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ON A PREDATOR‐PREY SYSTEM

WITH NONLOCAL DISPERSAL

JONG‐SHENQ GUO
DEPARTMENT OF MATHEMATICS, TAMKANG UNIVERSITY

ABSTRACT. We are concerned with the propagation dynamics of a predator‐prey
system with nonlocal dispersal. We obtain a threshold phenomenon for the in‐
vasion of the predator into the habitat of the aborigine prey. It turns out that
this threshold is the so‐called spreading speed of the predator as well as the min‐
imal wave speed of traveling wave solutions connecting the predator‐free state to
a nontrivial state.

1. INTRODUCTION

In this paper, we consider the following predator‐prey system:

(1.1) \begin{array}{l}
U_{t}(x, t)=d_{1}\mathcal{N}_{1}[U(\cdot, t)](x)+F(U(x, t), V(x, t))
V_{t}(x, t)=d_{2}\mathcal{N}_{2}[V(\cdot, t)](x)+G(U(x, t), V(x, t)) ,
\end{array}
in which  U and  V stand for the densities of prey and predator, respectively, and

 F(U, V):=r_{1}U(1-U)-aUV, G(U, V):=bUV-r_{2}V(1+\mu V) ,

  \mathcal{N}_{i}[\varphi](x):=(J_{i}*\varphi)(x)-\varphi(x)=\int_{\mathbb{R}}J_
{i}(x-y)\varphi(y)dy-\varphi(x) ,

where  J_{1} and  J_{2} are probability kernel functions. Here  d_{1},  d_{2},  r_{1},  r_{2},  a,  b,  \mu are posi‐
tive constants. The dynamics of the prey population follows a logistic growth with
a normalized (to one) carrying capacity and  r_{1} denotes its intrinsic growth rate.
The parameter  r_{2} denotes the death rate for the predator. The parameter  \mu de‐
scribes the intensity of the intra‐specific competition in the predator population,
and the constants  a and  b denote the predation rate and the biomass conversion
rate, respectively.

The main purpose of this work is to study the propagation phenomenon of this
predator‐prey system. For propagation in predator‐prey systems, one typical prob‐
lem is to study the spatial invasion process of the predator when it was introduced
into the habitat of a prey (cf. [7, 20]). In this work, we characterize the features
of the predator invasion process by the asymptotic spreading and traveling wave
solutions.

Note that a nonlocal dispersal is involved in the system (1.1). In fact, many
nonlocal dispersal models have been derived from material science and other fields
to model long distance effects and nonadjacent interactions, see, e.g., [10, 9, 4]
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for the physical background. The classical diffusion originated from Fick’s law of
diffusion formulated by certain elliptic operators could be thought as a limit case of
the nonlocal dispersal. There are plentiful propagation dynamics of nonlocal models
due to the nonlocal effect ([1]). Nonlocal models also arise in population dynamics
to describe long distance dispersal of individuals, see, e.g., [18] and the references
cited therein.

Some difficulties are encountered when we are dealing with system (1.1). For
example, the nonlocal dispersal model often admits lower regularity than the clas‐
sical diffusion one (see [2]). Also, our predator‐prey system (1.1) is a nonmonotone
system and so that the theory related to monotone semiflows (e.g., [8]) cannot be
applied.

Before stating our main results, we first give the following definition on the kernels.

Definition 1.1. Let  \overline{\lambda}\in(0, \infty ] be given. We say that the kernel function  J:\mathbb{R}arrow \mathbb{R}

belongs to the class  T(\overline{\lambda}) if it satisfies the following properties:

(J1) The kernel  J is nonnegative and continuous in  \mathbb{R} ;
(J2) it holds that

  \int_{\mathbb{R}}J(y)dy=1 and  J(y)=J(-y) for all  y\in \mathbb{R} ;

(J3) it holds that   \int_{\mathbb{R}}J(y)e^{\lambda y}dy<\infty for any  \lambda\in(0,\overline{\lambda}) and

  \int_{\mathbb{R}}J(y)e^{\lambda y}dyarrow\infty as  \lambda\uparrow\overline{\lambda}.

