2}-1)^{2} , but non‐smooth (or singular) potentials such as

 F(s)= \frac{1}{2}[(1+s)\log(1+s)+(1-s)\log(1-s)]-\frac{\theta}{2}s^{2},

 F(s)=\begin{array}{ll}
\frac{1}{2}(1-s^{2}) ,   s\in[-1,1],
+\infty,   s\not\in[-1,1].
\end{array}
have also been studied. The above energy  E is commonly known as the Ginzburg‐

Landau energy functional or the Modica‐Mortola energy functional. The latter name is
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attributed to the well‐known result by Modica and Mortola [11] that  E(u) converges to a
scalar multiple of the perimeter functional in the sense of  \Gamma‐convergence as  \varepsilonarrow 0 , which

allows for the interpretation that the Allen‐Cahn equation

 u_{t}= \triangle u-\frac{1}{\varepsilon^{2}}F'(u)
is an approximation of the  L^{2}‐gradient flow of the perimeter functional, i.e., the geometric

motion by mean curvature, as  \varepsilonarrow 0.

For classical mathematical analysis of the Allen‐Cahn equation, many authors often

consider homogeneous Neumann or Dirichlet boundary conditions:

 \partial_{n}u=0 (Neumann) or  u=0 (Dirichlet) on  \partial\Omega.

One then obtains the following energy identity for solutions to the Allen‐Cahn equation:

  \frac{d}{dt}E(u(t))+\int_{\Omega}|u_{t}|^{2}dx=0 for  t>0.

Recently, physicists [6, 8] have proposed to include effective short‐range interactions be‐
tween the bulk domain  \Omega and its boundary  \partial\Omega by introducing an additional energy

functional defined on the boundary. We use the notation  \Gamma  :=\partial\Omega , and define the surface

energy

 E_{s}( \phi):=\int_{\Gamma}\frac{\kappa}{2}|\nabla_{\Gamma}\phi|^{2}+G(\phi)dS
where  \nabla_{\Gamma} denotes the surface gradient operator defined on  \Gamma , and  G is a surface potential

function that may account for potential phase separation on the boundary. When the

coefficient  \kappa is positive, we allow for the possibility of lateral diffusion on the boundary.

In the sequel, we set  \varepsilon=\kappa=1 as their values have no consequence with the analytical

results we report below. By combining the bulk energy  E and the surface energy  E_{s},

taking the surface variable  \phi as the trace of the bulk variable  u , and then computing the

associated  L^{2}‐gradient flow, one obtains the following Allen‐Cahn system:

 u_{t}=Au-F'(u) in  \Omega,

 \phi_{t}=\triangle_{\Gamma}\phi-G'(\phi)-\partial_{n}u on  \Gamma , (1.1)

  u=\phi on  \Gamma

where  \triangle_{\Gamma} is the Laplace‐Beltrami operator on  \Gamma . The second and third equations can be
combined to read as

 u_{t}=\triangle_{\Gamma}u-G'(u)-\partial_{n}u on  \Gamma,

which in the literature is called a dynamic boundary condition for the bulk variable  u.

Furthermore, in light of the dynamic boundary condition, we obtain the energy identity

  \frac{d}{dt}(E(u(t))+E_{s}(u(t)))+\int_{\Omega}|u_{t}|^{2}dx+\int_{\Gamma}
|u_{t}|^{2}dS=0 for  t>0.
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Since their introduction, many authors have studied the Allen‐Cahn equation with dy‐

namic boundary conditions, see for instance [2, 3, 5, 14], and the references cited in [4].
For the rest of this note, we report on some recent mathematical investigations on a

modification of (1.1), in which the third equation is replaced by

 u=h(\phi) on  \Gamma

for some continuous function  h :  \mathbb{R}arrow \mathbb{R} . For the special case  h(s)=s , we recover the

original system (1.1), and so our investigation aims to generalise the current results in the
literature [2, 3, 14] for equations and dynamic boundary conditions of Allen‐Cahn type.
By setting  g as the inverse of  h , i.e.,  \phi=g(u) , using the relation  h'(\phi)=(g'(u))^{-1} we can

reformulate (1. 1) as

 u_{t}-\triangle u+F'(u)=0 in  \Omega,
(1.2)

 g'(u)((g(u))_{t}-A_{\Gamma}(g(u))+G'(g(u)))+\partial_{n}u=0 on  \Gamma.

