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INTEGRAL KERNELS OF THE RENORMALIZED

NELSON HAMILTONIAN

Fumio Hiroshima*

Faculty of Mathematics, Kyushu University†

Abstract

In this article we consider the ground state of the renormalized Nelson Hamil‐
tonian in quantum field theory by using the integral kernel of the semigroup gen‐
erated by the Hamiltonian. By introducing an infrared cutoff, the existence of
the ground state is shown and the expectation values of observables with respect
to the ground state are given in terms of a probability measure.

1 Introduction

This is a joint work with Oliver Matte [19]. Since the end of the last century several
interaction models between quantum mechanical matters and quantum fields have been

investigated; the Pauli‐Fierz model [25] in non‐relativistic quantum electrodynamics
and spin‐boson model have been typical examples. There are a lot of contributions

to studying ground states of models. Here the ground state describes an eigenvector

associated with the bottom of the spectrum of a self‐adjoint operator. The Hamiltonian

of the interaction system can be realised as a self‐adjoint operator and we are interested

in investigating the ground state of the Hamiltonian, e.g., the existence of the ground

state and its properties.

In this article we discuss the ground state of a renormalized Hamiltonian introduced

by Edward Nelson in 1964 [23, 24] to consider the removal of ultraviolet cutoffs. This
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model is nowadays the so‐called renormalized Nelson Hamiltonian. The renormalized

Nelson Hamiltonian describes a linear interaction between non‐relativistic spinless nu‐

cleons and spinless scalar mesons, where the non‐relativistic nucleons are governed by

a Schrödinger operator acting in  L^{2}(\mathbb{R}^{dN}) , where  N denotes the number of nucleons

and  d the spatial dimension. The physical reasonable choice is  d=3 . In this article

we assume that  N=1 and  d=3 for simplicity.

In mathematics field operator

  \phi(f)=\frac{1}{\sqrt{2}}(a^{\dagger}(\hat{f})+a(\overline{\hat{f}})) (1.1)

can be defined for  f\in L^{2}(\mathbb{R}^{3}) , but in physics  \phi(x) is defined by  \phi(f) with  f=\delta(\cdot-x) .

It is not straightforward however to define  \phi(x) . It is common to define  \phi(x) as the

limit of  \phi(f_{n}) as   narrow\infty , where  f_{n}arrow\delta(\cdot-x) as   narrow\infty in some sense.  f_{n} is called
cutoff function or ultraviolet cutoff function in this article. The Nelson Hamiltonian is

defined by introducing cutoff functions and it can be realised as a self‐adjoint operator

acting in the Hilbert space given by

 \mathscr{H}=L^{2}(\mathbb{R}^{3})\otimes \mathscr{F},

where  \mathscr{F} denotes the boson Fock space over  L^{2}(\mathbb{R}^{3}) defined by

 \mathscr{F}=\oplus_{n=0}^{\infty}[L_{sym}^{2}(\mathbb{R}^{3n})],

where  L_{sym}^{2}(\mathbb{R}^{3n}) denotes the set of symmetric  L^{2}‐functions with  L_{sym}^{2}(\mathbb{R}^{0})=\mathbb{C} . We
set  \mathscr{F}^{(n)}=L_{sym}^{2}(\mathbb{R}^{3n}) and

 \mathscr{F}_{0}= {  \Phi\in \mathscr{F}|\exists m such that  \Phi^{(n)}=0 for  \forall n\geq m}.

 \mathscr{F}_{0} is called the finite particle subspace of  \mathscr{F} . Subtracting a renormalization term

from the Nelson Hamiltonian, we can define the renormalized Nelson Hamiltonian  H_{\infty}.

A crucial point is that  H_{\infty} is defined by the limit of the Nelson Hamiltonian and

consequently it is given as a semi‐bounded quadratic form. Then it is impossible to

see an explicit form of  H_{\infty} as an operator in  \mathscr{H} . Recently J.  M\emptyset 1ler and O. Matte [22]

model is nowadays the so-called renormalized Nelson Hamiltonian. The renormalized

Nelson Hamiltonian describes a linear interaction between non-relativistic spinless nu-

cleons and spinless scalar mesons, where the non-relativistic nucleons are governed by

a Schrödinger operator acting in L2(RdN), where N denotes the number of nucleons

and d the spatial dimension. The physical reasonable choice is d = 3. In this article

we assume that N = 1 and d = 3 for simplicity.

In mathematics field operator

φ(f) =
1√
2
(a†(f̂) + a(

¯̂
f)) (1.1)

can be defined for f ∈ L2(R3), but in physics φ(x) is defined by φ(f) with f = δ(·−x).

It is not straightforward however to define φ(x). It is common to define φ(x) as the

limit of φ(fn) as n → ∞, where fn → δ(· − x) as n → ∞ in some sense. fn is called

cutoff function or ultraviolet cutoff function in this article. The Nelson Hamiltonian is

defined by introducing cutoff functions and it can be realised as a self-adjoint operator

acting in the Hilbert space given by

H = L2(R3)⊗ F ,

where F denotes the boson Fock space over L2(R3) defined by

F = ⊕∞
n=0[L

2
sym(R

3n)],

where L2
sym(R

3n) denotes the set of symmetric L2-functions with L2
sym(R

0) = C. We

set F (n) = L2
sym(R

3n) and

F0 = {Φ ∈ F | ∃m such that Φ(n) = 0 for ∀n ≥ m}.

F0 is called the finite particle subspace of F . Subtracting a renormalization term

from the Nelson Hamiltonian, we can define the renormalized Nelson Hamiltonian H∞.

A crucial point is that H∞ is defined by the limit of the Nelson Hamiltonian and

consequently it is given as a semi-bounded quadratic form. Then it is impossible to

see an explicit form of H∞ as an operator in H . Recently J. Møller and O. Matte [22]
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however succeeded in constructing a Feynman‐Kac type formula of  e^{-TH_{\infty}} explicitly.

More precisely it is shown that

 (F, e^{-TH_{\infty}}G)_{\mathscr{H}}= \int_{\mathbb{R}^{3}}dxE^{x}[(F(B_{0}), 
K_{T}G(B_{T}))_{\mathscr{F}}].
Here  (\cdot, \cdot)_{\mathscr{F}} is the inner product on  \mathscr{F},  (B_{t})_{t\geq 0} denotes 3‐dimensional Brownian motion

and  K_{T} is an integral kernel which is of the form

 K_{T}=e^{-j_{0}^{T}V(B_{s})ds}e^{a(U)}e^{-TH_{f}}e^{a(\overline{U})}\dagger.

In this article we shall show (1) and (2) below:

(1) If an infrared cut off is introduced, then  H_{\infty} has the ground state  \varphi_{g} and it is
unique up to multiple constants.

(2) The ground state  \varphi_{g}=\varphi_{g}(x, \phi) is localized in the sense of Gaussian domination
with respect to field operators  \phi , and super‐exponential decay of the number of
bosons:

  \sum_{n=0}^{\infty}e^{2\beta n}\Vert\varphi_{g}^{(n)}\Vert_{L^{2}(\mathbb{R}
_{x}^{3}\cross \mathbb{R}_{k}^{3n})}^{2}<\infty, \forall\beta>0.
Above (1) and (2) can be proven by using Feynman‐Kac type formula mentioned above.