Throughout this paper, we assume that

(1.2)  \mu=1 (replacing  \mu V by  V),  b>r_{2},  a(b-r_{2})<r_{1}r_{2}.

Also, for kernels, we assume

(1.3) for  i=1,2,  \exists\overline{\lambda}_{i}\in(0, \infty ] such that  J_{i}\in T (  \lambdaí).
Define the quantity

(1.4)  c^{*}:=0< \lambda<\overline{\lambda}_{2}\dot{{\imath}}nf\frac{d_{2}
[\int_{\mathbb{R}}J_{2}(y)e^{\lambda y}dy-1]+b-r_{2}}{\lambda}.
Note that due to properties  (J1)-(J3) for  J_{2} , it is easy to see that  c^{*} is well‐defined
and  c^{*}>0 since  b>r_{2} . Then we have the following theorem on the spreading speed
of the predator.

Theorem 1.2 (Predator’s spreading). Under the assumption (1.2), the constant  c^{*},
defined in (1.4), corresponds to the spreading speed of the predator for system (1.1)
with initial condition

(1.5)  U(x, 0)=1 , V(x, 0)=v_{0}(x) , x\in \mathbb{R},

as long as  v_{0} is a non‐zero compactly supported continuous function with   0\leq v_{0}\leq
 b-r_{2} . This means that the density of the predator  V=V(x, t) satisfies

  \lim_{tarrow\infty}\sup_{|x|>ct}V(x, t)=0 for any  c>c^{*} ;

  \lim\inf\inf_{1tarrow\infty x|<ct}V(x, t)>0 for any given  c\in(0, c^{*}) .
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Theorem 1.2 is proved by deriving some delicate a priori estimates that are com‐
bined with known results on scalar equations with nonlocal dispersal. Our arguments
strongly relies on the regularity of the solutions of (1.1) and more particularly their
uniform continuity properties. For mathematical results on scalar equations with
nonlocal dispersal, we refer the reader to, for examples, [12, 13, 15] and the references
cited therein.

Next, we study the traveling wave solutions of (1.1). A solution  (U, V) to (1.1)
is called a traveling wave solution of (1.1), if there exist a constant  c\in \mathbb{R} , the wave
speed, and a function pair  (\Phi, \Psi) , the wave profile, such that  (U, V)(x, t)=(\Phi, \Psi)(\xi) ,
 \xi  :=x+ct , for any  (x, t)\in \mathbb{R}\cross \mathbb{R} and with  \Phi>0 and  \Psi>0 . We are interested
in the traveling waves connecting the predator‐free state  ( 1,  0) at  \xi=-\infty to a
nontrivial state at  \xi=\infty in the sense that

(1.6)   \lim_{\xiarrow}\inf_{\infty}\Phi(\xi)>0, \lim_{\xiarrow}\inf_{\infty}\Psi(\xi)
>0.
We have the following theorem on the minimal wave speed in the weaker sense.

Theorem 1.3. Suppose, in addition to (1.2), that  ab<r_{1}r_{2} . Then the following
holds true:

(i) For any speed  c>c^{*} , system (1.1) admits a traveling wave solution connect‐
ing  ( 1,  0) at  \xi=-\infty to a nontrivial state at  \xi=\infty.

(ii) If we furthermore assume that  J_{2} is compactly supported then (1.1) admits
a traveling wave solution for  c=c^{*}

Moreover, under the assumption (1.2), there is no traveling wave solution to (1.1)
connecting  ( 1,  0) to a nontrivial state with speed  c\in(0, c^{*}) .

Finally, with some extra conditions, the constant  c^{*} is actually the minimal wave
speed to the system (1.1) in the usual sense.