We immediately observe that there will be some difficult in passing to the limit for some

approximation scheme (such as Faedo‐Galerkin) to recover the Laplace‐Beltrami term if
 g is a nonlinear function. This is more evident in the weak formulation of (1.2):

 0= \int_{\Omega}(u_{t}+F'(u))\zeta+\nabla u\cdot\nabla\zeta dx
 + \int_{\Gamma}g'(u)((g(u))_{t}+G'(g(u)))\zeta+\nabla_{\Gamma}g(u)\cdot\nabla_{
\Gamma}(g'(u)\zeta)dS

for all  \zeta\in H^{1}(\Omega) such that  \zeta|_{\Gamma}\in H^{1}(\Gamma) . In particular, for an approximation scheme

such as Faedo‐Galerkin approximation, the most difficult part in passing to the limit is

the term with the highly nonlinear surface gradient. However, in the case where  g (and
also h) is an affine linear function, i.e.,  g(s)=\alpha^{-1}(s-\beta) for some  \alpha\neq 0 and  \beta\in \mathbb{R} , so
that   h(s)=\alpha s+\beta , we are able to establish strong well‐posedness to the system

 u_{t}-\triangle u+F'(u)=0 in  \Omega,

 \phi_{t}-\triangle_{\Gamma}\phi+G'(\phi)+\alpha\partial_{n}u=0 on  \Gamma , (1.3)

  u=\alpha\phi+\beta on  \Gamma,

where by strong solutions we mean that the above equations are satisfied a.e. in  \Omega and

a.e. on  \Gamma . Indeed, substituting the relation   u=\alpha\phi+\beta into the surface equation, we can

express (1.3) equivalently as

 u_{t}-\triangle u+F'(u)=0 in  \Omega,

 u_{t}-\triangle_{\Gamma}u+\alpha G'(\alpha^{-1}(u-\beta))+\alpha^{2}
\partial_{n}u=0 on  \Gamma,

which differs only slightly from the standard case  a=1,  \beta=0 studied previously in the
literature.
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To tackle the more general problem (1.2), we turn to a well‐known technique in nu‐
merical analysis, in which we replace the Dirichlet‐like condition  u=h(\phi) by a Robin

boundary condition and study the system

 u_{t}^{K}-\triangle u^{K}+F'(u^{K})=0 in  \Omega,

 \phi_{t}^{K}-\triangle_{\Gamma}\phi^{K}+G'(\phi^{K})+h'(\phi^{K})\partial_{n}u^
{K}=0 on  \Gamma , (1.4)

 K\partial_{n}u^{K}=h(\phi^{K})-u^{K} on  \Gamma.

In the formal limit  Karrow 0 , if  u^{K}arrow u and  \phi^{K}arrow\phi for some limit functions  (u, \phi) , then

we recover the condition  u=h(\phi) on  \Gamma , which serves to motivate the parallel study of

(1.4) in addition to (1.3).

2 Main Results

We work with the following assumptions:

(1)  \Omega\subset \mathbb{R}^{3} is a bounded domain with smooth boundary  \Gamma.

(2) The function  h\in C^{2}(\mathbb{R}) with  h',  h"\in L^{\infty}(\mathbb{R}) .

(3)  F and  G are  C^{3}(\mathbb{R}) functions satisfying

 |F"'(s)|\leq c_{0}(1+|s|^{p}) ,  |G"'(s)|\leq c_{0}(1+|s|^{q}) for all  s\in \mathbb{R},

 F(s)\geq c_{1}|s|-c_{2},  G(s)\geq c_{1}|s|-c_{2} for  |s|>c_{3},

 F"(s)\geq-c_{4},  G"(s)\geq-c_{4} for all  s\in \mathbb{R}

for positive constants  c_{0} , ,  c_{4} with exponents  p\in[0,3 ) and   q\in[0, \infty ).

(4) The initial data  (u_{0}, \phi_{0})\in H^{2}(\Omega)\cross H^{2}(\Gamma) such that  K\partial_{n}u_{0}+u_{0}=h(\phi_{0}) holds a.e.
on  \Gamma.

While in the introduction we mentioned non‐smooth potentials, which are excluded by

these assumptions, we will come back to them at the last section of this note. Unless

stated otherwise, we assume that assumptions (1)  -(4) hold throughout this note.