2 Renormalized Nelson Hamiltonian

2.1 Definition of the Nelson Hamiltonian with cutoffs

In this section we define the renormalized Nelson Hamiltonian as a self‐adjoint operator

acting in  \mathcal{H} . The Nelson Hamiltonian with ultraviolet cutoff  \Lambda is defined by

 H_{\Lambda}=H_{p}\otimes 11+]1\otimes H_{f}+H_{I}.

We explain  H_{p},  H_{f} and  H_{I} below. First

 H_{p}=- \frac{1}{2}A+V

however succeeded in constructing a Feynman-Kac type formula of e−TH∞ explicitly.

More precisely it is shown that

(

F, e−TH∞G
)

H
=

∫

R3

dxEx [(F (B0), KTG(BT ))F ] .

Here (·, ·)F is the inner product on F , (Bt)t≥0 denotes 3-dimensional Brownian motion

and KT is an integral kernel which is of the form

KT = e−
∫ T
0 V (Bs)dsea

†(U)e−THfea(Ũ).

In this article we shall show (1) and (2) below:

(1) If an infrared cut off is introduced, then H∞ has the ground state ϕg and it is

unique up to multiple constants.

(2) The ground state ϕg = ϕg(x, φ) is localized in the sense of Gaussian domination

with respect to field operators φ, and super-exponential decay of the number of

bosons: ∞
∑

n=0

e2βn‖ϕ(n)
g ‖2L2(R3

x×R3n
k ) < ∞, ∀β > 0.

Above (1) and (2) can be proven by using Feynman-Kac type formula mentioned above.

2 Renormalized Nelson Hamiltonian

2.1 Definition of the Nelson Hamiltonian with cutoffs

In this section we define the renormalized Nelson Hamiltonian as a self-adjoint operator

acting in H. The Nelson Hamiltonian with ultraviolet cutoff Λ is defined by

HΛ = Hp ⊗ 1l + 1l⊗Hf +HI.

We explain Hp, Hf and HI below. First

Hp = −1

2
Δ + V

3

71



72

denotes a Schrödinger operator acting in  L^{2}(\mathbb{R}^{3}) . Here we assume that the mass of

the particle is one and we shall give an assumption on  V below. Operator  H_{f}=d\Gamma(\omega)
denotes the free field Hamiltonian acting in  \mathscr{F} defined by the second quantization of  \omega :

 d \Gamma(\omega)=0\oplus\{\oplus_{n=1}^{\infty}[\sum_{j=1}^{n}\omega(k_{j})]\},
where  \omega(k) describes the dispersion relation (the multiplication operator by  \omega(k) ).
Note that  H_{f} acts as

 H_{f} \Phi=\oplus_{n=1}^{\infty}(\sum_{j=1}^{n}\omega(k_{j}))\Phi^{(n)}(k_{1}, 
\cdot \cdot \cdot k_{n})
for  \Phi=\oplus_{n=0}^{\infty}\Phi^{(n)}  (k_{1}, \cdots , k_{n}) . Finally  H_{I} is the interaction term defined by

 H_{I}= \frac{1}{\sqrt{2}}\int(a^{\dagger}(k)e^{-ikx}\frac{\hat{\varphi}
_{\kappa,\Lambda}(k)}{\sqrt{\omega(k)}}+a(k)e^{ikx}\frac{\hat{\varphi}_{\kappa,
\Lambda}(k)}{\sqrt{\omega(k)}})dk.
Here  a(k) and  a\dagger(k) are the formal kernel of the annihilation and creation operators,

respectively, satisfying canonical commutation relations:

 [a(k), a^{\dagger}(k')]=\delta(k-k') .

Using this notation we have  a(f)= \int f(k)a(k)dk and  a \dagger(f)=\int f(k)a\dagger(k)dk . Both

 a(f) and  a\dagger(f) are closed operators and they satisfy canonical commutation realtions:

 [a(f), a^{\dagger}(g)]=(\overline{f}, g) .

 \hat{\varphi}_{K,\Lambda} is the cutoff function given by

 \hat{\varphi}_{\kappa,\Lambda}(k)=\{\begin{array}{ll}
0,   |k|<\kappa,
1,   \kappa\leq|k|\leq\Lambda,
0,   |k|>\Lambda
\end{array}
with infrared cutoff parameter  \kappa and ultraviolet cutoff parameter  \Lambda such that

 0\leq\kappa<\Lambda.

denotes a Schrödinger operator acting in L2(R3). Here we assume that the mass of

the particle is one and we shall give an assumption on V below. Operator Hf = dΓ(ω)

denotes the free field Hamiltonian acting in F defined by the second quantization of ω:

dΓ(ω) = 0⊕
{

⊕∞
n=1

[

n
∑

j=1

ω(kj)

]}

,

where ω(k) describes the dispersion relation (the multiplication operator by ω(k)).

Note that Hf acts as

HfΦ = ⊕∞
n=1

(

n
∑

j=1

ω(kj)

)

Φ(n)(k1, · · · , kn)

for Φ = ⊕∞
n=0Φ

(n)(k1, · · · , kn). Finally HI is the interaction term defined by

HI =
1√
2

∫

(

a†(k)e−ikx ϕ̂κ,Λ(k)
√

ω(k)
+ a(k)eikx

ϕ̂κ,Λ(k)
√

ω(k)

)

dk.

Here a(k) and a†(k) are the formal kernel of the annihilation and creation operators,

respectively, satisfying canonical commutation relations:

[a(k), a†(k′)] = δ(k − k′).

Using this notation we have a(f) =
∫

f(k)a(k)dk and a†(f) =
∫

f(k)a†(k)dk. Both

a(f) and a†(f) are closed operators and they satisfy canonical commutation realtions:

[a(f), a†(g)] = (f̄ , g).

ϕ̂K,Λ is the cutoff function given by

ϕ̂κ,Λ(k) =

⎧

⎪

⎨

⎪

⎩

0, |k| < κ,

1, κ ≤ |k| ≤ Λ,

0, |k| > Λ

with infrared cutoff parameter κ and ultraviolet cutoff parameter Λ such that

0 ≤ κ < Λ.
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In order to give an assumption on  V we define the Kato‐class of potentials [4, 21].
Potential  V:\mathbb{R}^{d}arrow \mathbb{R} is called  d‐dimensional Kato‐class potential whenever

 r arrow 01\dot{{\imath}}m\sup_{x\in \mathbb{R}^{d}}\int_{|x-y|\leq r}|g(x-y)
V(y)|dy=0
holds, where function  g depends on the dimension and is given by

 g(x)=\{\begin{array}{ll}
|x|,   d=1,
-\log|x|,   d=2,
|x|^{2-d},   d\geq 3.
\end{array}
We introduce assumptions used through this article unless otherwise stated.

Assumption 2.1 (Dispersion relation and potential) We assume (1) and (2):

(1)  \omega(k)=|k|.

(2)  V is 3‐dimensional Kato‐class potential.

It can be seen that  H_{I} is infinitesimally small with respect to   H_{p}\otimes ] 1+I\otimes H_{f} . By the

Kato‐Rellich theorem [20]  H_{\Lambda} is self‐adjoint on  D(H_{p}\otimes 11+]1\otimes H_{f}) and bounded from
below. We mention it as proposition below.

