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Abstract

In this conference proceeding’s paper we recall several constructions related to periodic
Schrödinger operators in the discrete setting. Our aim is to focus on periodic systems
without being distracted by any perturbation. This material is mainly borrowed from a
joint paper with D. Parra where perturbations of such periodic systems are also considered.

1 Introduction

There were two motivations for writing this review paper. Firstly, it corresponds to a paper
version of a presentation made during the conference Mathematical aspects of quantum fields
and related topics organized at Rims in Kyoto in July 2018. This paper will be published
in the proceedings of this conference. The second motivation comes from discussions with
Prof. K. Kurdyka which took place in September 2018. Indeed, after several unitary transfor‐
mations and identifications, periodic Schrödinger operators lead naturally to a certain class
of hyperbolic polynomials which have been extensively studied in [24]. For that reason, the
present paper contains a thorough presentation of periodic Schrödinger operators on topolog‐
ical crystals, together with a detailed description of these transformations. Let us emphasize
that only purely periodic systems are considered, with all perturbation arguments removed.
We hope that such an uncluttered presentation will facilitate the access of this theory to a
larger readership. On the other hand, note that more complete investigations on such models
have been performed in [26] to which we refer for the more analytical part.

The study of Laplace operators on infinite graphs has recently attracted lots of attention.
Let us mention for example the problem of essential self‐adjointness for very general infinite
graphs [12, 18], or the more precise study of the spectrum for bounded Laplacians [4, 25].
For periodic graphs it is well‐known that this spectrum has a band structure with at most
a finite number of eigenvalues of infinite multiplicity [14]. This structure is preserved if one
considers periodic Schrödinger operators [20, 21, 22]. Perturbations of such systems have also
been extensively considered, as for example in [3, 5, 7, 14, 16, 19] and more recently in [26].
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As mentioned above, we do not consider perturbations of the purely periodic system.
Consequently this paper does not contain any new result, but focus on a precise description
of the framework and on the path to a new representation in terms of analytically fibered
operators. In addition to this, we construct in the last section a conjugate operator for any
analytically fibered matrix valued operator. Again this construction is not new and a similar
construction already appeared in the seminal paper [11]. However, the version provided in
the present paper is more detailed, and slightly simpler since the initial operator is bounded.
Note that the interest for presenting this construction is twofold. On the one hand, a conjugate
operator is an essential tool for investigating perturbed systems, as shown in [1, 7, 25, 26]. On
the other hand, the construction provided is intimately linked to Rellich’s theorem, a result
which is also at the root of the investigations performed in [24]. A better understanding of
the construction of the conjugate operator in the context of this paper would certainly be
valuable.

2 Topological crystals and periodic Schrödinger operators

In this section we provide the definition of a topological crystal and define some related
notions. An explicit and rather general construction of a topological crystal is introduced at
the end of the section.

A graph  X=(V(X), E(X)) is composed of a set of vertices  V(X) and a set of unoriented
edges  E(X) . Graphs with loops and parallel edges are accepted. Generically we shall use the
notation  x,  y for elements of  V(X) , and  e for elements of  E(X) . If both  V(X) and  E(X) are
finite sets, the graph  X is said to be finite.

A morphism  \omega :  Xarrow \mathfrak{X} between two graphs  X and  \mathfrak{X} is composed of two maps  \omega :
 V(X)arrow V(\mathfrak{X}) and  \omega :  E(X)arrow E(\mathfrak{X}) such that it preserves the adjacency relations between
vertices and edges, namely if  e is an edge in  X between the vertices  x and  y , then  \omega(e) is an
edge in  \mathfrak{X} between the vertices  \omega(x) and  \omega(y) . Let us stress that we use the same notation
for the two maps  \omega :  V(X)arrow V(\mathfrak{X}) and  \omega :  E(X)arrow E(\mathfrak{X}) , and that this should not lead to
any confusion. An isomorphism is a morphism that is a bijection on the vertices and on the
edges. The group of isomorphisms of a graph  X into itself is denoted by Aut(X). For a vertex
 x\in V(X) we also set  E(X)_{x}  :=\{e\in E(X)|x\in e\} . If  E(X)_{x} is finite for every  x\in V(X) we
say that  X is locally finite.

A morphism  \omega :  Xarrow \mathfrak{X} between two graphs is said to be a covering map if

(i)  \omega :  V(X)arrow V(\mathfrak{X}) is surjective,

(ii) for all  x\in V(X) , the restriction  \omega|_{E(X)_{x}} :  E(X)_{x}arrow E(\mathfrak{X})_{\omega(x)} is a bijection.

In that case we say that  X is a covering graph over the base graph  \mathfrak{X} . For such a covering,
we define the transformation group of the covering as the subgroup of Aut(X), denoted by  \Gamma,
such that for every  \mu\in\Gamma the equality  \omega 0\mu=\omega holds. We now define a topological crystal,
and refer to [30, Sec. 6.2] for more details.

Definition 2.1. A  d‐dimensional topological crystal is a quadruplet  (X, \mathfrak{X}, \omega, \Gamma) such that:

(i)  X and  \mathfrak{X} are graphs, with  \mathfrak{X} finite,

 (i\dot{i})\omega :  Xarrow \mathfrak{X} is a covering map,
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(iii) The transformation group  \Gamma of  \omega is isomorphic to  \mathbb{Z}^{d},

(iv)  \omega is regular, i.e. for every  x,  y\in V(X) satisfying  \omega(x)=\omega(y) there exists  \mu\in\Gamma such
that  x=\mu y.

We usually say that  X is a topological crystal if it admits a  d‐dimensional topological
crystal structure  (X, \mathfrak{X}, \omega, \Gamma) . Note that all topological crystal are locally finite, with an upper
bound for the number of elements in  E(X)_{x} independent of  x . Indeed, the local finiteness and
the fixed upper bound follow from the definition of a covering and the finiteness of  \mathfrak{X} . For
shortness, we shall use the multiplicative notation for the group law in the abstract setting,
but the additive notation for the group  \mathbb{Z}^{d}.

Remark 2.2. Topological crystals have been extensively studied in the monograph  [3\theta] to
which we refer for many examples. Let us also mention [5] in which one can find square,
triangular, hexagonal, and diamond periodic graphs. In reference  [2\theta] body‐centered cubic
and face‐centered cubic periodic graphs have been studied, while armchair graph is presented
in [6]. We also refer to the Remark 2.3 below for an explicit procedure generating an infinite
number of topological crystals  (X, \mathfrak{X}, \omega, \Gamma) once a small graph  \mathfrak{X} has been chosen.

For a while let us come back to an arbitrary graph  X . From the set of unoriented edges
 E(X) of the graph  X we construct the set of oriented edges  A(X) by considering for every
unoriented edge between  x and  y both oriented edges from  x to  y and from  y to  x . The elements
of  A(X) are still denoted by  e . The origin vertex of such an oriented edge  e is denoted by  o(e) ,
the terminal one by  t(e) , and  \overline{e} denotes the edge obtained from  e by interchanging the vertices,
 i.e.  o(\overline{e})=t(e) and  t(\overline{e})=o(e) . For  x\in V(X) we set  A(X)_{x}\equiv A_{x}  :=\{e\in A(X)|o(e)=x\}.
Clearly, any morphism  \omega between a graph  X and a graph  \mathfrak{X} , and in particular any covering
map, can be extended to a map sending oriented edges of  A(X) to oriented edges of  A(\mathfrak{X}) .
For this extension we keep the convenient notation  \omega :  A(X)arrow A(\mathfrak{X}) .

A measure  m on a graph  X is a strictly positive function defined on vertices and on
unoriented edges. On oriented edges, the measure satisfies  m(e)=m(\overline{e}) . From now on, let us
assume that the graph  X is locally finite. For such a graph the Laplace operator is defined on
the space of  0‐cochains  C^{0}(X)  :=\{f|V(X)arrow \mathbb{C}\} by

 [ \triangle(X, m)f](x):=\sum_{e\in A_{x}}\frac{m(e)}{m(x)}(f(t(e))-f(x)) , 
\forall f\in C^{0}(X) .

Furthermore, when

 \deg_{m} :  V(X)arrow \mathbb{R}+,  \deg_{m}(x)  := \sum_{e\in A_{x}}\frac{m(e)}{m(x)} (2.1)

is bounded, then the operator  \triangle(X, m) is a bounded self‐adjoint operator in the Hilbert space

 l^{2}(X, m):= \{f\in C^{0}(X)|\Vert f\Vert^{2}:=\sum_{x\in V(X)}m(x)|f(x)|^{2}<
\infty\}
endowed with the scalar product

  \langle f, g\rangle:=\sum_{x\in V(X)}m(x)f(x)\overline{g(x)} \forall f, g\in 
l^{2}(X, m)
.
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We refer for example to [18, Thm. 2.4] for the statement about boundedness. Note also that
we use the simple notation  l^{2}(X, m) for what could have been denoted by  l^{2}(V(X), m) .