The first result is a strong well‐posedness theorem for the Robin system (1.4).

Theorem 2.1 ( [9, Theorems 2.1, 2.2]). For any  \delta>0 , there exist a unique pair of
functions  (u, \phi) with

 u\in L^{\infty}(0, \infty;H^{2}(\Omega))\cap L^{\infty}(\delta, \infty;H^{3}
(\Omega)) ,

 u_{t}\in L^{\infty}(\delta, \infty;H^{1}(\Omega))\cap L^{\infty}(0, \infty;
L^{2}(\Omega))\cap L^{2}(0, \infty;H^{1}(\Omega)) ,

 \phi\in L^{\infty}(0, \infty;H^{2}(\Gamma))\cap L^{\infty}(\delta, \infty;H^{3}
(\Gamma)) ,
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 \phi_{t}\in L^{\infty}(\delta, \infty;H^{1}(\Gamma)\cap L^{\infty}(0, \infty;L^
{2}(\Gamma))\cap L^{2}(0, \infty;H^{1}(\Gamma)) ,

that satisfy the equations in (1.4)  a.e . in  \Omega and  a.e . on  \Gamma with  u(0)=u_{0)}\phi(0)=\phi_{0}.
Furthermore, if  (u_{i}, \phi_{i})_{i=1,2} denote two solutions to (1.4) corresponding to initial data
 (u_{0,i}, \phi_{0,i})_{i=1,2} , then, there exist positive constants  c_{1} and  c_{2} depending on the initial data,

 \Omega and  \Gamma such that

 (\Vert u_{1}(t)-u_{2}(t)\Vert_{L^{2}(\Omega)}^{2}+\Vert\phi_{1}(t)-\phi_{2}(t)
\Vert_{L^{2}(\Gamma)}^{2})

 + \int_{0}^{t}(\Vert u_{1}(s)-u_{2}(s)\Vert_{H^{1}(\Omega)}^{2}+\Vert\phi_{1}
(s)-\phi_{2}(s)\Vert_{H^{1}(\Gamma)}^{2})ds (2.5)

 \leq c_{1}e^{c_{2}t}(\Vert u_{0,1}-u_{0,2}\Vert_{L^{2}(\Omega)}^{2}+
\Vert\phi_{0,1}-\phi_{0,2}\Vert_{L^{2}(\Gamma)}^{2}) .

The above theorem yields the global well‐posedness of the Robin problem (1.4), and
in light of the solution existing for all positive times, the next series of results address the

long‐time behaviour of the solution.

We begin first with the stationary problem of (1.4), which reads as

 -\triangle u_{*}+F'(u_{*})=0 in  \Omega,

 K\partial_{n}u_{*}+u_{*}=h(\phi_{*}) on  \Gamma , (2.6)

 -A_{\Gamma}\phi.  +G'(\phi_{*})+K^{-1}h'(\phi_{*})\partial_{n}u_{*}=0 on  \Gamma.

It turns out that solutions to (2.6) have a characterisation, as the following theorem shows.

Theorem 2.2 ( [9, Theorem 3.1]). A pair  (u_{*}, \phi_{*})\in H^{2}(\Omega)\cross H^{2}(\Gamma) is a strong solution
to the stationary problem (2.6) if and only if  (u_{*}, \phi_{*}) is a critical point to the functional

  \mathcal{E}(u, \phi):=\int_{\Omega}\frac{1}{2}|\nabla u|^{2}+F(u)dx+
\int_{\Gamma}\frac{1}{2}|\nabla_{\Gamma}\phi|^{2}+G(\phi)+\frac{1}{2K}|u-h(\phi)
|^{2}dS.
We now strengthening the regularity assumptions of  h,  F and  G to analytical regular‐

ities. This is essential as we aim to establish an extended Lojasiewicz‐Simon inequality

for critical points  (u_{*}, \phi_{*})\in H^{2}(\Omega)\cross H^{2}(\Gamma) of the energy  \mathcal{E} . Let  \mathcal{M} :  (H^{1}(\Omega)\cross H^{1}(\Gamma))arrow
 (H^{1}(\Omega)\cross H^{1}(\Gamma))^{*} be defined as