Proposition 2.2 Let  \kappa\geq 0 and  \Lambda<\infty . Then  H_{\Lambda} is self‐adjoint and bounded from
below on  D(H_{p}\otimes 11+]1\otimes H_{f}) .

2.2 Definition of the renormalized Nelson Hamiltonian

According to [23], we introduce the renormalization term defined by

 E_{\Lambda}=- \frac{1}{2}\int_{\mathbb{R}^{3}}\frac{|\hat{\varphi}_{\kappa,
\Lambda}(k)|^{2}}{\omega(k)}\beta(k)dk,
where  \beta(k) describes a propagator given by

  \beta(k)=(\omega(k)+\frac{1}{2}|k|^{2})^{-1}
We notice that   \lim_{\Lambdaarrow\infty}E_{\Lambda}=-\infty.

In order to give an assumption on V we define the Kato-class of potentials [4, 21].

Potential V : Rd → R is called d-dimensional Kato-class potential whenever

lim
r→0

sup
x∈Rd

∫

|x−y|≤r

|g(x− y)V (y)|dy = 0

holds, where function g depends on the dimension and is given by

g(x) =

⎧

⎪

⎨

⎪

⎩

|x|, d = 1,

− log |x|, d = 2,

|x|2−d, d ≥ 3.

We introduce assumptions used through this article unless otherwise stated.

Assumption 2.1 (Dispersion relation and potential) We assume (1) and (2):

(1) ω(k) = |k|.

(2) V is 3-dimensional Kato-class potential.

It can be seen that HI is infinitesimally small with respect to Hp ⊗ 1l + 1l⊗Hf . By the

Kato-Rellich theorem [20] HΛ is self-adjoint on D(Hp ⊗ 1l + 1l⊗Hf) and bounded from

below. We mention it as proposition below.

Proposition 2.2 Let κ ≥ 0 and Λ < ∞. Then HΛ is self-adjoint and bounded from

below on D(Hp ⊗ 1l + 1l⊗Hf).

2.2 Definition of the renormalized Nelson Hamiltonian

According to [23], we introduce the renormalization term defined by

EΛ = −1

2

∫

R3

|ϕ̂κ,Λ(k)|2
ω(k)

β(k)dk,

where β(k) describes a propagator given by

β(k) =

(

ω(k) +
1

2
|k|2

)−1

.

We notice that lim
Λ→∞

EΛ = −∞.
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Proposition 2.3 (Nelson [23]) Let  \kappa\geq 0 . Then there exists a self‐adjoint operator
 H_{\infty} bounded below such that for any  T\geq 0

 \kappaarrow\infty 1\dot{{\imath}}me^{-T(H_{\Lambda}-E_{\Lambda})}=e^{-
TH_{\infty}}
Nelson [23] proved the convergence in Proposition 2.3 in the strong sense. It is however

shown that this convergence is in the uniform sense in e.g. [22].
We shall see that  e^{-TH_{\infty}} can be represented in terms of path measures. Let  (B_{t})_{t\geq 0}

be 3‐dimensional Brownian motion on a probability space  (\Omega, \mathcal{F}, \mathcal{W}^{x}) , where  \mathcal{W}^{x} de‐

notes a probability measure on  \Omega such that  \mathcal{W}^{x}(B_{0}=x)=1 . Let

 U= \int_{0}^{T}\frac{e^{-s\omega(k)}}{\sqrt{\omega(k)}}]1_{|k|\geq\kappa}e^{-
ikB_{s}}ds, \tilde{U}=\int_{0}^{T}\frac{e^{-|T-s|\omega(k)}}{\sqrt{\omega(k)}}]
1_{|k|\geq\kappa}e^{ikB_{s}}ds.
Both integrals are finite for arbitrary  \kappa\geq 0 and  \mathbb{R}^{3}\ni k\neq 0 . Furthermore since

  E[\int_{\mathbb{R}^{3}}|U|^{2}dk]<\infty and   E[\int_{\mathbb{R}^{3}}|\tilde{U}|^{2}dk]<\infty , we can see that  U,  \~{U}\in L^{2}(\mathbb{R}^{3}) almost

surely. Hence both  a\dagger(U) and  a(U) are well‐defined closed operators almost surely.

Here we review the exponentials of annihilation operators and creation operators.

See [17, Appendix  B ] for the detail. Let  f\in L^{2}(\mathbb{R}^{3}) and we define the exponential of
creation operators  F_{f} by

 F_{f}= \sum_{n=0}^{\infty}\frac{1}{n!}a^{\dagger}(f)^{n}
and the domain is given by

 D(F_{f})= \{\Phi\in\bigcap_{n=1}^{\infty}D(a^{\dagger}(f)^{n})|\sum_{n=0}
^{\infty}\frac{1}{n!}\Vert a^{\dagger}(f)^{n}\Phi\Vert<\infty\}.
Let  \Phi\in \mathscr{F}^{(m)} . Thus we have

  \Vert F_{f}\Phi\Vert\leq\Vert\Phi\Vert+\sum_{n=1}^{\infty}\frac{\sqrt{m+n-1}
\cdots\sqrt{m}}{n!}\Vert f\Vert^{n}\Vert\Phi\Vert<\infty.
 \mathscr{F}_{0}\subset D(F_{f}) follows. We also define the exponential of annihilation operators by

 G_{f}= \sum_{n=0}^{\infty}\frac{1}{n!}a(f)^{n}

Proposition 2.3 (Nelson [23]) Let κ ≥ 0. Then there exists a self-adjoint operator

H∞ bounded below such that for any T ≥ 0

lim
κ→∞

e−T (HΛ−EΛ) = e−TH∞ .

Nelson [23] proved the convergence in Proposition 2.3 in the strong sense. It is however

shown that this convergence is in the uniform sense in e.g. [22].

We shall see that e−TH∞ can be represented in terms of path measures. Let (Bt)t≥0

be 3-dimensional Brownian motion on a probability space (Ω,F ,Wx), where Wx de-

notes a probability measure on Ω such that Wx (B0 = x) = 1. Let

U =

∫ T

0

e−sω(k)

√

ω(k)
1l|k|≥κe

−ikBsds, Ũ =

∫ T

0

e−|T−s|ω(k)
√

ω(k)
1l|k|≥κe

ikBsds.

Both integrals are finite for arbitrary κ ≥ 0 and R
3 ∋ k �= 0. Furthermore since

E[
∫

R3 |U |2dk] < ∞ and E[
∫

R3 |Ũ |2dk] < ∞, we can see that U, Ũ ∈ L2(R3) almost

surely. Hence both a†(U) and a(U) are well-defined closed operators almost surely.

Here we review the exponentials of annihilation operators and creation operators.

See [17, Appendix B] for the detail. Let f ∈ L2(R3) and we define the exponential of

creation operators Ff by

Ff =
∞
∑

n=0

1

n!
a†(f)n

and the domain is given by

D(Ff ) =

{

Φ ∈ ∩∞
n=1D(a†(f)n) |

∞
∑

n=0

1

n!
‖a†(f)nΦ‖ < ∞

}

.

Let Φ ∈ F (m). Thus we have

‖FfΦ‖ ≤ ‖Φ‖+
∞
∑

n=1

√
m+ n− 1 · · · √m

n!
‖f‖n‖Φ‖ < ∞.