Let us now come back to the setting of a topological crystal  (X, \mathfrak{X}, \omega, \Gamma) . We also consider
a  \Gamma‐periodic measure  m_{0} and a  \Gamma‐periodic function  R_{0} :  V(X)arrow \mathbb{R} . The periodicity means
that for every  \mu\in\Gamma,  x\in V(X) and  e\in E(X) we have  m_{0}(\mu x)=m_{0}(x),  m_{0}(\mu e)=m_{0}(e) and
 R_{0}(\mu x)=R_{0}(x) . We can provide the definition of a periodic Schrödinger operator: it consists
in the operator

 H_{0} :=-\triangle(X, m_{0})+R_{0} . (2.2)

Note that we use the same notation for the function  R_{0} and for the corresponding multipli‐
cation operator. As a consequence of our assumptions, the expression  H_{0} defines a bounded
self‐adjoint operator in the Hilbert space  l^{2}(X, m_{0}) .

In the paper [26] perturbations of the operators  H_{0} are considered, either by assuming
that the measure  m is only asymptotically periodic and/or by assuming that a function  R is
only asymptotically periodic. Perturbations theory has then to be used in order to study the
corresponding operator

 H :=-\triangle(X, m)+R, (2.3)

and for such investigations the theory of the conjugate operator plays an important role. Let
us still mention that such investigations take place in a 2‐Hilbert spaces setting, since the
natural Hilbert space for  H is  l^{2}(X, m) . Various tools related to toroidal pseudo‐differential
operators have also to be borrowed from [28]. We do not continue in this direction in the
present manuscript.

Let us now introduce a notion of norm on the set of vertices or edges. We consider again
the topological crystal  (X, \mathfrak{X}, \omega, \Gamma) . The notation  x , resp.  X , will be used for the elements of
 V(X) , resp. of  V(\mathfrak{X}) , and accordingly the notation  e , resp.  e , will be used for the elements of
 E(X) , resp. of  E(\mathfrak{X}) . It follows from the assumption (iii) in Definition 2.1 that  \Gamma\backslash X\cong \mathfrak{X} , and
therefore we can identify  V(\mathfrak{X}) as a subset of  V(X) by choosing a representative of each orbit.
Namely, since  V(\mathfrak{X})=\{x_{1}, x_{n}\} for some  n\in \mathbb{N} , we choose  \{x_{1}, x_{n}\}\subset V(X) such that
 \omega(x_{j})=\mathfrak{x}_{j} for any  j\in\{1, n\} . For shortness we also use the notation  \check{x}  :=\omega(x)\in V(\mathfrak{X})
for any  x\in V(X) , and reciprocally for any  \mathfrak{x}\in \mathfrak{X} we write  \hat{\mathfrak{x}}\in\{x_{1}, x_{n}\} for the unique
element  x_{j} in this set such that  \omega(x_{\dot{j}})=\mathfrak{x}.

As a consequence of the previous identification we can also identify  A(\mathfrak{X}) as a subset of
 A(X) . More precisely, we identify  A(\mathfrak{X}) with   \bigcup_{\dot{j}=1}^{n}A_{x_{j}}\subset A(X) and use notations similar to
the previous ones: For any  e\in A(X) one sets ě  :=\omega(e)\in A(\mathfrak{X}) , and for any  \mathfrak{e}\in A(\mathfrak{X}) one sets

  \hat{\mathfrak{e}}\in\bigcup_{\dot{j}=1}^{n}A_{x_{j}} for the unique element in   \bigcup_{\dot{j}=1}^{n}A_{x_{j}} such that  \omega (ê)  =e . Let us stress that these
identifications and notations depend only on the initial choice of  \{x_{1}, x_{n}\}\subset V(X) .

We have now enough notation for defining the entire part of a vertex  x as the map
 \lfloor\cdot\rfloor :   V(X)arrow\Gamma satisfying

 \lfloor x\rfloor\hat{\check{x}}=x . (2.4)

Similarly, the entire part of an edge is defined as the map  \lfloor\cdot\rfloor :   A(X)arrow\Gamma satisfying

 \lfloor e\rfloor ě  = e . (2.5)

The existence of this function  \lfloor\cdot\rfloor follows from the assumption (iv) of Definition 2.1 on the
regularity of a topological crystal. One easy consequence of the previous construction is that
the equality  \lfloor e\rfloor=\lfloor o(e)\rfloor holds for any  e\in A(X) .
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For later use, let us finally define the map

 \eta :  A(X)arrow\Gamma,  \eta(e)  :=\lfloor t(e)\rfloor\lfloor o(e)\rfloor^{-1}

and call  \eta(e) the index of the edge  e . For any  \mu\in\Gamma we then infer that

 \eta(\mu e)=\lfloor t(\mu e)\rfloor\lfloor o(\mu e)\rfloor^{-1}=\mu\lfloor t(e)
\rfloor\mu^{-1}\lfloor o(e)\rfloor^{-1}=\eta(e) .

This periodicity enables us to define unambiguously  \eta :   A(\mathfrak{X})arrow\Gamma by the relation  \eta(\mathfrak{e})  :=\eta(\hat{\mathfrak{e}})
for every  \mathfrak{e}\in A(\mathfrak{X}) . Again, this index on  A(\mathfrak{X}) depends only on the initial choice  \{x_{1}, x_{n}\}\subset
 V(X) and could not be defined by considering only  A(\mathfrak{X}) .

Before moving to the next section, we provide an explicit construction of a topological
crystal, starting from a given  \mathfrak{X}.

Remark 2.3. In this remark we provide a procedure for constructing a topological crystal
 (X, \mathfrak{X}, \omega, \Gamma) for any given graph  \mathfrak{X} and almost every index function  \eta . The construction of  X

mimics the construction of the universal covering of a graph provided in [  3\theta, Chp. 5]. Let  \mathfrak{X} be
a given finite graph, and let us choose any spanning tree  \mathfrak{T} in  \mathfrak{X} . The number of edges in  \mathfrak{X}\backslash \mathfrak{T}
corresponds to the Betti number  B(\mathfrak{X}) of  \mathfrak{X} . Then, let us choose any integer  d\leq B(\mathfrak{X}) , which
will lead to a transformation group  \Gamma equal to  \mathbb{Z}^{d} . For any edge  \mathfrak{e}\in \mathfrak{X}\backslash \mathfrak{T} let us associate an
element  \eta(\mathfrak{e})\in \mathbb{Z}^{d} with the single condition that the set  \{\eta(e)\}_{\mathfrak{e}\in \mathfrak{X}\backslash \mathfrak{T}} generates  \mathbb{Z}^{d} . For such an
edge  \mathfrak{e}\in \mathfrak{X}\backslash \mathfrak{T} , we also fix an orientation to  e by choosing  o(e) and  t(\mathfrak{e}) . We are now ready for
the construction of  X:i) For any  \mu\in \mathbb{Z}^{d} we consider a copy of  \mathfrak{T} and denote it by  \mathfrak{T}_{\mu} . ii) For
any  \mathfrak{e}\in \mathfrak{X}\backslash \mathfrak{T} and for any  \mu\in \mathbb{Z}^{d} we set an edge between the vertex corresponding to  o(e) in

 \mathfrak{T}_{\mu} and the vertex corresponding to  t(e) in  \mathfrak{T}_{\mu\eta(\mathfrak{e})} . iii
 \cdot

) We define the set  V(X) by collecting
all vertices of  \{\mathfrak{T}_{\mu}\}_{\mu\in Z^{d}} and for  E(X) all edges of  \{\mathfrak{T}_{\mu}\}_{\mu\in \mathbb{Z}^{d}} together with the additional
edges constructed in ii). With an obvious definition for the map  \omega we finally observe that
 (X, \mathfrak{X}, \omega, \mathbb{Z}^{d}) is a  d‐dimensional topological crystal. In addition, if we fix  n distinct vertices
 \{x_{1}, x_{n}\} of  \mathfrak{T}_{0} with  0\in \mathbb{Z}^{d} and  n the cardinality of  V(\mathfrak{X}) , then any  x\in V(X) with  x\in \mathfrak{T}_{\mu}
will satisfy  \lfloor x\rfloor=\mu and any  e\in A(X) will satisfy either  \lfloor e\rfloor=0 or  \lfloor e\rfloor=\pm\eta(e) for one  e in
our initial set  \mathfrak{X}\backslash \mathfrak{T}.