 \{\mathcal{M}(u, \phi), (w, \xi)\rangle_{H^{1}(\Omega)\cross H^{1}(\Gamma)}

 := \int_{\Omega}\nabla u\cdot\nabla w+F'(u)wdx+\int_{\Gamma}\nabla_{\Gamma}\phi
\cdot\nabla_{\Gamma}\xi+G'(\phi)\xi dS (2.7)

 + \int_{\Gamma}\frac{1}{K}(u-h(\phi))(w-h'(\phi)\xi)dS,
that is,  \mathcal{M}(u, \phi) can be seen as the first variation of  \mathcal{E} at  (u, \phi) . Then, we have the

following:
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Theorem 2.3 ([9, Theorem 4.1]). Let  (u_{*}, \phi_{*}) be any critical point of the energy  \mathcal{E} . There
exist   \theta\in(0, \frac{1}{2}) and  \gamma>0 depending on  (u_{*}, \phi_{*}) such that for any  (u, \phi)\in H^{1}(\Omega)\cross H^{1}(\Gamma)
satisfying

 \Vert(u, \phi)-(u_{*}, \phi_{*})\Vert_{H^{1}(\Omega)\cross H^{1}(\Gamma)}=\sqrt
{\Vert u-u_{*}\Vert_{H^{1}(\Omega)}^{2}+\Vert\phi-\phi_{*}\Vert_{H^{1}(\Gamma)}^
{2}}<\gamma,
it holds that

 |\mathcal{E}(u, \phi)-\mathcal{E}(u_{*}, \phi_{*})|^{1-\theta}\leq\Vert 
\mathcal{M}(u, \phi)\Vert_{(H^{1}(\Omega)\cross H^{1}(\Gamma))^{*}} . (2.8)

One important point to note is the above theorem asserts that the Lojasiewicz‐Simon

inequality (2.8) is valid for any pair of function  (u, \phi) , even if they are not solutions to
(1.4), as long as they are sufficiently close to the equilibrium point  (u_{*}, \phi_{*}) . In particular,
the Lojasiewicz‐Simon inequality is only a statement about an energy functional  \mathcal{E} , its

first variation  \mathcal{M} , and its critical points  (u_{*}, \phi_{*}) .

However, if  (u, \phi) is a solution to (1.4), we can refine the above result, namely:

Theorem 2.4 ([9, Theorem 4.2]). Let  (u_{*}, \phi_{*}) be any critical point of the energy  \mathcal{E} . There
exist   \theta\in(0, \frac{1}{2}) and  \gamma>0 depending on  (u_{*}, \phi_{*}) such that for any strong solution  (u, \phi)
to (1.4) satisfying

 \Vert(u, \phi)-(u_{*}, \phi_{*})\Vert_{H^{2}(\Omega)\cross H^{2}(\Gamma)}
<\gamma,

it holds that

 |\mathcal{E}(u, \phi)-\mathcal{E}(u_{*}, \phi_{*})|^{1-\theta}\leq\Vert F'(u)-
\triangle u\Vert_{L^{2}(\Omega)}+\Vert G'(\phi)-\triangle_{\Gamma}\phi+K^{-1}h'(
\phi)\partial_{n}u\Vert_{L^{2}(\Gamma)}
 =\Vert u_{t}\Vert_{L^{2}(\Omega)}+\Vert\phi_{t}\Vert_{L^{2}(\Gamma)}.

Notice that the norms have been modified from  H^{1}(\Omega)\cross H^{1}(\Gamma) to  H^{2}(\Omega)\cross H^{2}(\Gamma)
for the closeness to the critical point, and the right‐hand side of the Lojasiewicz‐Simon

inequality has been modified from  \Vert \mathcal{M}(u, \phi)\Vert_{(H^{1}(\Omega)\cross H^{1}(\Gamma))^{*}} to  \Vert \mathcal{M}(u, \phi)\Vert_{L^{2}(\Omega)\cross L^{2}(\Gamma)} , which

according to (2.7) is

 \Vert \mathcal{M}(u, \phi)\Vert_{L^{2}(\Omega)\cross L^{2}(\Gamma)}=\Vert F'(u)
-\triangle u\Vert_{L^{2}(\Omega)}+\Vert G'(\phi)-\triangle_{\Gamma}\phi+K^{-1}h'
(\phi)\partial_{n}u\Vert_{L^{2}(\Gamma)}
 =\Vert u_{t}\Vert_{L^{2}(\Omega)}+\Vert\phi_{t}\Vert_{L^{2}(\Gamma)}

if  (u, \phi) is a strong solution to (1.4).
Thanks to the extended Lojasiewicz‐Simon inequality we can establish the long‐time

behaviour of solutions to (1.4). This is formulated as follows.