F0 ⊂ D(Ff ) follows. We also define the exponential of annihilation operators by

Gf =
∞
∑

n=0

1

n!
a(f)n

6
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with the domain

 D(G_{f})= \{\Phi\in\bigcap_{n=1}^{\infty}D(a(f)^{n})|\sum_{n=0}^{\infty}
\frac{1}{n!}\Vert a(f)^{n}\Phi\Vert<\infty\}.
We simply write   F_{f}=e^{a(f)}\dagger and  G_{f}=e^{a(\overline{f})} whenever confusion may arise. Then we

can see that  (e^{a(f)}\dagger)^{*}\supset e^{a(\overline{f})} and this implies that   e^{a(f)}\dagger is closable. The closure of
  e^{a(f)}\dagger is denoted by the same symbol. Similarly the closure of  e^{a(f)} is denoted by the

same symbol.

Proposition 2.4 (Algebraic relations) Let  f,  g\in L^{2}(\mathbb{R}^{3}) and  P be a polynomial.

Suppose that  \Omega\in \mathscr{F} be the Fock vacuum. Then (1)  e^{a}e^{a(f)}\Omega\dagger(g)\dagger=e^{a(f+g)}\Omega\dagger,
(2)   P(a(g))e^{a(f)}\Omega\dagger=P((\overline{g}, f))e^{a(f)}\Omega\dagger and (3)  e^{a(g)}e^{a(f)}\Omega\dagger=e^{(\overline{g},f)}e^{a(f)}\Omega\dagger.

Proof See [17, Appendix  B].  \square 

We note that   e^{a(f)}\Omega\dagger is an eigenvector for  a(f) such that  a(f)e^{a(f)}\Omega\dagger=(\overline{g}, f)e^{a(f)}\Omega\dagger.
We conclude that the spectrum of  a(f) is  \mathbb{C}.   e^{a(f)}\Omega\dagger is called a coherent vector.

Proposition 2.5 (Boundedness) Let  t>0 and  f\in D(1/\sqrt{\omega}) . Then both   e^{a(f)}e^{-tH_{f}}\dagger

and  e^{-tH_{f}}e^{a(f)} are bounded operators.

Proof See [17, Appendix  B].  \square 

Let   A=e^{a(U)}e^{-\frac{T}{2}H_{f}}\dagger and  \~{A}=e^{-\frac{T}{2}H_{f}}e^{a(\overline{U})}.

Lemma 2.6 Let  \kappa\geq 0 . Then  A and Ã are bounded.

Proof Since   E[\int_{\mathbb{R}^{3}}|U|^{2}/\omega dk]<\infty and   E[\int_{\mathbb{R}^{3}}|\tilde{U}|^{2}/\omega dk]<\infty , the lemma follows from

Proposition 2.5.  \square 

Theorem 2.7 (Matte and  M\emptyset 1ler[22] ) Let  \kappa\geq 0 . Let  F,  G\in \mathcal{H} . Then it follows
that

 (F, e^{-TH_{\infty}}G)_{\mathscr{H}}= \int_{\mathbb{R}^{3}}dxE^{x}[e^{-\int_{0}
^{T}V(B_{s})ds}e^{\frac{1}{2}S_{ren}}(F(B_{0}), A\~{A} G(B_{T}))_{\mathscr{F}}] , (2.1)

with the domain

D(Gf ) =

{

Φ ∈ ∩∞
n=1D(a(f)n) |

∞
∑

n=0

1

n!
‖a(f)nΦ‖ < ∞

}

.

We simply write Ff = ea
†(f) and Gf = ea(f̄) whenever confusion may arise. Then we

can see that (ea
†(f))∗ ⊃ ea(f̄) and this implies that ea

†(f) is closable. The closure of

ea
†(f) is denoted by the same symbol. Similarly the closure of ea(f) is denoted by the

same symbol.

Proposition 2.4 (Algebraic relations) Let f, g ∈ L2(R3) and P be a polynomial.

Suppose that Ω ∈ F be the Fock vacuum. Then (1) ea
†(g)ea

†(f)Ω = ea
†(f+g)Ω,

(2) P (a(g))ea
†(f)Ω = P ((ḡ, f))ea

†(f)Ω and (3) ea(g)ea
†(f)Ω = e(ḡ,f)ea

†(f)Ω.

Proof See [17, Appendix B]. ✷

We note that ea
†(f)Ω is an eigenvector for a(f) such that a(f)ea

†(f)Ω = (ḡ, f)ea
†(f)Ω.

We conclude that the spectrum of a(f) is C. ea
†(f)Ω is called a coherent vector.

Proposition 2.5 (Boundedness) Let t > 0 and f ∈ D(1/
√
ω). Then both ea

†(f)e−tHf

and e−tHfea(f) are bounded operators.

Proof See [17, Appendix B]. ✷

Let A = ea
†(U)e−

T
2
Hf and Ã = e−

T
2
Hfea(Ũ).

Lemma 2.6 Let κ ≥ 0. Then A and Ã are bounded.

Proof Since E[
∫

R3 |U |2/ωdk] < ∞ and E[
∫

R3 |Ũ |2/ωdk] < ∞, the lemma follows from

Proposition 2.5. ✷

Theorem 2.7 (Matte and Møller[22]) Let κ ≥ 0. Let F,G ∈ H. Then it follows

that

(

F, e−TH∞G
)

H
=

∫

R3

dxEx
[

e−
∫ T
0 V (Bs)dse

1
2
Sren

(

F (B0), AÃG(BT )
)

F

]

, (2.1)
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where phase factor  S_{ren} is given by

 S_{ren}=2 \int_{0}^{T}(\int_{0}^{t}\nabla\varphi_{0}(B_{s}-B_{t}, s-t)ds)dB_{t}
-2\int_{0}^{T}\varphi_{0}(B_{S}-B_{T}, s-T)ds
and

  \varphi_{0}(X, t)=\int_{\mathbb{R}^{3}}\frac{e^{-ikX}e^{-|t|\omega(k)}}
{2\omega(k)}\beta(k)I_{|k|\geq\kappa}dk.
In particular  e^{-TH_{\infty}} for  T>0 is positivity improving, and if  H_{\infty} has a ground state,

then it is unique up to multiple constants.

We give several remarks on Theorem 2.7.

(1) In (2.1) we identify  \mathcal{H} with  L^{2}(\mathbb{R}^{3};\mathscr{F}) : the set of  \mathscr{F}‐valued  L^{2}‐fUnctions on  \mathbb{R}^{3}.

I.e.,  F\in \mathcal{H} implies that  F(x)\in \mathscr{F} for each  x.

(2) We revive a coupling constant  g in  H_{\Lambda} by replacing  H_{I} with  gH_{I} . Then renor‐
malization term  E_{\Lambda} is identical with the coefficient of  g^{2} in the expansion of the

ground state energy of  H_{\Lambda} with  V=0 on  g^{2} , i.e.,

 E(g)=E_{\Lambda}g^{2}+ \sum_{2\leq n}a_{n}g^{2n},
and we can see that   \Lambdaarrow\infty 1\dot{{\imath}}m\sum_{2\leq n}a_{n}g^{2n}<\infty . See [16].

(3) Gubinelli,Hiroshima and Lörinczi [13] derived (2.1) for  F,  G\in D with some dense
domain  D.