3 A bounded analytically fibered operator

The aim of this section is to construct another representation of the operator  H_{0} , more suitable
for further investigations. For that purpose we first introduce the dual group of  \Gamma , denoted
by  \hat{\Gamma} . It consists of group homomorphisms from  \Gamma to the multiplicative group  \mathbb{T}\subset \mathbb{C} endowed
with pointwise multiplication. Since  \Gamma is discrete,  \hat{\Gamma} is a compact Abelian group and comes
with a normalized Haar measure  d\xi of volume 1 [9, Proposition 4.24]. We can then define the
Fourier transform  \mathscr{F} :  l^{1}(\Gamma)arrow C(\hat{\Gamma}) by

 [ \mathscr{F}f](\xi)\equiv\hat{f}(\xi) :=\sum_{\mu\in\Gamma}\overline{\xi(\mu)}
f(\mu) (3.1)

and it is well‐known that this extends to a unitary map from  l^{2}(\Gamma) to  L^{2}(\hat{\Gamma}) which is still
denoted by  \mathscr{F} . The adjoint map  \mathscr{F}^{*} :  L^{2}(\hat{\Gamma})arrow l^{2}(\Gamma) is defined on elements in  L^{1}(\hat{\Gamma}) by the
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formula  [ \mathscr{F}^{*}u](\mu)=\int_{\hat{\Gamma}}d\xi\xi(\mu)u(\xi) . Furthermore, by the Fourier inversion formula for any
 f\in l^{1}(\Gamma) one has [9, Theorem 4.21]:

 f( \mu)=\int_{\hat{\Gamma}}d\xi\xi(\mu)\hat{f}(\xi) ,

or equivalently for any  u\in L^{1}(\hat{\Gamma}) such that  \mathscr{F}^{*}u\in l^{1}(\Gamma)

 u( \xi)=\sum_{\mu\in\Gamma}\overline{\xi(\mu)}[\mathscr{F}^{*}u](\mu) .

Let us now provide a direct integral decomposition. The framework is the following:  a

topological crystal  (X, \mathfrak{X}, \omega, \Gamma) and a  \Gamma‐periodic measure  m_{0} on  X . Because of its periodicity,
this measure is also well‐defined on  \mathfrak{X} by the relation  m_{0}(\mathfrak{x})  :=m_{0}(\hat{\mathfrak{x}}) and  m_{0}(\mathfrak{e})  :=m_{0}(\hat{\mathfrak{e}}) .
For simplicity, we keep the same notation for this measure on  \mathfrak{X} . Let us consider the Hilbert
spaces  l^{2}(X, m_{0}) and  L^{2}(\hat{\Gamma};l^{2}(\mathfrak{X}, m_{0})) , and use the shorter notation  l^{2}(X) and  L^{2}(\hat{\Gamma};l^{2}(\mathfrak{X})) .
We also denote by  c_{c}(X)\subset l^{2}(X) the space of  0‐cochains of finite support. We then define
the map  \mathscr{U} :  c_{c}(X)arrow L^{2}(\hat{\Gamma};l^{2}(\mathfrak{X})) for  f\in c_{c}(X),  \xi\in\hat{\Gamma} , and  \mathfrak{x}\in V(\mathfrak{X}) by

 [ \mathscr{U}f](\xi, \mathfrak{x}) :=\sum_{\mu\in\Gamma}\overline{\xi(\mu)}
f(\mu\hat{\mathfrak{x}}) . (3.2)

Clearly, the map  \mathscr{U} corresponds the composition of two maps: the identification of  l^{2}(X)
with  l^{2}(\Gamma;l^{2}(\mathfrak{X})) and the Fourier transform introduced in (3.1). As a consequence,  \mathscr{U} extends
to a unitary map from  l^{2}(X) to  L^{2}(\hat{\Gamma};l^{2}(\mathfrak{X})) , and we shall keep the same notation for this

continuous extension. The formula for its adjoint is then given on any  u\in L^{1}(\hat{\Gamma};l^{2}(\mathfrak{X})) by

 [ \mathscr{U}^{*}u](x)=\int_{\hat{\Gamma}}d\xi\xi(\lfloor x\rfloor)u(\xi,\check
{x}) .

Lemma 3.1 (Lemma 3.2 of [26]). Let  (X, \mathfrak{X}, \omega, \Gamma) be a topological crystal and let  m_{0} be a
 \Gamma ‐periodic measure on X. Then for any  u\in L^{2}(\hat{\Gamma};l^{2}(\mathfrak{X})) , every  \mathfrak{x}\in V(\mathfrak{X}) and almost every

 \xi\in\hat{\Gamma} the following equality holds:

 [ \mathscr{U}\triangle(X, m_{0})\mathscr{U}^{*}u](\xi, \mathfrak{x})=
\sum_{\mathfrak{e}\in A_{r}}\frac{m_{0}(\mathfrak{e})}{m_{0}(\mathfrak{x})}[\xi(
\eta(e))u(\xi, t(e))-u(\xi, X)].
Let us now make a connection with the so‐called magnetic Laplacians. We recall that for

any  \theta :  A(\mathfrak{X})arrow \mathbb{T} satisfying  \theta(\overline{e})=\overline{\theta(\mathfrak{e})} one defines a magnetic Laplace operator on  \mathfrak{X} by the
formula

 [ \triangle_{\theta}(\mathfrak{X}, m_{0})\varphi](X):=\sum_{\mathfrak{e}\in A_{
\mathfrak{x}}}\frac{m_{0}(\mathfrak{e})}{m_{0}(\mathfrak{x})}(\theta(e)\varphi(t
(\mathfrak{e}))-\varphi(X)) \forall\varphi\in l^{2}(\mathfrak{X}) .

Thus, if for fixed  \xi\in\hat{\Gamma} one sets

 \theta_{\xi} :  A(\mathfrak{X})arrow \mathbb{T},  \theta_{\xi}(e)  :=\xi(\eta(e)) , (3.3)

then one infers that

 \theta_{\xi}(\overline{\mathfrak{e}})=\xi(\eta(\overline{e}))=
\xi(\eta(\mathfrak{e})^{-1})=\overline{\xi(\eta(e))}=\overline{\theta_{\xi}
(\mathfrak{e})}.
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As a consequence, the operator  \triangle_{\theta_{\xi}}(\mathfrak{X}, m_{0}) defined on any  \varphi\in l^{2}(\mathfrak{X}) by

 [ \triangle_{\theta_{\xi}}(\mathfrak{X}, m_{0})\varphi](\mathfrak{x}):=
\sum_{\mathfrak{e}\in A_{\mathfrak{x}}}\frac{m_{0}(\mathfrak{e})}{m_{0}
(\mathfrak{x})}(\theta_{\xi}(e)\varphi(t(e))-\varphi(\mathfrak{x}))
 = \sum_{\mathfrak{e}\in A_{\mathfrak{x}}}\frac{m_{0}(\mathfrak{e})}{m_{0}
(\mathfrak{x})}(\xi(\eta(e))\varphi(t(\mathfrak{e}))-\varphi(X))

corresponds to a magnetic Laplace operator on  \mathfrak{X}.

Let us now recall that  L^{2}( \hat{\Gamma};l^{2}(\mathfrak{X}))=\int_{\hat{\Gamma}}^{\oplus}d\xi l^{2}
(\mathfrak{X}) . As a consequence of the previous lemma
and of the construction made above, the operator  \mathscr{U}\triangle(X, m_{0})\mathscr{U}^{*} itself can be identified with
the direct integral operator   \int_{\hat{\Gamma}}^{\oplus}d\xi\triangle_{\theta_{\xi}}(\mathfrak{X}, m_{0}) . In other words, the Laplace operator  \triangle(X, m_{0})
is unitarily equivalent to a direct integral of magnetic Laplace operators acting on  \mathfrak{X}.

It only remains to deal with the multiplication operator  R_{0} by a  \Gamma‐periodic function, as
introduced in (2.2). For that purpose, let us observe that for any real  \Gamma‐periodic function
defined on  V(X) one can associate a well‐defined function on  V(\mathfrak{X}) by the relation  R_{0}(\mathfrak{x})  :=

 R_{0}(\hat{\mathfrak{x}}) . For simplicity (and as already done before) we keep the same notation for this new
function. Then the following statement is obtained by a direct computation.

Lemma 3.2. Let  R_{0} be a  \Gamma ‐periodic function on  V(X) . Then one has  \mathscr{U}R_{0}\mathscr{U}^{*}=R_{0} , or
more precisely for any  u\in L^{2}(\hat{\Gamma};l^{2}(\mathfrak{X})) , for all  X\in \mathfrak{X} and  a.e.  \xi\in\hat{\Gamma} the following equality
holds:

 [\mathscr{U}R_{0}\mathscr{U}^{*}u](\xi, \mathfrak{x})=R_{0}(\mathfrak{x})u(\xi,
\mathfrak{x}) .

By adding the various results obtained in this section one can finally state:

Proposition 3.3. Let  (X, \mathfrak{X}, \omega, \Gamma) be a topological crystal and let  m_{0} be a  \Gamma ‐periodic measure
on X. Let  R_{0} be a real  \Gamma ‐periodic function defined on  V(X) . Then the periodic Schrödinger
operator  H_{0}  :=-\triangle(X, m_{0})+R_{0} is unitarily equivalent to the direct integral of magnetic
Schrödinger operators acting on  \mathfrak{X} defined by

  \int_{\hat{\Gamma}}^{\oplus}d\xi[-\triangle_{\theta_{\xi}}(\mathfrak{X}, m_{0}
)+R_{0}]
with  \theta_{\xi} defined in (3.3).