Theorem 2.5 ( [9, Theorem 5.4]). For any initial condition  (u_{0}, \phi_{0}) satisfying condi‐
tion (4), the unique global strong solution to (1.4) converges to an equilibrium  (u_{*}, \phi_{*})\in
 H^{2}(\Omega)\cross H^{2}(\Gamma) which is a strong solution to the stationary problem. Moreover, there exist

a positive constant  C and   \theta\in(0, \frac{1}{2}) depending on  (u_{*}, \phi_{*}) such that

 \Vert(u_{*}, \phi_{*})-(u(t), \phi(t))\Vert_{H^{2}(\Omega)\cross H^{2}(\Gamma)}
\leq C(1+t)^{-\theta/(1-2\theta)}.
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We now turn to the limit problem of (1.4) as  Karrow 0 , which was the original motivation
to study the Robin problem. Due to the highly nonlinear nature of (1.2) we are only able
to investigate the well‐posedness and convergence in the limit  Karrow 0 for the case of affine

linear relations, i.e., the problem (1.3). The first result concerns the strong well‐posedness
of (1.3).

Theorem 2.6 ( [4, Theorem 3.6]). Let  u_{0}\in H^{2}(\Omega) with  F(u_{0})\in L^{1}(\Omega) and  G(\alpha^{-1}(u_{0}-
 \beta))\in L^{1}(\Gamma) . Then, for any  T>0 , there exists a unique strong solution  (u, \phi) satisfying

 u\in L^{\infty}(0, T;H^{2}(\Omega))\cap H^{1}(0, T;H^{1}(\Omega))\cap W^{1,
\infty}(0, T;L^{2}(\Omega)) ,

 \phi=\alpha^{-1}(u|_{\Gamma}-\beta)\in L^{\infty}(0, T;H^{2}(\Gamma))\cap H^{1}
(0, T;H^{1}(\Gamma))\cap W^{1,\infty}(0, T;L^{2}(\Gamma))

to (1.3) with  u(0)=u_{0} . Furthermore, if  (u_{i}, \phi_{i})_{i=1,2} denote two solutions to (1.3) corre‐
sponding to initial data  (u_{0,i}, \phi_{0,i})_{i=1,2} , then, there exist positive constants  c_{1} and  c_{2} such

that (2.5) holds.

The next result states the weak convergence of solutions  (u_{K}, \phi_{K}) of (1.4) to the
solution  (u, \phi) of (1.3) as  Karrow 0.

Theorem 2.7 ( [4, Theorem 3.4]). For  K>0 , let  (u_{K}, \phi_{K}) be the unique strong solution
to (1.4) with the specific case   h(s)=\alpha s+\beta for some  \alpha\neq 0 and  \beta\in \mathbb{R} , with corresponding
initial condition  (u_{0,K}, \phi_{0,K}) . Suppose there exists functions  u_{0}\in H^{1}(\Omega) and  \phi_{0}\in H^{1}(\Gamma)
such that

 u_{0,K}arrow u_{0} in  H^{1}(\Omega) ,  \phi_{0,K}arrow\phi_{0} in  H^{1}(\Gamma) ,

with

  u_{0}=h(\phi_{0})=\alpha\phi_{0}+\beta  on  \Gamma,  \Vert u_{0,K}-h(\phi_{0,K})\Vert_{L^{2}(\Gamma)}^{2}\leq CK

for some positive constant  C independent of K. Then, it holds that

 u_{K}arrow u weakly‐, in  L^{\infty}(0, T;H^{1}(\Omega))\cap H^{1}(0, T;L^{2}(\Omega)) ,

 \phi_{K}arrow\phi weakly‐, in  L^{\infty}(0, T;H^{1}(\Gamma))\cap H^{1}(0, T;L^{2}(\Gamma)) ,

 u_{K}-h(\phi_{K})arrow 0 strongly in  L^{2}(0, T;L^{2}(\Gamma)) ,

where the pair of function  (u, \phi) is a weak solution to (1.3) in the following sense: for all
 \zeta\in H^{1}(\Omega) such that  \zeta|_{\Gamma}\in H^{1}(\Gamma) and for  a.e.  t\in(0, T) it holds that