3 Ground states

3.1 Existence of the ground state

The difficulty in establishing the existence of the ground state in quantum field theory

comes from the fact that the bottom of the spectrum lies in the essential spectrum,

not below it, as is the case for usual Schrödinger operator. Let us consider Schrödinger

where phase factor Sren is given by

Sren = 2

∫ T

0

(
∫ t

0

∇ϕ0(Bs − Bt, s− t)ds

)

dBt − 2

∫ T

0

ϕ0(Bs − BT , s− T )ds

and

ϕ0(X, t) =

∫

R3

e−ikXe−|t|ω(k)

2ω(k)
β(k)1l|k|≥κdk.

In particular e−TH∞ for T > 0 is positivity improving, and if H∞ has a ground state,

then it is unique up to multiple constants.

We give several remarks on Theorem 2.7.

(1) In (2.1) we identify H with L2(R3;F ): the set of F -valued L2-functions on R
3.

I.e., F ∈ H implies that F (x) ∈ F for each x.

(2) We revive a coupling constant g in HΛ by replacing HI with gHI. Then renor-

malization term EΛ is identical with the coefficient of g2 in the expansion of the

ground state energy of HΛ with V = 0 on g2, i.e.,

E(g) = EΛg
2 +

∑

2≤n

ang
2n,

and we can see that lim
Λ→∞

∑

2≤n

ang
2n < ∞. See [16].

(3) Gubinelli,Hiroshima and Lörinczi [13] derived (2.1) for F,G ∈ D with some dense

domain D.

3 Ground states

3.1 Existence of the ground state

The difficulty in establishing the existence of the ground state in quantum field theory

comes from the fact that the bottom of the spectrum lies in the essential spectrum,

not below it, as is the case for usual Schrödinger operator. Let us consider Schrödinger

8
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operator  -\triangle/2+V with external potential  V which satisfies  V\in L^{\infty}(\mathbb{R}^{3}) and  |V(x)|arrow
 0 as  |x|arrow\infty . This assumption yields that  V is relatively compact with respect to

 -\triangle/2;V(-\triangle/2+m)^{-1} is compact for any  m>0 and the essential spectrum of

 -\triangle/2+V is  [0, \infty) . Let  e be the bottom of the spectrum of  -\triangle/2+V and  e_{0} that of

 -\triangle/2.  e_{0} is equal to the bottom of the essential spectrum of  -\triangle/2+V . Then  e_{0}=0.

If  e<e_{0} , then  e is discrete and we can conclude that  -\triangle/2+V has the ground state.

Consider  H_{\Lambda} . Similar to  -\triangle/2+V , we denote the bottom of the spectrum of  H_{\Lambda} and

 H_{\Lambda} with no external potential by  E and  E_{0} , respectively. In the case of the Nelson

Hamiltonian, despite inequality  E<E_{0},  E lies in the bottom of the essential spectrum,

and it is unclear that  H_{\Lambda} admits a ground state.

In the case of  \Lambda<\infty it is shown that the ground state of  H_{\Lambda} exists and it is unique

up to multiple constants. This is due to e.g., [2, 5, 6, 27]. In [14] the existence of
a ground state of the renormalized Nelson Hamiltonian without ultraviolet cutoff is

shown but only for sufficiently small coupling constants.

In this section using Feynman‐ Kac type formula mentioned above we can also show

that the ground state of  H_{\infty} exists for arbitrary values of coupling constants for  \kappa>0.

Note that in our setting the coupling constant is absorbed in coupling function  \hat{\varphi}_{\kappa,\Lambda}.

Theorem 3.1 (Hiroshima and Matte [19]) Suppose that  \kappa>0 . Then the ground
state of  H_{\infty} exists and it is unique.

Proof The uniqueness is due to Theorem 2.7. We shall show the existence. Outline

of a proof is as follows. See [19] for the detail.
Step 1: We assume that  \omega(k)=\sqrt{|k|^{2}+\nu^{2}} with some artificial constant  \nu>0.

Let  G\subset \mathbb{R}^{3} be a bounded and open subset. Let

  \tau_{G}(x)=\inf\{t>0|B_{t}+x\not\in G\}

be the exit time from  G . In particular when  x\not\in G,  \tau_{G}(x)=0 . Define the quadratic

form  Q_{t} :  \mathscr{H}\cross \mathscr{H}arrow \mathbb{C} by

 Q_{t} :   \Psi\cross\Phi\mapsto\int_{\mathbb{R}^{3}}dxE^{x}[]1_{\tau_{G}(x)\geq t}
e^{\frac{1}{2}S_{ren}}e^{-\int_{0}^{t}V(B_{s})ds} (  \Psi(B_{0}) , AÃ  \Phi (Bt))  ]

operator −Δ/2+V with external potential V which satisfies V ∈ L∞(R3) and |V (x)| →
0 as |x| → ∞. This assumption yields that V is relatively compact with respect to

−Δ/2; V (−Δ/2 + m)−1 is compact for any m > 0 and the essential spectrum of

−Δ/2+ V is [0,∞). Let e be the bottom of the spectrum of −Δ/2+ V and e0 that of

−Δ/2. e0 is equal to the bottom of the essential spectrum of −Δ/2+V . Then e0 = 0.

If e < e0, then e is discrete and we can conclude that −Δ/2 + V has the ground state.

Consider HΛ. Similar to −Δ/2+ V , we denote the bottom of the spectrum of HΛ and

HΛ with no external potential by E and E0, respectively. In the case of the Nelson

Hamiltonian, despite inequality E < E0, E lies in the bottom of the essential spectrum,

and it is unclear that HΛ admits a ground state.

In the case of Λ < ∞ it is shown that the ground state of HΛ exists and it is unique

up to multiple constants. This is due to e.g., [2, 5, 6, 27]. In [14] the existence of

a ground state of the renormalized Nelson Hamiltonian without ultraviolet cutoff is

shown but only for sufficiently small coupling constants.

In this section using Feynman- Kac type formula mentioned above we can also show

that the ground state of H∞ exists for arbitrary values of coupling constants for κ > 0.

Note that in our setting the coupling constant is absorbed in coupling function ϕ̂κ,Λ.

Theorem 3.1 (Hiroshima and Matte [19]) Suppose that κ > 0. Then the ground

state of H∞ exists and it is unique.

Proof The uniqueness is due to Theorem 2.7. We shall show the existence. Outline

of a proof is as follows. See [19] for the detail.

Step 1: We assume that ω(k) =
√

|k|2 + ν2 with some artificial constant ν > 0.

Let G ⊂ R
3 be a bounded and open subset. Let

τG(x) = inf{t > 0|Bt + x �∈ G}

be the exit time from G. In particular when x �∈ G, τG(x) = 0. Define the quadratic

form Qt : H × H → C by

Qt : Ψ× Φ �→
∫

R3

dxEx
[

1lτG(x)≥te
1
2
Srene−

∫ t
0 V (Bs)ds

(

Ψ(B0), AÃΦ(Bt)
)]

.
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Thus it can be seen that there exists a self‐adjoint operator  H_{G} bounded from below

such that  (\Psi, e^{-tH_{G}}\Phi)=Q_{t}(\Psi, \Phi) . The self‐adjoint operator  H_{G} can be regarded as a

self‐adjoint operator on  L^{2}(G)\otimes \mathscr{F} . Under the identifications  \mathscr{F}\cong L^{2}(Q) with some

probability space  (Q, \mathcal{B}, \mu) , and

 L^{2}(G)\otimes \mathscr{F}\cong L^{2}(G\cross Q) ,

it can be seen that  e^{-tH_{G}} is hypercontractive for  t>0 . Hence  H_{G} must have the

ground state in  L^{2}(G\cross Q) by [12, 26], since  \lambda\cross\mu is a finite measure on  G\cross Q and
 e^{-tH_{G}},  t>0 , is hypercontractive. Here  \lambda denotes the Lebesgue measure on  G.