We shall now show that  H_{0} is unitarily equivalent to an analytically fibered operator.
We refer to [11] and [27, Sec. XIII.16] for more general information on such operators, and
restrict ourselves to the simplest framework. In that respect, the next definition is adapted
to our setting. Note that from now on we shall use the notation  \mathbb{T}^{d} for the  d‐dimensional
(flat) torus, i.e. for  \mathbb{T}^{d}=\mathbb{R}^{d}/\mathbb{Z}^{d} , with the inherited local coordinates system and differential
structure. We shall also use the notation  M_{n}(\mathbb{C}) for the  n\cross n matrices over  \mathbb{C}.

Definition 3.4. In the Hilbert space  L^{2}(\mathbb{T}^{d};\mathbb{C}^{n}),  a bounded analytically fibered operator
corresponds to a multiplication operator defined by a real analytic map  h:\mathbb{T}^{d}arrow M_{n}(\mathbb{C}) .

In order to show that the periodic operator introduced above fits into this framework,
some identifications are necessary. More precisely, since  \Gamma is isomorphic to  \mathbb{Z}^{d} , as stated in the
point (iii) of Definition 2.1, we know that  \hat{\Gamma} is isomorphic to  \mathbb{T}^{d} . In fact, we consider that a
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basis of  \Gamma is chosen and then identify  \Gamma with  \mathbb{Z}^{d} , and accordingly  \hat{\Gamma} with  \mathbb{T}^{d} . As a consequence
of these identifications we shall write  \xi(\mu)=e^{2\pi i\xi\mu} , where   \xi\cdot\mu=\sum_{\dot{j}=1}^{d}\xi_{\dot{j}}\mu_{j} . Accordingly,

the Fourier transform defined in (3.1) corresponds to  [ \mathscr{F}f](\xi)\equiv\hat{f}(\xi)=\sum_{\mu\in Z^{d}}e^{-2\pi 
i\xi\cdot\mu}f(\mu) ,
and its inverse to  [ \mathscr{F}^{*}u](\mu)\equiv\check{u}(\mu)=\int_{\mathbb{T}^{d}}d\xi e^{2\pi 
i\xi\mu}u(\xi) , with  d\xi the usual measure on  \mathbb{T}^{d}.

Note that an other consequence of this identification is the use of the additive notation for
the composition of two elements of  \mathbb{Z}^{d} , instead of the multiplicative notation employed until
now for the composition in  \Gamma.

The second necessary identification is between  l^{2}(\mathfrak{X}) and  \mathbb{C}^{n} . Indeed, since  V(\mathfrak{X})=
 \{x_{1}, \mathfrak{x}_{n}\} , as already mentioned in the previous section, the vector space  l^{2}(\mathfrak{X}) is of di‐
mension  n . However, since the scalar product in  l^{2}(\mathfrak{X}) is defined with the measure  m_{0} while
 \mathbb{C}^{n} is endowed with the standard scalar product, one more unitary transformation has to be
defined. More precisely, for any  \varphi\in l^{2}(\mathfrak{X}) one sets  \mathscr{I} :  l^{2}(\mathfrak{X})arrow \mathbb{C}^{n} with

 \mathscr{I}\varphi:= (m_{0}(\mathfrak{x}_{1})^{\frac{1}{2}}\varphi(\mathfrak{x}
_{1}), m_{0}(x_{2})^{\frac{1}{2}}\varphi(x_{2}), . . . m_{0}(x_{n})^{\frac{1}{2}
}\varphi(x_{n})) . (3.4)

This map defines clearly a unitary transformation between  l^{2}(\mathfrak{X}) and  \mathbb{C}^{n} . Note that we shall
use the same notation  \mathscr{I} for the map  L^{2}(\mathbb{T}^{d};l^{2}(\mathfrak{X}))arrow L^{2}(\mathbb{T}^{d};\mathbb{C}^
{n}) acting trivially on the first
variables and acting as above on the remaining variables.

We can now state and prove the main result of this section, where we use the usual
notation  \delta_{j\ell} for the Kronecker delta function.

Proposition 3.5. Let  (X, \mathfrak{X}, \omega, \Gamma) be a topological crystal and let  m_{0} be a  \Gamma ‐periodic measure
on X. Let  R_{0} be a real  \Gamma ‐periodic function defined on  V(X) . Then the periodic Schrödinger
operator  H_{0}  :=-\triangle(X, m_{0})+R_{0} is unitarily equivalent to the bounded analytically fibered
operator in  L^{2}(\mathbb{T}^{d};\mathbb{C}^{n}) defined by the function  h_{0} :  \mathbb{T}^{d}arrow M_{n}(\mathbb{C}) with

 h_{0}( \xi)_{j\ell}:=- \sum \frac{m_{0}(e)}{11}e^{2\pi i\xi\eta(e)}+
(\deg_{m_{0}}(x_{j})+R_{0}(x_{j}))\delta_{j\ell} (3.5)
 e=(Xj,r\ell)^{m_{0}(\mathfrak{x}_{j})m_{0}(X\ell)\overline{2}}\overline{2}

for any  \xi\in \mathbb{T}^{d} and  j,  \ell\in\{1, n\}.

Proof. The proof consists simply in computing the operator  \mathscr{I}\mathscr{U}H_{0}\mathscr{U}^{*}\mathscr{I}^{*} , and in checking
that the resulting operator is analytically fibered. Observe first that the product  \mathscr{U}H_{0}\mathscr{U}^{*}
has already been computed in Proposition 3.3. The conjugation with  \mathscr{I} is easily computed,
and one directly obtains (3.5) if one takes the equality  \xi(\mu)=e^{2\pi i\xi\cdot\mu} into account. Since for
each fixed  \mu\in \mathbb{Z}^{d} the map  \mathbb{T}^{d}\ni\xi\mapsto e^{2\pi i\xi\cdot\mu}arrow \mathbb{C} is real analytic, the matrix‐valued function
defined by  h_{0} is real analytic.  \square 

4 Mourre theory and the conjugate operator

In this section we first recall some definitions related to Mourre theory, such as some regularity
conditions as well as the meaning of a Mourre estimate. These notions will be used in the
second part of the section where a conjugate operator for  H_{0} will be constructed. Clearly, any
reader familiar with the conjugate operator method can skip Section 4.1 and directly start
with Section 4.2.
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4.1 Mourre theory

In this section we recall the version of Mourre theory suitable for bounded operators, and
refer to [2, Sec. 7.2] for more information and details.

Let us consider a Hilbert space  \mathcal{H} with scalar product  \{\cdot,  \cdot\rangle and norm  \Vert  \Vert . Let also
 S and  A be two self‐adjoint operators in  \mathcal{H} . The operator  S is assumed to be bounded, and
we write  \mathcal{D}(A) for the domain of  A . The spectrum of  S is denoted by  \sigma(S) and its spectral
measure by  E_{S}(\cdot) . For shortness, we also use the notation  E_{S}(\lambda;\varepsilon)  :=E_{S}((\lambda-e, \lambda+\varepsilon)) for
all  \lambda\in \mathbb{R} and  \varepsilon>0.

The operator  S belongs to  C^{1}(A) if the map

 \mathbb{R}\ni t\mapsto e^{-itA}Se^{itA}\in \mathcal{B}(\mathcal{H}) (4.1)

is strongly of class  C^{1} in  \mathcal{H} . Equivalently,  S\in C^{1}(A) if the quadratic form

 \mathcal{D}(A)\ni\varphi\mapsto\{iA\varphi, S^{*}\varphi\rangle-\langle 
iS\varphi, A\varphi\}\in \mathbb{C}

is continuous in the topology of  \mathcal{H} . In such a case, this form extends uniquely to a continuous
form on  \mathcal{H} , and the corresponding bounded self‐adjoint operator is denoted by  [iS, A] . This
 C^{1}(A)‐regularity of  S with respect to  A is the basic ingredient for any investigation in Mourre
theory.

Let us also define some stronger regularity conditions. First of all,  S\in C^{2}(A) if the map
(4.1) is strongly of class  C^{2} in  \mathcal{H} . A weaker condition can be expressed as follows:  S\in C^{1,1}(A)
if

  \int_{0}^{1}\frac{dt}{t^{2}}\Vert e^{-itA}Se^{itA}+e^{itA}Se^{-itA}-
2S\Vert<\infty.
It is then well‐known that the following inclusions hold:  C^{2}(A)\subset C^{1,1}(A)\subset C^{1}(A) .