 0= \int_{\Omega}u_{t}\zeta+\nabla u\cdot\nabla\zeta+F'(u)\zeta dx+\int_{\Gamma}
\frac{1}{\alpha}(\phi_{t}\zeta|_{\Gamma}+G'(\phi)\zeta|_{\Gamma}+\nabla_{\Gamma}
\phi\cdot\nabla_{\Gamma}\zeta|_{\Gamma})dS
and  u(0)=u_{0},  \phi(0)=\phi_{0}.
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Thanks to the strong well‐posedness of (1.3) and of (1.4), it is possible to establish
strong convergence of  (u_{K}, \phi_{K}) to  (u, \phi) and also obtain a rate of convergence. This is

given in the following theorem.

Theorem 2.8 ( [4, Theorem 3.7]). For  K>0 , let  (u_{K}, \phi_{K}) denote the unique strong
solution to (1.4) corresponding to initial condition  (u_{0,K}, \phi_{0,K}) , and let  (u, \phi) denote the
unique strong solution to (1.3) corresponding to initial condition  (u_{0}, \phi_{0}) , where  \phi=

 \alpha^{-1}(u|_{\Gamma}-\beta) and  \phi_{0}=\alpha^{-1}(u_{0}|_{\Gamma}-\beta) . Suppose further that  F and  G have the following

decomposition:

 F(s)=\hat{\beta}(s)+\hat{\pi}(s) , G(s)=\hat{\beta}_{\Gamma}(s)+\hat{\pi}
_{\Gamma}(s) \forall s\in \mathbb{R},

where  \hat{\beta},\hat{\beta}_{\Gamma}\in C^{2}(\mathbb{R}) are convex, while  \hat{\pi},\hat{\pi}_{\Gamma}\in C^{2}(\mathbb{R}) have globally Lipschitz derivatives.

Then, there exists a positive constant  C independent of  K such that

 \Vert u_{K}-u\Vert_{L^{\infty}(0,T,L^{2}(\Omega))\cap L^{2}(0,T,H^{1}(\Omega))}
^{2}+\Vert\phi_{K}-\phi\Vert_{L^{\infty}(0,T,L^{2}(\Gamma))\cap L^{2}(0,T,H^{1}(
\Gamma))}^{2}
 +K^{-1}\Vert\alpha\phi_{k}+\beta-u_{K}\Vert_{L^{2}(0,T,L^{2}(\Gamma))}^{2}

 \leq C(\Vert u_{0,K}-u_{0}\Vert_{L^{2}(\Omega)}^{2}+\Vert\phi_{0,K}-\phi_{0}
\Vert_{L^{2}(\Gamma)}^{2}+K\Vert\partial_{n}u\Vert_{L^{2}(0,T,L^{2}(\Gamma))}
^{2}) .

Let us mention that the assumption on the splitting of  F and  G into a convex part and

a non‐convex part is a natural assumption, since many of the potentials (such as those
discussed in the Introduction) used in the literature exhibit this kind of decomposition.
Moreover, we note that in order for the above error estimate to be valid, the minimum

regularity for the solution  (u, \phi) of the limit problem (1.3) is that  u\in L^{2}(0, T;H^{2}(\Omega)) .
Hence, the strong existence of solutions to (1.3) is essential for strong convergences as
 Karrow 0.

3 Non‐smooth potentials

The well‐posedness results for (1.3) and (1.4) in the previous section can also be shown
for the case where  F and  G are non‐smooth, i.e., the classical derivative of  F and  G need
not exist. For the rest of this section we assume that

(5) There exist splitting  F=\hat{\beta}+\hat{\pi} and  G=\hat{\beta}_{\Gamma}+\hat{\pi}_{\Gamma} for the potentials, where

(i)  \hat{\beta},\hat{\beta}_{\Gamma} :  \mathbb{R}arrow[0, \infty] are proper, convex, lower semicontinuous functions with
 \hat{\beta}(0)=0 and  \hat{\beta}_{\Gamma}(0)=0.