Corollary 1.4. In addition to (1.2), assume that  ab<r_{1}r_{2} and  d_{2}<b-r_{2} , and
that  J_{2} has a compact support. Then, (1.1) admits traveling wave solution connecting
 ( 1,  0) to a nontrivial state with speed  c\in \mathbb{R} if and only if  c\geq c^{*}

The existence of traveling wave solutions is proved by constructing some suitable
upper and lower solutions with the help of Schauder’s fixed point theorem, cf. e.g.,
[19, 11, 14, 17, 16, 5]. The nonexistence of traveling wave solutions is proved by
applying the theory of asymptotic spreading for scalar equations ([13]).

In the rest of this paper, we shall only provide some details of the method of
upper‐lower solutions in the derivation of traveling wave solutions.

2. METHOD OF UPPER‐LOWER SOLUTIONS

For convenience, we set

 u(x, t)=1-U(x, t), v(x, t)=V(x, t), \overline{a}=\frac{a}{r_{1}}, \overline{b}=
\frac{b}{r_{2}}.
Dropping the bar, problem (1.1) is re‐written as

(2.1)  \{\begin{array}{l}
u_{t}(x, t)=d_{1}\mathcal{N}_{1}[u(\cdot, t)](x)+r_{1}(1-u) (av-- u) (x, t) ,
v_{t}(x, t)=d_{2}\mathcal{N}_{2}[v(\cdot, t)](x)+r_{2}v(b-1-v-bu)(x, t) .
\end{array}
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Note also that condition (1.2) becomes

(2.2)  b>1, a(b-1)<1,
and the condition  ab<r_{1}r_{2} becomes  ab<1.

Traveling wave solution for (1.1) connecting the predator‐free equilibrium at  \xi=
 -\infty and a nontrivial state at  \xi=\infty is equivalent to a solution of system (2.1) in
the form

 u(x, t)=\phi(\xi) ,  v(x, t)=\psi(\xi) , where  \xi:=x+ct,
such that  (\phi, \psi)(-\infty)=(0,0) and

(2.3)   \lim_{\xiarrow}\sup_{\infty}\phi(\xi)<1, 1\dot{{\imath}}m\inf_{\xiarrow\infty}
\psi(\xi)>0.
This yields the following nonlocal system of equation for the profile function  (\phi, \psi)

(2.4)  \{\begin{array}{l}
c\phi'(\xi)=d_{1}\mathcal{N}_{1}[\phi](\xi)+r_{1}(1-\phi)(a\psi-\phi)(\xi), 
\xi\in \mathbb{R},
c\psi'(\xi)=d_{2}\mathcal{N}_{2}[\psi](\xi)+r_{2}\psi(b-1-\psi-b\phi)(\xi), 
\xi\in \mathbb{R},
\end{array}
where the linear operators  \mathcal{N}_{i} are defined by

  \mathcal{N}_{i}[\varphi](\xi):=\int_{\mathbb{R}}J_{i}(y)\varphi(\xi-y)dy-
\varphi(\xi), i=1,2.
In the sequel, we shall use the following notation.

 u\leq v\Leftrightarrow u_{i}\leq v_{i}, i=1,2, u=(u_{1}, u_{2}), v=(v_{1}, 
v_{2}) ;

 X_{d}  := {  w is uniformly continuous on  \mathbb{R},  0\leq w\leq d},
 X_{b}^{2}:=X_{1}\cross X_{\alpha}, \alpha:=b-1.

Definition 2.1. A pair of functions  (\overline{\phi}, \overline{\psi}),  (\underline{\phi}, \underline{\psi})\in X_{b}^{2} is called a pair of upper and

lower solutions of (2.4) if  (\underline{\phi}(\xi), \underline{\psi}(\xi))\leq(\overline{\phi}(\xi), 
\overline{\psi}(\xi)) for all  \xi\in \mathbb{R} and the following
inequalities