For any  S\in C^{1}(A) , let us now introduce two subsets of  \mathbb{R} which will play a central role.
Namely, one sets

 \mu^{A}(S)  := {  \lambda\in \mathbb{R}|\exists\varepsilon>0,  a>0 s.t.  E_{S}(\lambda;\varepsilon)[iS,  A]E_{S}(\lambda;\varepsilon)\geq aE_{S}(\lambda;\varepsilon) }

as well as the larger subset of  \mathbb{R} defined by

 \tilde{\mu}^{A}(S) :=\{\lambda\in \mathbb{R}|\exists\varepsilon>0, a>0, K\in 
\mathcal{K}(\mathcal{H})s.t.
 E_{S}(\lambda;\varepsilon)[iS, A]E_{S}(\lambda;\varepsilon)\geq aE_{S}(\lambda;
\varepsilon)+K\}.

In order to state one of the main results in Mourre theory, let us still set  \mathfrak{K}  :=(\mathcal{D}(A), \mathcal{H})_{\frac{1}{2},1}
for the Banach space obtained by real interpolation. We refer to [2, Sec. 3.4] for more infor‐
mation about this space and for a general presentation of Besov spaces associated with the
pair  (\mathcal{D}(A), \mathcal{H}) . Since  \mathcal{B}(\mathcal{H})\subset \mathcal{B}(\mathfrak{K}, \mathfrak{K}^{*}) , for any  z\in \mathbb{C}\backslash \mathbb{R} the resolvent  (S-z)^{-1} of  S belongs
to these spaces, and the following extension holds:

Theorem 4.1 ([2, Theorem 7.3.1]). Let  S be a self‐adjoint element of  \mathcal{B}(\mathcal{H}) and assume that
 S\in C^{1,1}(A) . Then the holomorphic function  \mathbb{C}\pm\ni zarrow(S-z)^{-1}\in \mathcal{B}(\mathfrak{K}, \mathfrak{K}^{*}
) extends to a
weak

 *

continuous function on  \mathbb{C}\pm\cup\mu^{A}(S) .

59



60

Let us still mention how a perturbative scheme can be developed. Consider a “perturba‐
tion”  V\in \mathcal{K}(\mathcal{H}) and assume that  V is self‐adjoint and belongs to  C^{1,1}(A) as well. Even if  \mu^{A}(S)
is known, it usually quite difficult to compute the corresponding set  \mu^{A}(S+V) for the self‐
adjoint operator  S+V . However, the set  \tilde{\mu}^{A}(S) is much more stable since  \tilde{\mu}^{A}(S)=\tilde{\mu}^{A}(S+V) ,
as a direct consequence of [2, Thm. 7.2.9].

Based on this observation, the following adaptation of [2, Thm. 7.4.2] can be stated in
our context:

Theorem 4.2. Let  S be a self‐adjoint element of  \mathcal{B}(\mathcal{H}) and assume that  S\in C^{1,1}(A) . Let
 V\in \mathcal{K}(\mathcal{H}) and assume that  V is self‐adjoint and belongs to  C^{1,1}(A) . Then, for any closed
interval  I\subset\tilde{\mu}^{A}(S) the operator  S+V has at most a finite number of eigenvalues in  I , and
no singular continuous spectrum in  I.

Note that such a result plays an essential role when perturbations of the periodic systems
are considered. In particular, the previous result is at the root of the results obtained in [26]
for the operator  H mentioned in (2.3).

4.2 The conjugate operator

In this section, we construct a conjugate operator for a self‐adjoint bounded analytically
fibered operator  h in  L^{2}(\mathbb{T}^{d};\mathbb{C}^{n}) . At the end of the day, the operator  h will be the operator  h_{0}
introduced in Proposition 3.5, but we prefer to provide an abstract construction. Note that
the following content is inspired from an analog construction of [11]. However, our setting is
slightly simpler, and in addition we provide here much more details.

Let us recall that a self‐adjoint bounded analytically fibered operator corresponds to a
multiplication operator by a real analytic function  h:\mathbb{T}^{d}arrow M_{n}(\mathbb{C}) with  h(\xi) Hermitian for
any  \xi\in \mathbb{T}^{d} . For consistency, the multiplication operator will also be denoted by  h . For such
an operator we introduce some notation. For any Borel set  \mathcal{V}\subset \mathbb{R} and any  \xi\in \mathbb{T}^{d} , let us
denote by  \pi_{\mathcal{V}}(\xi) the spectral projection  E_{h(\xi)}(\mathcal{V}) , i.e. the projection in  \mathbb{C}^{n} onto the vector
space generated by eigenvectors associated with the eigenvalues of  h(\xi) that lie in  \mathcal{V} . We also
recall that  \sigma(h(\xi)) denotes the set of eigenvalues of  h(\xi) . Furthermore, we set:

 \bullet\Sigma:=\{(\lambda, \xi)\in \mathbb{R}\cross \mathbb{T}^{d}, 
\lambda\in\sigma(h(\xi))\},
 \bullet mul:  \mathbb{R}\cross \mathbb{T}^{d}arrow \mathbb{N} defined by  (\lambda, \xi)arrow\dim\pi_{\{\lambda\}}(\xi)\mathbb{C}^{n} ,

 \bullet  \Sigma_{j}  :=\{(\lambda, \xi)\in \mathbb{R}\cross \mathbb{T}^{d}, mul(\lambda, \xi)=j\} for any  j\in\{0,1\ldots, n\}.

The set  \Sigma is called the Bloch variety (or the set of energy‐momentum) of  h and will be the
central object of this section. We also denote by  p_{\mathbb{R}} :  \Sigmaarrow \mathbb{R} and  p_{\Gamma^{d}} :  \Sigmaarrow \mathbb{T}^{d} the projection
on each coordinate of  \Sigma . Some properties of  h and the above related objects are gathered in
the next lemma. We also refer to [11, Lemma 3.4] for a similar statement in a more general
setting.

Lemma 4.3. The application mul:  \mathbb{R}\cross \mathbb{T}^{d}arrow \mathbb{N} is upper semicontinuous. Furthermore, for
all  (\lambda_{0}, \xi_{0})\in \mathbb{R}\cross \mathbb{T}^{d} , there exist an interval  I_{0}\in \mathcal{V}_{\mathbb{R}}(\lambda_{0}) and  \mathfrak{T}_{0}\in \mathcal{V}_{\Gamma^{d}}(\xi_{0}) such that:

(i)  \pi_{I_{0}}(\xi_{0})=\pi_{\{\lambda_{0}\}}(\xi_{0}) ,

(ii) The map  \xiarrow\pi_{I_{0}}(\xi)\in M_{n}(\mathbb{C}) is real analytic in  \mathfrak{T}_{0}.
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Before providing the proof we want to stress that the theory of hyperbolic polynomials
allows us to show that the eigenvalues behave well on  \xi , and this will be used to choose some
convenient neighborhoods. More precisely, for  h as above, the eigenvalues of  h(\xi) are given by
the roots of  \delta(\lambda, \xi)  :=\det(\lambda I.  -h(\xi)) . Since each entry of the matrix  h(\xi) is real analytic as
function of  \xi,  \delta(\lambda, \xi) can be written as follows:

 \delta(\lambda, \xi)=\det(\lambdaⅡ n^{-h(\xi))=\lambda^{n}+\sum_{j=1}^{n}a_{n-j}(\xi)\lambda^{n-j}} (4.2)

where each function  a_{n-j} is real analytic because it is the product of finitely many real analytic
functions. Let us denote by  \{\lambda_{1}(\xi), \lambda_{n}(\xi)\} the family of eigenvalues of  h(\xi) that correspond
to the roots of (4.2). Then, it can be shown that the map  \xiarrow(\lambda_{1}(\xi), \ldots, \lambda_{n}(\xi))\in \mathbb{R}^{n} is
locally Lipschitz [24, Theorem 4.1].

Proof of Lemma 4.3. Let us fix  (\lambda_{0}, \xi_{0})\in \mathbb{R}\cross \mathbb{T}^{d} . It is clear that if  \lambda_{0} is not an eigenvalue of
 h(\xi_{0}) , then both conditions hold trivially since we can find  I_{0} and  \mathfrak{T}_{0} such that   I_{0}\cap\sigma(h(\xi))=\emptyset
for every  \xi\in \mathfrak{T}_{0}.

Suppose now that  \lambda_{0} is an eigenvalue of  h(\xi_{0}) . We choose  I_{0} such that its closure contains
no other eigenvalue of  h(\xi_{0}) , which implies in particular that  \pi_{\{\lambda_{0}\}}(\xi_{0})=\pi_{I_{0}}(\xi_{0}) . In fact, by
choosing an interval  I_{0}=(a_{0}, b_{0}) small enough, we can also choose a neighborhood  \mathfrak{T}_{0} of  \xi_{0}
such that for any  \xi\in \mathfrak{T}_{0} we have  \sigma(h(\xi))\cap\{a_{0}, b_{0}\}=\emptyset . Around  I_{0} we choose a positively
oriented closed curve  \Gamma_{0} in  \mathbb{C} , sufficiently close to  I_{0} such that it does not intersect the
spectrum of  h(\xi) for every  \xi\in \mathfrak{T}_{0} . Hence, for every  \xi\in \mathfrak{T}_{0} , the eigenvalues of  h(\xi) that lay
inside  \Gamma_{0} correspond to  \lambda_{0} , or more precisely if  \lambda_{j}(\xi) lies inside  \Gamma_{0} we have  \lambda_{j}(\xi_{0})=\lambda_{0}.