(ii)  \hat{\pi},\hat{\pi}_{\Gamma}\in C^{2}(\mathbb{R}) are nonnegative functions whose first derivative  \pi=\hat{\pi}' and
 \pi_{\Gamma}=\hat{\pi}_{\Gamma}' are Lipschitz continuous.
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(iii) The subdifferentials  \beta  :=\partial\hat{\beta} and  \beta_{\Gamma}  :=\partial\hat{\beta}_{\Gamma} are maximal monotone graphs on
 \mathbb{R}\cross \mathbb{R} with effective domains  D(\beta) and  D(\beta_{\Gamma}) , respectively, and  D(\beta),  D(\beta_{\Gamma})
need not be equal to the whole real line  \mathbb{R} . Furthermore, for the problem (1.3)
we assume that for some  p<5 and   q<\infty , there is a positive constant  C>0

such that

 |\xi|\leq C(1+|u|^{p}) ,  |\xi_{\Gamma}|\leq C(1+|\phi|^{q}) for all  \xi\in\beta(u),  \xi_{\Gamma}\in\beta_{\Gamma}(\phi) .

While for (1.4) we assume that for all  \delta>0 there exists  C_{\delta}>0 such that

 |\xi|\leq\delta u\xi+C_{\delta} for all  \xi\in\beta(u) .

(iv) For (1.4) the initial data  (u_{0}, \phi_{0}) satisfy  u_{0}\in H^{2}(\Omega) with  \beta^{0}(u_{0})\in L^{2}(\Omega) ,
 \phi_{0}\in H^{2}(\Gamma) with  \beta_{\Gamma}^{0}(\phi_{0})\in L^{2}(\Gamma) , and  K\partial_{n}u_{0}+u_{0}=h(\phi_{0}) holds a.e. on  \Gamma,

where  \beta^{0}(u_{0}) is the element in the set  \beta(u_{0}) with the minimal  L^{2}(\Omega) ‐norm, and

vice versa for  \beta_{\Gamma}^{0}(\phi_{0}) . While for (1.3) the initial data  u_{0} satisfies  u_{0}\in H^{2}(\Omega)
with  \beta^{0}(u_{0})\in L^{2}(\Omega) and trace u  |_{\Gamma}\in H^{2}(\Gamma) with  \beta_{\Gamma}^{0}(\alpha^{-1}(u_{0}|_{\Gamma}-\beta))\in L^{2}(\Gamma) .

We mention that in comparison with earlier works [2, 3] for the problem (1.3) with  \alpha=1

and  \beta=0 , we do not impose a dominating assumption between the subdifferentials  \beta and

 \beta_{\Gamma} such as  [2, (2.22)-(2.23)] . In fact, for some  \alpha\neq 1,  \alpha\neq 0 and  \beta\neq 0 there is a simple

counterexample in which the dominating assumption of [2] does not hold when we have
the affine linear transmission condition   u=\alpha\phi+\beta in (1.3), see for example [4, Remark
7.1] for more details. This motivates the growth assumptions in (iii) to obtain sufficient
uniform estimates in an approximation scheme to deduce the strong existence of solutions.

Under these assumptions we have the following strong well‐posedness for (1.4) with
non‐smooth potentials.

Theorem 3.1 ([4, Theorems 3.1 and 3.2]). For any  T>0 , there exists a unique quadruple
 (u, \phi, \xi, \xi_{\Gamma}) with

 u\in L^{\infty}(0, T;H^{2}(\Omega))\cap W^{1,\infty}(0, T;L^{2}(\Omega))\cap H^
{1}(0, T;H^{1}(\Gamma)) ,  \partial_{n}u\in H^{1}(0, T;L^{2}(\Gamma)) ,

 \xi\in L^{\infty}(0, T;L^{2}(\Omega)) ,  \xi\in\beta(u)a.e . in  \Omega,

 \phi\in L^{\infty}(0, T;H^{2}(\Gamma))\cap W^{1,\infty}(0, T;L^{2}(\Gamma))\cap
H^{1}(0, T;H^{1}(\Gamma)) ,

 \xi_{\Gamma}\in L^{\infty}(0, T;L^{2}(\Gamma)) ,  \xi_{\Gamma}\in\beta_{\Gamma}(\phi)a.e . on  \Gamma,

satisfying  u(0)=u_{0},  \phi(0)=\phi_{0} and

 u_{t}=Au-\xi-\pi(u)a.e . in  \Omega,

 \phi_{t}=\triangle_{\Gamma}\phi-\xi_{\Gamma}-\pi_{\Gamma}(\phi)-h'(\phi)
\partial_{n}ua.e . on  \Gamma,

 K\partial_{n}u+u=h(\phi)a.e . on  \Gamma.
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Meanwhile for (1.3) with non‐smooth potentials we have the following.