(2.5)  c\overline{\phi}'(\xi)\geq d_{1}\mathcal{N}_{1}[\overline{\phi}](\xi)+r_{1}[1-
\overline{\phi}(\xi)][a\overline{\psi}(\xi)-\overline{\phi}(\xi)],
(2.6)  c\overline{\psi}'(\xi)\geq d_{2}\mathcal{N}_{2}[\overline{\psi}](\xi)+r_{2}
\overline{\psi}(\xi)[b-1-\overline{\psi}(\xi)-b\underline{\phi}(\xi)],
(2.7)  c\underline{\phi}'(\xi)\leq d_{1}\mathcal{N}_{1}[\underline{\phi}](\xi)+r_{1}[1
-\underline{\phi}(\xi)][a\underline{\psi}(\xi)-\underline{\phi}(\xi)],
(2.8)  c\underline{\psi}'(\xi)\leq d_{2}\mathcal{N}_{2}[\underline{\psi}](\xi)+r_{2}
\underline{\psi}(\xi)[b-1-\underline{\psi}(\xi)-b\overline{\phi}(\xi)]
hold for all  \xi\in \mathbb{R}\backslash E , where  E denotes some finite set  E\subset \mathbb{R}.

It should be noted that  \{(\overline{\phi}, \overline{\psi}), (\underline{\phi}, \psi)\} is NOT super‐sub‐solution in the usual
sense. It is rather an upper bound  an\overline{d} a lower bound for the space to be used in
applying Schauder’s fixed point theory.

2.1. General framework. The following lemma is proved by applying Schauder’s
fixed point theorem.

Lemma 2.2. Let  c>0 be given. Let  (\overline{\phi}, \overline{\psi}),  (\underline{\phi}, \underline{\psi}) be a pair of upper and lower
solutions of (2.4). Then system (2.4) admits a solution  (\phi, \psi) such that

 (\underline{\phi}(\xi), \underline{\psi}(\xi))\leq(\phi(\xi), \psi(\xi))
\leq(\overline{\phi}(\xi), \overline{\psi}(\xi)), \xi\in \mathbb{R}.
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The proof of Lemma 2.2 can be carried out in the following steps.
First, we introduce the integral operator  P=(P_{1}, P_{2}) :  X_{b}^{2}arrow X^{2} :

 \{\begin{array}{l}
P_{1}(\phi, \psi)(\xi)=\frac{1}{c}\int_{-\infty}^{\xi}e^{-\frac{\beta(\xi-s)}{c}
}F_{1}(\phi, \psi)(s)ds,
P_{2}(\phi, \psi)(\xi)=\frac{1}{c}\int_{-\infty}^{\xi}e^{-\frac{\beta(\xi-s)}{c}
}F_{2}(\phi, \psi)(s)ds,
\end{array}  \forall(\phi, \psi)\in X_{b}^{2},

where

 F_{1}(\phi, \psi)(\xi) := \beta\phi(\xi)+d_{1}\mathcal{N}_{1}[\phi](\xi)+r_{1}
[1-\phi(\xi)][a\psi(\xi)-\phi(\xi)],
 F_{2}(\phi, \psi)(\xi) := \beta\psi(\xi)+d_{2}\mathcal{N}_{2}[\psi](\xi)+r_{2}
\psi(\xi)[b-1-\psi(\xi)-b\phi(\xi)]

for  (\phi, \psi)\in X_{b}^{2} with  \beta some large positive constant.
Secondly, define a set  \Gamma\subset B_{\mu}(\mathbb{R}, \mathbb{R}^{2}) by

 \Gamma=\{(\phi, \psi)\in X_{b}^{2}:(\underline{\phi}, \underline{\psi})
\leq(\phi, \psi)\leq(\overline{\phi}, \overline{\psi})\},
where for a suitable positive constant  \mu the set

 B_{\mu}( \mathbb{R}, \mathbb{R}^{2})=\{(\phi, \psi)\in X^{2}:|(\phi, \psi)
|_{\mu}:=\sup_{\xi\in \mathbb{R}}\max(|\phi(\xi)|, |\psi(\xi)|)e^{-\mu|\xi|}
<\infty\}.
is a Banach space.