As a consequence of this construction it follows that

  \pi_{I_{0}}(\xi)=\frac{1}{2\pi\dot{i}}\oint_{\Gamma_{0}}dz(z-h(\xi))^{-1} (4.3)

Finally, since  (z, \xi)arrow(z-h(\xi))^{-1} is analytic in the two variables on any domain in which
 z is not equal to any eigenvalues of  h(\xi) , as shown for example in [17, Thm II.1.5], we infer
from (4.3) that the map  \xiarrow\pi_{I_{0}}(\xi) is real analytic.

We now recall that a real valued function defined on a topological space  \mathcal{X} is said to be
upper semicontinuous at  x_{0} if for every  \epsilon>0 there exists  \mathcal{U}\in \mathcal{V}_{\mathcal{X}}(x_{0}) such that   \sup_{x\in \mathcal{U}}f(x)\leq
  f(x_{0})+\epsilon . If we pick  I_{0}\cross \mathfrak{T}_{0} as neighborhood of  (\lambda_{0}, \xi_{0}) we have for  (\lambda, \xi)\in I_{0}\cross \mathfrak{T}_{0} that

mul  (\lambda, \xi)=\dim\pi_{\{\lambda\}}(\xi)\mathbb{C}^{n}\leq\dim\pi_{I_{0}}(\xi)
\mathbb{C}^{n}=\dim\pi_{I_{0}}(\xi_{0})\mathbb{C}^{n}=\dim\pi_{\{\lambda_{0}\}}(
\xi_{0})\mathbb{C}^{n} , (4.4)

where  \dim\pi_{I_{0}}(\xi)\mathbb{C}^{n}=\dim\pi_{I_{0}}(\xi_{0})\mathbb{C}^{n} is due to the analyticity of the map  \xiarrow\pi_{I_{0}}(\xi) .  \square 

The first step towards the construction of the conjugate operator is to provide a stratifi‐
cation of the Bloch variety. For that goal the following theorem plays an essential role. Before
its statement, observe that  \mathbb{R}\cross \mathbb{T}^{n} is  a(n+1) ‐dimensional real analytic manifold.

Proposition 4.4.  \{\Sigma_{j}\}_{\dot{j}=0}^{n} is a family of semi‐analytic sets in  \mathbb{R}\cross \mathbb{T}^{d}.

Proof. For any  (\lambda_{0}, \xi_{0})\in \mathbb{R}\cross \mathbb{T}^{d} we set  \mathcal{O}=I_{0}\cross \mathfrak{T}_{0}\in \mathcal{V}_{\mathbb{R}
\cross\Gamma^{d}}(\lambda_{0}, \xi_{0}) as in Lemma 4.3.
Then, for every  j>mu1(\lambda_{0}, \xi_{0}) we have  \Sigma_{j}\cap \mathcal{O}=\emptyset by (4.4), so we only need to consider
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 j\leq mu1(\lambda_{0}, \xi_{0}) . Let us also recall that  \delta(\lambda, \xi)=\det(\lambda I_{n}-h(\xi)) . By the discussion after
the statement of Lemma 4.3,  \delta admits real analytic derivatives on each variable. In addition,
 \Sigma_{j}\cap \mathcal{O} is described as follows:

 \Sigma_{j}\cap \mathcal{O}= {  (\lambda, \xi)\in \mathcal{O}|\lambda is an eigenvalue of multiplicity  j of  h(\xi) }

 = \{(\lambda, \xi)\in \mathcal{O}|\delta(\lambda, \xi)=\frac{\partial\delta}
{\partial\lambda}(\lambda, \xi)= =\frac{\partial^{j-1}\delta}
{\partial\lambda^{\dot{j}-1}}(\lambda, \xi)=0, \frac{\partial^{j}\delta}
{\partial\lambda^{\dot{j}}}(\lambda, \xi)\neq 0\}.
Then by the definition of a semi‐analytic set we infer that each  \Sigma_{j} is semi‐analytic in  \mathbb{R}\cross

 \mathbb{T}^{d}.  \square 

Before the next step, let us recall the version of the theorem of stratification of Hironaka
presented in [8, Thm. III.1.8], see also [13, Corol. 4.4], [15, Sec. 3]. Note that we directly
impose a stronger condition on  f since it simplifies the statement and since this condition will
be automatically satisfied in our application.

Theorem 4.5. Let  \mathcal{M},  \mathcal{M}' be two real analytic manifolds, and let  f:\mathcal{M}arrow \mathcal{M}' be a proper
real analytic map. Suppose we are given finitely many subanalytic sets  \mathcal{M}_{j}\subset \mathcal{M} , and finitely
many subanalytic sets  \mathcal{M}_{k}'\subset \mathcal{M}' . Then there exists a subanalytic stratification  (\mathscr{S}, \mathscr{S}') of  f
such that  \mathscr{S} is compatible with  \{\mathcal{M}_{j}\} and  \mathscr{S}' is compatible with  \{\mathcal{M}_{k}'\}.

We have shown above that  \{\Sigma_{j}\}_{\dot{j}=0}^{n} is a finite family of semi‐analytic subsets of  \mathbb{R}\cross \mathbb{T}^{d}.

Since  p_{\mathbb{R}} :  \mathbb{R}\cross \mathbb{T}^{d}arrow \mathbb{R} is proper and real analytic we can apply Theorem 4.5 to get a
stratification  (\mathscr{S}, \mathscr{S}') of  p_{\mathbb{R}} such that  \mathscr{S} is compatible with  \{\Sigma_{j}\}_{j=0}^{n} . We recall that each
 S_{\alpha}\in \mathscr{S} is contained in only one  \Sigma_{j} and that  \mathscr{S}' is a stratification of  \mathbb{R} . We will denote by  \tau

the set of thresholds, and this set is given by the union of the elements of dimension  0 of  \mathscr{S}'.

The thresholds are the levels of energy where one can not construct a conjugate operator.

Definition 4.6. Let  h be a real analytic function  \mathbb{T}^{d}arrow M_{n}(\mathbb{C}) with  h(\xi) Hermitian for any
 \xi\in \mathbb{T}^{d} . The set of thresholds  \tau\equiv\tau(h) is defined by

  \tau:=\bigcup_{\dim S_{\beta}'=0}S_{\beta}',
where  \mathscr{S}'=\{S_{\beta}'\}_{\beta} is the partition of  \mathbb{R} given by Theorem 4.5 applied to the proper real
analytic function  p_{\mathbb{R}} and the family of semi‐analytic subsets  \{\Sigma_{j}\}_{\dot{j}=0}^{n}.

Note that  \tau is a finite subset of  \mathbb{R} because  \mathscr{S}' is locally finite, i.e. only a finite numbers
of  S_{\beta}' intersects the neighborhood of a given  \lambda\in \mathbb{R} . It is also easily observed that  \tau contains
the energy levels corresponding to flat bands, i.e. a value  \lambda\subset \mathbb{R} satisfying  \lambda_{j}(\xi)=\lambda for all  \xi
and some fixed  j\in\{1, n\}.

We start now the construction of the conjugate operator for a fixed closed interval   I\subset

 \mathbb{R}\backslash \tau . This is done in three steps: first we construct  A_{\lambda_{0},\xi_{0}} for fixed  \lambda_{0}\in I and  \xi_{0}\in \mathbb{T}^{d} ; then
we sum over all the eigenvalues  \lambda of  h(\xi_{0}) that lie in  I and obtain  A_{\xi_{0}} ; finally we define  A_{I}
by smoothing a finite family of such  A_{\xi_{0}}.

Let  (\lambda_{0}, \xi_{0}) be fixed with  \lambda_{0}\in I . We denote by  \mathcal{O} the neighborhood of  (\lambda_{0}, \xi_{0}) constructed
as in Lemma 4.3, i.e.  \mathcal{O}=I_{0}\cross \mathfrak{T}_{0} . Then  (\lambda_{0}, \xi_{0})\in S_{\alpha}\subset\Sigma_{j} for a unique  \alpha . Without loss of
generality we can assume that  \Sigma_{j}\cap \mathcal{O}=S_{\alpha}\cap \mathcal{O} . Let  s denote the dimension of the submanifold
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 S_{\alpha} . Furthermore, since  p_{\mathbb{T}^{d}}|s_{\alpha} is injective the subset  p_{\mathbb{T}^{d}}(S_{\alpha}\cap \mathcal{O})\subset \mathbb{T}^{d} has also dimension  s.