Theorem 3.2 ( [4, Theorem 3.6]). For any  T>0 , there exists a unique triplet  (u, \xi, \xi_{\Gamma})
with

 u\in L^{\infty}(0, T;H^{2}(\Omega))\cap W^{1,\infty}(0, T;L^{2}(\Omega))\cap H^
{1}(0, T;H^{1}(\Gamma)) ,

 \xi\in L^{\infty}(0, T;L^{2}(\Omega)) ,  \xi\in\beta(u)a.e .  in  \Omega,

 u|_{\Gamma}\in L^{\infty}(0, T;H^{2}(\Gamma))\cap W^{1,\infty}(0, T;L^{2}
(\Gamma))\cap H^{1}(0, T;H^{1}(\Gamma)) ,

 \xi_{\Gamma}\in L^{\infty}(0, T;L^{2}(\Gamma)) ,  \xi_{\Gamma}\in\beta_{\Gamma}(\alpha^{-1}((u|_{\Gamma})-\beta))a.e .
 on  \Gamma,

satisfying  u(0)=u_{0} and

 u_{t}=Au-\xi-\pi(u)a.e . in  \Omega,

 (u|_{\Gamma})_{t}=\triangle_{\Gamma}(u|_{\Gamma})-\alpha(\xi_{\Gamma}-
\pi_{\Gamma}(\alpha^{-1}((u|_{\Gamma})-\beta)))-\alpha^{2}\partial_{n}ua.e .  on  \Gamma.

We mention that analogues of the weak and strong convergences as  Karrow 0 stated in

Theorems 2.7 and 2.8 for non‐smooth potentials can also be derived, and we refer the

reader to [4] for more details.

4 Outlook

In this section we present some interesting open problems and suggest some methodologies

to tackle said problems. The first concerns the existence of solutions (weak or strong) to
the original problem (1.2) for a general function  g (or  h). As alluded in the Introduction,
the main difficulty lies in the Laplace‐Beltrami term. One promising method is to employ

the well‐developed machinery of maximal  L^{p} regularity (see for example [12]) to deduce a
local‐in‐time strong well‐posedness result. Then, perhaps one can extend the local‐in‐time

solution to a global‐in‐time solution by making use of the fact that (1.2) is a gradient flow.
Another approach will be to use Gamma‐convergence. In particular, the Robin energy

functional

 E_{K}(u,  \phi):=\int_{\Omega}\frac{1}{2}|\nabla u|^{2}+F(u)dx+\int_{\Gamma}
\frac{1}{2}|\nabla_{\Gamma}\phi|^{2}+G(\phi)+\frac{1}{2K}|u-h(\phi)|^{2}dS
should converge to the limiting functional

 E_{0}(u):= \int_{\Omega}\frac{1}{2}|\nabla u|^{2}+F(u)dx+\int_{\Gamma}\frac{1}
{2}|\nabla_{\Gamma}g(u)|^{2}+G(g(u))dS
as  Karrow 0 in the sense of Gamma‐convergence. Then, using the framework of Sandier and

Serfaty [13], it is also interesting to address the Gamma‐convergence of the  L^{2}‐gradient
flow of  E_{K} (which is (1.4)) to the  L^{2}‐gradient flow of  E_{0}.
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A second open problem concerns whether a similar modification can be made to equa‐

tions and dynamic boundary conditions of Cahn‐Hilliard type [7, 10]. In comparison, the
Cahn‐Hilliard equation is fourth order, and so some of the techniques used for the sec‐

ond order Allen‐Cahn equation may not work for the Cahn‐Hilliard equation. However,

the approximation of the affine linear transmission condition with the Robin boundary

condition is interesting in its own right, and to the best of the author’s knowledge, Cahn‐

Hilliard systems with Robin boundary conditions have not received much attention in the
literature.
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