Step 2: Let  \varphi_{G} be the unique ground state of  H_{G} with  \mu>0 and we extend  \varphi_{G} to

the vector on  L^{2}(\mathbb{R}^{3}\cross Q) by zero‐extension, i.e.,

 \tilde{\varphi}_{G}(x, \phi)=\{\begin{array}{ll}
\varphi_{G}(x, \phi)   (x, \phi)\in G\cross Q
0   (x, \phi)\not\in G\cross Q.
\end{array}
Let  \varphi_{n}=\varphi_{G_{n}} and  G_{n}\uparrow \mathbb{R}^{3} . It can be seen that  \{g_{n}\} is a Cauchy sequence in  L^{2}(\mathbb{R}^{3}\cross Q)
and   \lim_{narrow\Lambda}\varphi_{n} exists for each  \Lambda<\infty . The limit is denoted by  \varphi_{\Lambda} and it is the ground
state of  H_{\Lambda} with  \mu>0.

Step 3: It is established that if  H_{\Lambda} with  \mu>0 has the ground state, then  H_{\Lambda} with

 \mu=0 also has the ground state, since  \kappa>0 . This trick is used in e.g. in [5]. We
denote the ground state of  H_{\Lambda} with  \mu=0 by the same symbol  \varphi_{\Lambda}.

Step 4: Suppose that  \Lambdaarrow\infty . Hence it can be also shown that  \{\varphi_{\Lambda}\} is a compact

set in  L^{2}(\mathbb{R}^{3}\cross Q) by using the uniform convergence of  e^{-tH_{\Lambda}} to  e^{-tH_{\infty}} as  \Lambdaarrow\infty,

the pull‐through formula, spatial exponential decay [2, 11] and the Kolmogorov‐Riesz‐
Fréchet type theorem [18]. This implies that  \{\varphi_{\Lambda}\} includes a strongly convergent
subsequence  \varphi_{\Lambda'} and we can conclude that   \lim_{\Lambdaarrow\infty}\varphi_{\Lambda'}=\varphi_{g} is the ground state of  H_{\infty}.

 \square 

3.2 Ground state expectations

Problems we are interested in are the expectation values of observables with respect to

the ground state of  H_{\infty} . Let  O be an observable realised as a self‐adjoint operator in
 \mathscr{H} . We want to estimate  (\varphi_{g}, O\varphi_{g}) . Typical examples of  O are  e^{+\beta N} and  e^{+\beta\phi(f)^{2}}

Thus it can be seen that there exists a self-adjoint operator HG bounded from below

such that (Ψ, e−tHGΦ) = Qt(Ψ,Φ). The self-adjoint operator HG can be regarded as a

self-adjoint operator on L2(G) ⊗ F . Under the identifications F ∼= L2(Q) with some

probability space (Q,B, µ), and

L2(G)⊗ F ∼= L2(G×Q),

it can be seen that e−tHG is hypercontractive for t > 0. Hence HG must have the

ground state in L2(G × Q) by [12, 26], since λ × µ is a finite measure on G × Q and

e−tHG , t > 0, is hypercontractive. Here λ denotes the Lebesgue measure on G.

Step 2: Let ϕG be the unique ground state of HG with µ > 0 and we extend ϕG to

the vector on L2(R3 ×Q) by zero-extension, i.e.,

ϕ̃G(x, φ) =

{

ϕG(x, φ) (x, φ) ∈ G×Q

0 (x, φ) �∈ G×Q.

Let ϕn = ϕGn andGn ↑ R
3. It can be seen that {ϕn} is a Cauchy sequence in L2(R3×Q)

and lim
n→Λ

ϕn exists for each Λ < ∞. The limit is denoted by ϕΛ and it is the ground

state of HΛ with µ > 0.

Step 3: It is established that if HΛ with µ > 0 has the ground state, then HΛ with

µ = 0 also has the ground state, since κ > 0. This trick is used in e.g. in [5]. We

denote the ground state of HΛ with µ = 0 by the same symbol ϕΛ.

Step 4: Suppose that Λ → ∞. Hence it can be also shown that {ϕΛ} is a compact

set in L2(R3 × Q) by using the uniform convergence of e−tHΛ to e−tH∞ as Λ → ∞,

the pull-through formula, spatial exponential decay [2, 11] and the Kolmogorov-Riesz-

Fréchet type theorem [18]. This implies that {ϕΛ} includes a strongly convergent

subsequence ϕΛ′ and we can conclude that lim
Λ′→∞

ϕΛ′ = ϕg is the ground state of H∞.

✷

3.2 Ground state expectations

Problems we are interested in are the expectation values of observables with respect to

the ground state of H∞. Let O be an observable realised as a self-adjoint operator in

H . We want to estimate (ϕg, Oϕg). Typical examples of O are e+βN and e+βφ(f)2 .
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3.2.1 Super‐exponential decay of the number of bosons

We consider the Nelson Hamiltonian without the interaction:   H_{p}\otimes ] 1+1\otimes H_{f} . The

ground state of it is   f\otimes\Omega , where  f is the ground state of  H_{p} . Then the number of

bosons of   f\otimes\Omega is zero. I.e.,  (]1\otimes N)f\otimes\Omega=0 , where  N denotes the number operator

defined by  N=d\Gamma(11) . We want to estimate the number of bosons of the ground

state  \varphi_{g} of  H_{\infty} . We define the number operator with momenta grater than one  by^{1}

 N_{+}= \int_{|k|\geq 1}a\dagger(k)a(k)dk and  N_{-}= \int_{|k|<1}a\dagger(k)a(k)dk . Then  N=N_{+}+N_{-} . We set

 1\otimes N by  N.

Lemma 3.2  \varphi_{g}\in D(e^{\beta N_{+}}) for any  \beta\geq 0.

Proof Let  E be the bottom of the spectrum of  H_{\infty} . We have  \varphi_{g}=e^{tE}e^{-tH_{\infty}}\varphi_{g} for

any  t\geq 0 . Then  \Vert e^{\beta N}\varphi_{g}\Vert=e^{tE}\Vert e^{\beta N}e^{-tH_{\infty}}
\varphi_{g}\Vert and by Feynman‐Kac formula we can
see that

 (F, e^{\beta N}e^{-tH_{\infty}}G)= \int_{\mathbb{R}^{3}}dxE^{x}[e^{\frac{1}{2}
S_{ren}}e^{-\int_{0}^{t}V(B_{s})ds}(F(B_{0}), e^{\beta N}A\~{A} G(B_{t}))]
It can be also seen that

 e^{\beta N_{+}}A\~{A}=e^{a^{*}(e^{\beta j1_{lk1\geq 1}}U)}e^{\beta N_{+}}e^{-
tH}e^{a(\overline{U})},

and  e^{\beta N_{+}}e^{-tH} is bounded for   t>\beta , since

 e^{\beta N_{+}}e^{-tH}=\Gamma(e^{-t|k|+\beta]1_{|k|\geq 1}})=\Gamma(e^{]
1_{|k|\geq 1(-t|k|+\beta)}})\Gamma(e^{-t|k|]1_{|k|<1}})

and ] 1_{|k|\geq 1}(-t|k|+\beta)<0 for any  |k|\geq 1 . Then  |(F, e^{\beta N_{+}}e^{-tH_{\infty}}G)|\leq C\Vert F\Vert\Vert G\Vert with

some constant  C depending only  t and  \beta . Thus  e^{\beta N_{+}}e^{-tH_{\infty}} is bounded and the lemma
follows.  \square 

Lemma 3.3  \varphi_{g}\in D(e^{\beta N-}) for any  \beta\geq 0

 1N_{+}=d\Gamma(11_{|k|\geq 1}) and  N_{-}=d\Gamma(I_{|k|<1}) .