This enables us to find a neighborhood  \mathcal{W}_{0} of the origin in  \mathbb{R}^{d} diffeomorphic to  \mathfrak{T}_{0} , or more
precisely there exists a diffeomorphism

 \iota_{0}:\mathfrak{T}_{0}arrow \mathcal{W}_{0} with  \iota_{0}(p_{\mathbb{T}^{d}}(S_{\alpha}\cap \mathcal{O}))\subset \mathbb{R}^{s}
\cross 0 , (4.5)

see for example [29, Theorem 2.10.(2)]. Let us then set  x=(x', x")\in \mathcal{W}_{0} with  x'\in \mathbb{R}^{S} and
 x"\in \mathbb{R}^{d-s} . We also define  f :  I_{0}\cross \mathcal{W}_{0}arrow \mathbb{R} by

 f( \lambda, x):=\frac{\partial^{j-1}\delta}{\partial\lambda^{j-1}}(\lambda, 
\iota_{0}^{-1}(x))
It follows from the proof of Proposition 4.4 that  f(\lambda, (x', 0))=0 and   \frac{\partial f}{\partial\lambda}(\lambda, (x', 0))\neq 0 if  \lambda is
such that  (\lambda, \iota_{0}^{-1}(x', 0))\in S_{\alpha} . By the implicit function theorem as for example presented in
[23, Theo. 2.3.5.] and maybe in a smaller subset  \mathcal{W}_{0} , we get that there exists a real analytic
function  \lambda :  \mathcal{W}_{0}arrow \mathbb{R} such that  f(\lambda(x), x)=0 for every  x\in \mathcal{W}_{0} . Then we have

 \mathcal{S}_{\alpha}\cap \mathcal{O}=\{ (\lambda(x', 0), \iota_{0}^{-1}(x', 0))
|(x', 0)\in \mathcal{W}_{0}\} . (4.6)

Let us denote by  (\iota_{0}^{-1})^{*} the pullback by  \iota_{0}^{-1} defined for  \varphi with support on  \mathfrak{T}_{0} and for any
 x\in \mathcal{W}_{0} by  [(\iota_{0}^{-1})^{*}\varphi](x):=\varphi(\iota_{0}^{-1}(x)) . Analogously the pullback  \iota_{0}^{*} is defined by  [\iota_{0}^{*}g](\xi):=
 g(\iota_{0}(\xi)) for any  g defined on  \mathcal{W}_{0} . We denote by  D_{j}=-i\partial_{j} the operator of differentiation with
respect to the  j ‐variable in  \mathbb{R}^{d} . We also set  \partial^{(s)}=(\partial_{1}, \ldots, \partial_{s}) and  D^{(s)}=(D_{1}, \ldots, D_{s}) . If
we keep the notation  \pi_{I_{0}} for the matrix‐valued multiplication operator acting on  L^{2}(\mathbb{T}^{d};\mathbb{C}^{n})
we can define  A_{\lambda_{0},\xi_{0}} on  C_{C}^{\infty}(\mathfrak{T}_{0};\mathbb{C}^{n})\subset L^{2}(\mathbb{T}^{d};
\mathbb{C}^{n}) by

 A_{\lambda_{0},\xi_{0}}:=- \frac{1}{2}\pi_{I_{0}}\iota_{0}^{*}[(\partial^{(s)}
\lambda)\cdot D^{(s)}+D^{(s)}\cdot(\partial^{(s)}\lambda)](\iota_{0}^{-1})^{*}
\pi_{I_{0}}.
By repeating this construction for each eigenvalue  \lambda_{j} of  h(\xi_{0}) lying in  I we can define

 A_{\xi_{0}}:= \sum_{\lambda_{j}\in\sigma(h(\xi_{0}))\cap I}A_{\lambda_{j},
\xi_{0}} . (4.7)

It follows that for every  \xi_{0}\in \mathbb{T}^{d} we can find a neighborhood  \mathfrak{T}_{0} , given by the intersection of
the neighborhoods constructed for each pair  (\lambda_{j}, \xi_{0}) , and an operator  A_{\xi_{0}} defined by (4.7) on
 C_{c}^{\infty}(\mathfrak{T}_{0};\mathbb{C}^{n}) .

We now define  \mathcal{U}_{I}  :=p_{\mathbb{T}^{d}}(p_{\mathbb{R}}^{-1}(I)) . Since we chose  I closed,  \mathcal{U}_{I} is compact. We can then
consider finitely many pairs  (\xi_{\ell}, \mathfrak{T}_{\ell}) such that  A_{\xi p} acts on  C_{c}^{\infty}(\mathfrak{T}_{\ell};\mathbb{C}^{n}) and such that  \mathcal{U}_{I}\subset\cup \mathfrak{T}_{\ell}.
Considering a smooth partition of unity on  \mathbb{T}^{d} , we can find a family of smooth functions   x\ell

satisfying   \sum\chi_{\ell}^{2}(\xi)=1 for  \xi\in \mathcal{U}_{I} and such that each   x\ell has support contained in  \mathfrak{T}_{\ell} . The
candidate for our conjugate operator is then given by

 A_{I}:= \sum_{\ell}\chi_{\ell}A_{\xi_{\ell}}\chi_{\ell} (4.8)

and is defined on  C^{\infty}(\mathbb{T}^{d};\mathbb{C}^{n}) . Note that  A_{I} depends on the covering  \{\mathfrak{T}_{\ell}\} of  \mathcal{U}_{I} and we will
impose later on another condition on this covering to ensure the positivity of the commutator
of [ih,  A_{I} ] once suitably localized.
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The next step consists in showing that the operator  A_{I} is essentially self‐adjoint on
 C^{\infty}(\mathbb{T}^{d};\mathbb{C}^{n}) . This proof and the necessary background material are provided in [26, Lem. 5.6].
We do not recall the argument here, and refer to this reference for the proof.

We are now in a suitable position for proving a Mourre estimate, or in other words the
positivity of [ih,  A_{I} ] when suitably localized. As mentioned at the beginning of this section,  a

similar result already appeared in [11, Thm. 3.1], but the above construction and the following
proof have been adapted to our context.

Theorem 4.7. Let  h be a real analytic function  \mathbb{T}^{d}arrow M_{n}(\mathbb{C}) with  h(\xi) Hermitian for any
 \xi\in \mathbb{T}^{d} , and let also  h denote the corresponding multiplication operator in  L^{2}(\mathbb{T}^{d};\mathbb{C}^{n}) . Let  \tau

be the set of thresholds provided by Definition 4.6 and let I be any closed interval in  \mathbb{R}\backslash \tau.
Then, there exist a finite family of pairs  \{(\mathfrak{T}_{\ell}, \xi_{\ell})\} with  \xi_{\ell}\in \mathfrak{T}_{\ell} such that for the operator  A_{I}

defined by (4.8) the following two properties hold:

(i) the operator  h belongs to  C^{2}(A_{I}) ,

(ii) there exists a constant  a_{I}>0 such that

 E_{h}(I) [ ih ,  A_{I} ]  E_{h}(I)\geq a_{I}E_{h}(I) (4.9)

Before providing the proof, let us restate part of the previous statement with the notation
introduced in Section 4.1. As a consequence of (4.9), for any closed interval  I\equiv[a, b]\subset \mathbb{R}\backslash \tau,
one has

 (a, b)\subset\mu^{A_{I}}(h)\subset\tilde{\mu}^{A_{I}}(h) . (4.10)

Proof. Let  (\lambda_{0}, \xi_{0})\in \mathbb{T}^{d}\cross \mathbb{R} be fixed with  \lambda_{0}\in I , and let  \iota_{0} be the associated diffeomorphism
introduced in (4.5). For shortness we also set  \pi_{0}  :=\pi_{I_{0}},\tilde{\lambda}_{0}  :=\iota_{0}^{*}\lambda(\iota_{0}^{-1})^{*},  \nabla_{0}=\iota_{0}^{*}D^{(s)}(\iota_{0}^{-1})^{*}
and  \partial_{0}=\iota_{0}^{*}\partial^{(s)}(\iota_{0}^{-1})^{*} . With this notation one has

 A_{\lambda_{0},\xi_{0}}=- \frac{1}{2}\pi_{I_{0}}\iota_{0}^{*}[(\partial^{(s)}
\lambda) . D^{(s)}+D^{(s)} . (\partial^{(s)}\lambda)](\iota_{0}^{-1})^{*}\pi_{I_
{0}}
 =- \frac{1}{2}\pi_{0}[(\partial_{0}\tilde{\lambda}_{0}) . \nabla_{0}+\nabla_{0}
. (\partial_{0}\tilde{\lambda}_{0})]\pi_{0}
 =- \pi_{0} ((\partial_{0}\tilde{\lambda}_{0}) \nabla_{0})\pi_{0}-\frac{i}{2}
\pi_{0}(\triangle_{0}\tilde{\lambda}_{0})\pi_{0}

where  -\triangle_{0}  := \iota_{0}^{*}(\sum_{j=0}^{s}\partial_{\dot{j}}^{2})(\iota_{0}^{-1})^{*}.
Now, since both operators  h and  A_{\lambda_{0},\xi_{0}} leave  C^{\infty}(\mathfrak{T}_{0};\mathbb{C}^{n}) invariant, the commutator