Finally, we verify that   P(\Gamma)\subset\Gamma and  P is completely continuous with respect to
the norm  |\cdot|_{\mu} . Then  P has a fixed point by Schauder’s fixed point theorem.  \square 

2.2. Construction of upper‐lower solutions. Set

  \triangle(\lambda, c) :=d_{2}[\int_{\mathbb{R}}J_{2}(y)e^{\lambda y}dy-1]-
c\lambda+r_{2}(b-1) .

Recall  b>1 and the definition of  c^{*} in (1.4). Then
(1) For any given  c>c^{*} , the equation  \triangle(\lambda, c)=0 admits two positive roots

 \lambda_{1}(c)<\lambda_{2}(c)<\overline{\lambda}_{2} such that  \triangle(\lambda, c)<0 if and only if  \lambda\in(\lambda_{1}(c), \lambda_{2}(c)) .
(2) There exists  \lambda^{*}\in  [0,\overline{\lambda}_{2} ) such that  \triangle(\lambda^{*}, c^{*})=0,  \triangle(\lambda, c^{*})>0 for all

 \lambda\in[0,\overline{\lambda}_{2})\backslash \{\lambda^{*}\} while

(2.9)   \frac{\partial\triangle(\lambda,c)}{\partial\lambda}(\lambda,c)=(\lambda^{*},
c^{*})=d_{2}\int_{\mathbb{R}}J_{2}(y)ye^{\lambda^{*}y}dy-c^{*}=0.
(3) For any given  c\in(0, c^{*}) , one has  \triangle(\lambda, c)>0 for all  \lambda\in[0,\overline{\lambda}_{2} ).

For  c>c^{*} , we define the following continuous functions:

  \overline{\phi}(\xi)=\min\{1, Ke^{\lambda\xi}\}, \underline{\phi}(\xi)=0,
  \overline{\psi}(\xi)=\min\{b-1, e^{\lambda_{1}\xi}\}, \underline{\psi}(\xi)=
\max\{0, e^{\lambda_{1}\xi}-qe^{\eta\lambda_{1}\xi}\},

where  \lambda_{1}=\lambda_{1}(c),   \lambda\in(0, \min\{\overline{\lambda}_{1}, \lambda_{1}(c)\}) such that

 A( \lambda)=d_{1}[\int_{\mathbb{R}}J_{1}(y)e^{\lambda y}dy-1]-c\lambda<0,
and the constants  K,  \eta,  q shall be chosen in order below.

Define  \xi_{1} by  e^{\lambda_{1}\xi_{1}}=b-1 and we choose a constant   \xi_{0}<\min\{0, \xi_{1}\} such that
 ae^{(\lambda_{1}-\lambda)\xi 0}<1 . Set  K=e^{-\lambda\xi_{0}} and observe that  K>1 and

(2.10)  ae^{\lambda_{1}\xi}<e^{\lambda\xi}, \forall\xi<\xi_{0}.
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Choose  \eta\in(1,2) such that

(2.11)   \eta\lambda_{1}<\min\{\lambda_{2}, \lambda_{1}+\lambda\}.

For  q>1 define  \xi_{2}=\xi_{2}(q)<0 by  e^{(\eta-1)\lambda_{1}\xi_{2}}=1/q . Since  \xi_{2}(q)arrow-\infty as  qarrow\infty,

one can choose a constant  q> llarge enough such that  \xi_{2}\leq\xi_{1} and

(2.12)  q> \frac{r_{2}+r_{2}bK}{-\triangle(\eta\lambda_{1},c)}+1.
Then we can verify that  \{(\overline{\phi}, \overline{\psi}), (\underline{\phi}, \underline{\psi})\} is a pair of upper‐lower solutions.

Applying Lemma 2.2, we obtain

Theorem 2.3. Let  c>c^{*} be given and fixed. Then (2.4) admits a nonnegative
solution  (\phi, \psi) such that   \lim_{\xiarrow-\infty}(\phi(\xi), \psi(\xi))=(0,0) .

The case for  c=c^{*} is more involved, we only state the theorem here.

Theorem 2.4. Assume that the function  J_{2} is compactly supported. Then (2.4) with
 c=c^{*} admits a nonnegative solution  (\phi, \psi) such that   \lim_{\xiarrow-\infty}(\phi(\xi), \psi(\xi))=(0,0) .