3.2.1 Super-exponential decay of the number of bosons

We consider the Nelson Hamiltonian without the interaction: Hp ⊗ 1l + 1l ⊗ Hf . The

ground state of it is f ⊗ Ω, where f is the ground state of Hp. Then the number of

bosons of f ⊗Ω is zero. I.e., (1l⊗N)f ⊗Ω = 0, where N denotes the number operator

defined by N = dΓ(1l). We want to estimate the number of bosons of the ground

state ϕg of H∞. We define the number operator with momenta grater than one by1

N+ =
∫

|k|≥1
a†(k)a(k)dk and N− =

∫

|k|<1
a†(k)a(k)dk. Then N = N+ + N−. We set

1l⊗N by N .

Lemma 3.2 ϕg ∈ D(eβN+) for any β ≥ 0.

Proof Let E be the bottom of the spectrum of H∞. We have ϕg = etEe−tH∞ϕg for

any t ≥ 0. Then ‖eβNϕg‖ = etE‖eβNe−tH∞ϕg‖ and by Feynman-Kac formula we can

see that

(

F, eβNe−tH∞G
)

=

∫

R3

dxEx
[

e
1
2
Srene−

∫ t
0 V (Bs)ds

(

F (B0), e
βNAÃG(Bt)

)]

.

It can be also seen that

eβN+AÃ = ea
∗(e

β1l|k|≥1U)eβN+e−tHea(Ũ),

and eβN+e−tH is bounded for t > β, since

eβN+e−tH = Γ(e−t|k|+β1l|k|≥1) = Γ(e1l|k|≥1(−t|k|+β))Γ(e−t|k|1l|k|<1)

and 1l|k|≥1(−t|k| + β) < 0 for any |k| ≥ 1. Then |(F, eβN+e−tH∞G)| ≤ C‖F‖‖G‖ with

some constant C depending only t and β. Thus eβN+e−tH∞ is bounded and the lemma

follows. ✷

Lemma 3.3 ϕg ∈ D(eβN−) for any β ≥ 0

1 N+ = dΓ(1l|k|≥1) and N− = dΓ(1l|k|<1).
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Proof To show the lemma we use the Gibbs measure associated with the ground
state  \varphi_{g} . Let  (B_{t})_{t\in \mathbb{R}} be 3‐dimensional Brownian motion on the whole real line  \mathbb{R} . Let

 \mathcal{F}_{t}=\sigma(B_{r};-t\leq r\leq t) be the sigma‐field generated by  \{B_{r};-t\leq r\leq t\} . We set

  \mathcal{G}=\sigma(\bigcup_{t\geq 0}\mathcal{F}_{t}) . Define the probability measure  \mu_{t}(\cdot) by

  \mu_{t}(A)=\frac{1}{Z_{t}}\int_{\mathbb{R}^{3}}dxE^{x}[11_{A}L_{t}], A\in 
\mathcal{G},
where  Z_{t} denotes the normalising constant and

 L_{t}=f(B_{-t})f(B_{t})e^{\frac{1}{2}\overline{s}_{ren}}e^{-\int_{-t}^{t}
V(B_{s})ds}

with

  \overline{S}_{ren}=2\int_{-T}^{T}(\int_{-T}^{t}\nabla\varphi_{0}(B_{s}-B_{t}, 
s-t)ds)dB_{t}-2\int_{-T}^{T}\varphi_{0}(B_{s}-B_{T}, s-T)ds.
By a direct computation we then have

 ( \varphi_{g}, e^{-BN-}\varphi_{g})=\lim_{tarrow\infty}\frac{(e^{-tH_{\infty}}f
\otimes I,e^{-\beta N-}e^{-tH_{\infty}}f\otimes I)}{||e^{-tH}\infty f\otimes]
1||^{2}}=\lim_{tarrow\infty}E_{\mu_{t}}[e^{-(1-e^{-\beta})\int_{-t}^{0}
ds\int_{0}^{t}drW}],
where

 W= \int_{\kappa\leq|k|\leq 1}\frac{1}{\omega(k)}e^{-|r-s|\omega(k)}e^{-ik(B_{r}
-B_{s})}dk.
We see that

 |W| \leq\int_{\kappa\leq|k|\leq 1}\omega(k)^{-3}dk<\infty
which implies that  W is unifprmly bounded with respect to Brownian motion and

 t\geq 0 . By the existence of the positive ground state, and

 t arrow\infty 1\dot{{\imath}}m\frac{e^{-tH_{\infty}}f\otimes I}{\Vert e^{-tH}
\infty f\otimes]1\Vert}=\varphi_{g},
there exists a probability measure  \mu_{\infty} on  (\Omega, \mathcal{G}) such that

 (\varphi_{g}, e^{-\beta N-}\varphi_{g})=E_{\mu_{\infty}}[e^{-(1-e^{-\beta})
\int_{\infty}^{0}ds\int_{0}^{\infty}Wdr}]

Proof To show the lemma we use the Gibbs measure associated with the ground

state ϕg. Let (Bt)t∈R be 3-dimensional Brownian motion on the whole real line R. Let

Ft = σ(Br;−t ≤ r ≤ t) be the sigma-field generated by {Br;−t ≤ r ≤ t}. We set

G = σ(∪t≥0Ft). Define the probability measure µt(·) by

µt(A) =
1

Zt

∫

R3

dxEx [1lALt] , A ∈ G,

where Zt denotes the normalising constant and

Lt = f(B−t)f(Bt)e
1
2
S̄rene−

∫ t
−t V (Bs)ds

with

S̄ren = 2

∫ T

−T

(
∫ t

−T

∇ϕ0(Bs − Bt, s− t)ds

)

dBt − 2

∫ T

−T

ϕ0(Bs − BT , s− T )ds.

By a direct computation we then have

(ϕg, e
−BN−ϕg) = lim

t→∞

(e−tH∞f ⊗ 1l, e−βN−e−tH∞f ⊗ 1l)

‖e−tH∞f ⊗ 1l‖2 = lim
t→∞

Eµt

[

e−(1−e−β)
∫ 0
−t ds

∫ t
0 drW

]

,

where

W =

∫

κ≤|k|≤1

1

ω(k)
e−|r−s|ω(k)e−ik(Br−Bs)dk.