[ih,  A_{\lambda_{0},\xi_{0}} ] can be defined as an operator on  C^{\infty}(\mathfrak{T}_{0};\mathbb{C}^{n}) . On this set one has

 [ih, A_{\lambda_{0},\xi_{0}}]=-[ih,  \pi_{0}((\partial_{0}\tilde{\lambda}_{0})
\cdot\nabla_{0})\pi_{0}]+\frac{1}{2}[h, \pi_{0}(\triangle_{0}\tilde{\lambda}_{0}
)\pi_{0}]

Note also that the second term in the r.h.  s . vanishes since  \triangle_{0}\tilde{\lambda}_{0} is scalar and since  h commutes

with  \pi_{0} . Furthermore we have for  \varphi\in C^{\infty}(\mathfrak{T}_{0};\mathbb{C}^{n}) that

 ([ih, \pi_{0}((\partial_{0}\tilde{\lambda}_{0})\cdot\nabla_{0})\pi_{0}]\varphi)
(\xi)
 =ih(\xi)\pi_{0}(\xi)(\partial_{0}\tilde{\lambda}_{0})(\xi) ((\nabla_{0}\pi_{0})
(\xi)\pi_{0}(\xi)\varphi(\xi)+\pi_{0}(\xi)(\nabla_{0}(\pi_{0}\varphi))(\xi))

 -i\pi_{0}(\xi)(\partial_{0}\tilde{\lambda}_{0})(\xi) .  ((\nabla_{0}(\pi_{0}h))(\xi)\pi_{0}(\xi)\varphi(\xi)+\pi_{0}(\xi)h(\xi)(\nabla_
{0}(\pi_{0}\varphi))(\xi))
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Since  h commutes with each (scalar) component of  \partial_{0}\tilde{\lambda}_{0} the second terms of the parenthesis
cancel each others. Consequently, one infers that  [h, iA_{\lambda_{0},\xi_{0}}] corresponds to a bounded fibered
operator  B_{\lambda_{0},\xi_{0}} with its fibers defined by

 b_{\lambda_{0},\xi_{0}}(\xi) :=-i\pi_{0}(\xi)(\partial_{0}\tilde{\lambda}_{0})(
\xi)\cdot(h(\xi)(\nabla_{0}\pi_{0})(\xi)-(\nabla_{0}(\pi_{0}h))(\xi))\pi_{0}
(\xi)
The first term in the parenthesis vanishes because  \pi(\cdot)\pi'(\cdot)\pi(\cdot)=0 for any differentiable
family of projections. For the second term one has by construction

 \pi_{0}(\iota_{0}^{-1}(x', 0))h(\iota_{0}^{-1}(x', 0))=\tilde{\lambda}_{0}
(\iota_{0}^{-1}(x', 0))\pi_{0}(\iota_{0}^{-1}(x', 0))

for any  (x', 0)\in \mathcal{W}_{0} , and therefore

 b_{\lambda_{0},\xi_{0}}(\xi)=i\pi_{0}(\xi)(\partial_{0}\tilde{\lambda}_{0})
(\xi) (\nabla_{0}(\tilde{\lambda}_{0}\pi_{0}))(\xi)\pi_{0}(\xi)=\pi_{0}(\xi)
|(\partial_{0}\tilde{\lambda}_{0})(\xi)|^{2}\pi_{0}(\xi)

for any  \xi satisfying  \iota_{0}(\xi)\in \mathcal{W}_{0}\cap \mathbb{R}^{s}\cross 0.
Let us denote by  \mathcal{S}_{\alpha}\in \mathscr{S} the real analytic submanifold of  \mathbb{R}\cross \mathbb{T}^{d} obtained by the

theorem of stratification of Hironoka which satisfies  (\lambda_{0}, \xi_{0})\in S_{\alpha} . By the definition of the set
of thresholds  \tau and by the properties of the stratification one has  \dim(p_{\mathbb{R}}|_{S_{\alpha}})=1 . Combining
this with (4.6) one infers that

 1=\dim(p_{\mathbb{R}}|_{S_{\alpha}})=\dim(\lambda(\{(x', 0)\subset \mathcal{W}_
{0}\}))= rank  (\partial_{0}\tilde{\lambda}_{0}|_{\iota_{0}^{-1}(\mathcal{W}_{0}\cap 
\mathbb{R}^{s}\cross 0)})
from which we deduce that  \partial_{0}\tilde{\lambda}_{0} does not vanish on  \iota_{0}^{-1}(\mathcal{W}_{0}\cap \mathbb{R}^{s}\cross 0) . As a consequence one
has  b_{\lambda_{0},\xi_{0}}(\xi_{0})\geq c_{0,0}\pi_{I_{0}}(\xi_{0}) , with  c_{0,0}>0 , and since for fixed  \xi_{0} there are at most  n constants
we infer that

 b_{\xi_{0}}( \xi_{0}) :=\sum_{\lambda_{i}\in\sigma(h(\xi_{0}))\cap I}
b_{\lambda_{i},\xi_{0}}(\xi_{0})\geq\min\{c_{i,0}\}\sum\pi_{I_{i}}(\xi_{0})=
c_{0}\pi_{I}(\xi_{0}) (4.11)

with  c_{0}>0 . By continuity of both  b_{\xi_{0}} and  \pi_{I} at  \xi_{0} and using (4.11) we can find a possibly
smaller neighborhood  \mathfrak{T}_{0} satisfying the properties of Lemma 4.3 such that for  \xi\in \mathfrak{T}_{0} we have

  \pi_{I}(\xi)b_{\xi 0}(\xi)\pi_{I}(\xi)\geq\frac{1}{2}c_{0}\pi_{I}(\xi) . (4.12)

Since we chose  \xi_{0} arbitrarily in  \mathbb{T}^{d} , we can construct  \mathfrak{T}_{0} satisfying (4.12) for every  \xi_{0}.
It follows that one can find a covering of the closed set  \mathcal{U}_{I}  :=p_{\mathbb{T}^{d}}(p_{\mathbb{R}}^{-1}(I)) composed of a
finite number of such  \mathfrak{T}_{0} . We have thus defined the covering  \{\mathfrak{T}_{\ell}\} already mentioned before
the equation (4.8) and mentioned in the above statement. To finish, observe that [ih,  A_{I} ] is a
bounded fibered operator with fiber  b given for any  \xi\in \mathcal{U}_{I} by

 b( \xi)=\sum_{\ell}\chi_{\ell}(\xi)b_{\xi_{\ell}}(\xi)\chi_{\ell}(\xi)
Therefore, the operator  E_{h}(I)[ih, A_{I}]E_{h}(I) is a bounded fibered operator with fiber equal to
 \pi_{I}(\xi)b(\xi)\pi_{I}(\xi) . We also infer that

  \sum_{\ell}\pi_{I}(\xi)\chi_{\ell}(\xi)b_{\xi p}(\xi)\chi_{\ell}(\xi)\pi_{I}
(\xi)\geq\frac{1}{2}\min_{\ell}\{c_{\ell}\}\pi_{I}(\xi)
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for every  \xi\in \mathbb{T}^{d} . By setting  a_{I}= \frac{1}{2}\min_{\ell}\{c_{\ell}\} we conclude that

 E_{h}(I) [ih,  A_{I} ]  E_{h}(I)\geq a_{I}E_{h}(I) .

Since the operator  B  :=[ih, A_{I}] has been computed on  C^{\infty}(\mathbb{T}^{d};\mathbb{C}^{n}) which is a core for  A_{I},
and since the resulting operator is bounded, one deduces from the results stated in Section
4.1 that  h belongs to  C^{1}(A_{I}) . Then, since the operator  B is again an analytically fibered
operator, the computation of  [iB, A_{I}] can be performed similarly on  C^{\infty}(\mathbb{T}^{d};\mathbb{C}^{n}) and the
resulting operator is once again bounded. It then follows that  h belongs to  C^{2}(A_{I}) .  \square 

Remark 4.8. When studying a particular graph one can usually find analytic families of
eigenvalues  \lambda_{i} and associated eigenprojections  \Pi_{i} outside a discrete subset of  \mathbb{T}^{d} . Then, a more
natural conjugate operator is given formally by   \sum\Pi_{i}((\partial\lambda_{i})\cdot\nabla+\nabla\cdot(\partial\lambda_{i}))
\Pi_{i} as used for example
in [3] (see also  [1\theta] for a related construction). In fact it is a classical result due to Rellich that
for every one‐dimensional analytic family of (not necessarily bounded) operators, such analytic
eigenprojections can be found. For dimension 2, the theory of hyperbolic polynomials shows
that this choice can be made outside a discrete set [24, Remark 5.6]. For arbitrary dimension,
there seems to be no argument to ensure that analytic eigenprojections can be chosen and so
we shall use the conjugate operator given by (4.8).
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