2.3. Existence of traveling waves. With Theorems 2.3 and 2.4, we prove the
following theorem on the existence of traveling waves.

Theorem 2.5. Let  c\geq c^{*} and let  (\phi, \psi) be any solution provided by Theorem 2.3 or
Theorem 2.4. Then it holds that   \lim\sup_{\xiarrow\infty}\phi(\xi)<1 . Moreover,   \lim\inf_{\xiarrow\infty}\psi(\xi)>

 0 , if we further assume that  ab<1.

To prove this theorem, we need the following two classical results from [13] for
scalar equation

(2.13)  \{\begin{array}{l}
w_{t}=d\mathcal{N}[w(\cdot, t)](x)+rw(s-w), x\in \mathbb{R}, t>0,
w(x, 0)=\chi(x), x\in \mathbb{R},
\end{array}
where  r,  s are positive constants and  \mathcal{N}[w]  :=J*w-w.

Proposition 2.6 (Comparison principle). Let  w be a solution of (2.13) with   w(\cdot, t)\in
 X_{s} for all  t>0 for a given  \chi\in X_{s} . If  z(\cdot, 0)\in X_{s} and  z(x, t) satisfies

 \{\begin{array}{l}
\frac{\partial z(x,t)}{\partial t}\geq d\mathcal{N}[z(\cdot, t)](x)+rz(x, t)[s-z
(x, t)], x\in \mathbb{R}, t>0,
z(x, 0)\geq\chi(x), x\in \mathbb{R},
\end{array}
then  z(x, t)\geq w(x, t) for all  x\in \mathbb{R},  t>0 . Similar result holds for the reverse
inequality.

Next, we define the quantity  \overline{c} by

  \overline{c}:=0<\lambda<\overline{\lambda}\dot{{\imath}}
nf\frac{d[\int_{\mathbb{R}}J(y)e^{\lambda y}dy-1]+rs}{\lambda}.
Then  \overline{c} is well‐defined and  \overline{c}>0 since  rs>0 . Moreover,  \overline{e} is the spreading speed of
the solution  w to (2.13) (as introduced by Aronson and Weinberger [3]) as follows.
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Proposition 2.7 (Spreading speed). Let  w be a solution of (2.13) with  w(\cdot, t)\in X_{s}
for all  t>0 for a given  \chi\in X_{s} . Assume that  \chi has a nonempty compact support.
Then we have

(2.14)   \lim_{tarrow\infty}\inf_{|x|<ct}w(x, t)=s for any  c\in(0,\overline{c}) ,

(2.15)   \lim_{tarrow\infty}\sup_{|x|>ct}w(x, t)=0 for any  c>\overline{c}.

Proof of Theorem 2.5. Set  (U, V)(x, t)  :=(1-\phi, \psi)(x+ct) . Since  V\leq b-1,
 U=U(x, t) satisfies

 U_{t}\geq d_{1}\mathcal{N}_{1}[U]+r_{1}U\{[1-a(b-1)]-U\}, x\in \mathbb{R}, t>0.

Applying Propositions 2.6 and 2.7, we obtain that

  \lim_{\xiarrow}\sup_{\infty}\phi(\xi)\leq a(b-1)<1.
This proves the first statement of Theorem 2.5.

Next, we claim that

(2.16)  B := \sup_{\xi\in \mathbb{R}}\phi(\xi)\leq a(b-1) .

Using (2.16), the function  V(x, t)=\psi(x+ct) satisfies

 \{\begin{array}{l}
V_{t}\geq d_{2}\mathcal{N}_{2}[V]+r_{2}V[(1-ab)(b-1)-V], x\in \mathbb{R}, t>0,
V(x, 0)=\psi(x)>0.
\end{array}
Then a similar argument we deduce that

  \lim_{\xiarrow}\inf_{\infty}\psi(\xi)\geq(1-ab)(b-1)>0
and this completes the proof of the theorem.  \square 
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