We see that

|W | ≤
∫

κ≤|k|≤1

ω(k)−3dk < ∞

which implies that W is unifprmly bounded with respect to Brownian motion and

t ≥ 0. By the existence of the positive ground state, and

lim
t→∞

e−tH∞f ⊗ 1l

‖e−tH∞f ⊗ 1l‖ = ϕg,

there exists a probability measure µ∞ on (Ω,G) such that

(ϕg, e
−βN−ϕg) = Eµ∞

[

e−(1−e−β)
∫ 0
−∞ ds

∫∞
0 Wdr

]

.
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The proof of the existence of the measure  \mu_{\infty} is due to [15]. By the analytic continuation
in  \beta we can extend above identity to whole  \beta\in \mathbb{C} . Thus it follows that

 (\varphi_{g}, e^{\beta N_{-}}\varphi_{g})=E_{\mu_{\infty}}[e^{-(1-e^{\beta})
\int_{\infty}^{0}ds\int_{0}^{\infty}Wdr}] for  \beta\in \mathbb{C}.

In particular  \Vert e^{+\beta N-}\varphi_{g}\Vert<\infty for any  \beta>0 , and the lemma is proven.  \square 

Theorem 3.4 (Hiroshima and Matte [19]) Let  \kappa>0 . Then

 \varphi_{g}\in D(e^{\beta N}) , \forall\beta>0.

Proof By Lemmas 3.2 and 3.3 we have

 (\varphi_{g}e^{\beta N}\varphi_{g})=(\varphi_{g}, e^{\beta N_{+}}e^{\beta N_{-}
}\varphi_{g})=(e^{\beta N_{+}}\varphi_{g}, e^{\beta N-}\varphi_{g})=\Vert 
e^{\beta N_{+}}\varphi_{g}\Vert\Vert e^{\beta N_{-}}\varphi_{g}\Vert<\infty.

Hence the theorem is proven.  \square 

From Theorem 3.4 we can say that the number of bosons of the ground state of

 H_{\infty} is a few.

3.2.2 Gaussian dominations

In a similar manner to the proof of the super‐exponential decay of  \varphi_{g} we can also show

a Gaussian domination of the ground state  \varphi_{g} by the path measure  \mu_{\infty}.

Let  a= \frac{1}{\sqrt{2}}(x+\frac{d}{dx}) and  a \dagger=\frac{1}{\sqrt{2}}(x-\frac{d}{dx}) . Set  \varphi(x)=e^{-|x|^{2}/2}/\pi^{1/4} . The harmonic

oscillator in  L^{2}(\mathbb{R}) is defined by   h=aa\dagger . The spectrum of  h is given by  \{n\}_{n=0}^{\infty} and

 h\varphi_{n}=n\varphi_{n} for   \varphi_{n}=(n!)^{-1/2}(\prod^{n}a\dagger)\varphi . Precisely  \varphi_{n}(x)=h_{n}(x)e^{-|x|^{2}/2} with some
 n‐degree polynomial  h_{n}(x) . In particular we have

  1\dot{{\imath}}m\beta\uparrow 1\Vert e^{(\beta/2)|x|^{2}}\varphi_{n}
\Vert_{L^{2}(\mathbb{R})}arrow\infty . (3.1)

Now we consider the Nelson Hamiltonian without the interaction:   H_{p}\otimes ] 1+ ] 1\otimes H_{f} . The

ground state of it is  \varphi_{0}=f\otimes\Omega , where  f is the normalised ground state of  H_{p} . The

free field Hamiltonian  H_{f} can be regarded as an infinite freedom version of harmonic

The proof of the existence of the measure µ∞ is due to [15]. By the analytic continuation

in β we can extend above identity to whole β ∈ C. Thus it follows that

(ϕg, e
βN−ϕg) = Eµ∞

[

e−(1−eβ)
∫ 0
−∞ ds

∫∞
0 Wdr

]

for β ∈ C.

In particular ‖e+βN−ϕg‖ < ∞ for any β > 0, and the lemma is proven. ✷

Theorem 3.4 (Hiroshima and Matte [19]) Let κ > 0. Then

ϕg ∈ D(eβN), ∀β > 0.

Proof By Lemmas 3.2 and 3.3 we have

(ϕge
βNϕg) = (ϕg, e

βN+eβN−ϕg) = (eβN+ϕg, e
βN−ϕg) = ‖eβN+ϕg‖‖eβN−ϕg‖ < ∞.

Hence the theorem is proven. ✷

From Theorem 3.4 we can say that the number of bosons of the ground state of

H∞ is a few.

3.2.2 Gaussian dominations

In a similar manner to the proof of the super-exponential decay of ϕg we can also show

a Gaussian domination of the ground state ϕg by the path measure µ∞.

Let a = 1√
2
(x + d

dx
) and a† = 1√

2
(x − d

dx
). Set ϕ(x) = e−|x|2/2/π1/4. The harmonic

oscillator in L2(R) is defined by h = a†a. The spectrum of h is given by {n}∞n=0 and

hϕn = nϕn for ϕn = (n!)−1/2(
∏n a†)ϕ. Precisely ϕn(x) = hn(x)e

−|x|2/2 with some

n-degree polynomial hn(x). In particular we have

lim
β↑1

‖e(β/2)|x|2ϕn‖L2(R) → ∞. (3.1)

Now we consider the Nelson Hamiltonian without the interaction: Hp⊗1l+1l⊗Hf . The

ground state of it is ϕ0 = f ⊗ Ω, where f is the normalised ground state of Hp. The

free field Hamiltonian Hf can be regarded as an infinite freedom version of harmonic
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oscillator  h . We have a counterpart of (3.1). Let  \phi(g) be given by (1.1). We have
 (\Omega, e^{(\beta/2)\phi(g)}\Omega)=(1-\beta\Vert\hat{g}/\sqrt{\omega}
\Vert^{2})^{-1/2} . In particular

  \lim_{\beta\uparrow\Vert\hat{g}/\sqrt{\omega}\Vert^{-2}}\Vert e^{(\beta/2)\phi
(g)^{2}}\varphi_{0}\Vert=\infty.
The renormalized Nelson Hamiltonian  H_{\infty} has a similar properties. We only mention
the statement.

Theorem 3.5 (Hiroshima and Matte [19]) Let  \kappa>0 . Suppose that  \hat{g}/\sqrt{\omega}\in
 L^{2}(\mathbb{R}^{3}),  11_{|k|\geq\kappa}\hat{g}/w^{2}\in L^{1}(\mathbb{R}^{3}) and  \beta<1/\Vert\hat{g}/\sqrt{\omega}\Vert^{2} . Let  \phi(g) be given by (1.1). Then

 \varphi_{g}\in D(e^{(\beta/2)\phi(g)^{2}})
and

  \Vert e^{(\beta/2)\phi(g)^{2}}\varphi_{g}\Vert^{2}=\frac{1}{\sqrt{1-\beta\Vert
\hat{g}/\sqrt{\omega}\Vert^{2}}}E_{\mu_{\infty}}[e^{\frac{\beta K(g)^{2}}
{{\imath}-\beta\Vert g/\sqrt{\omega}\Vert^{2}}}] , (3.2)

where  K(g) denotes the random variable defined by

 K(g)= \frac{1}{2}\int_{-\infty}^{\infty}dr\int_{\kappa\leq|k|}dk\frac{e^{-
|r|\omega(k)}\hat{g}(k)e^{-ikB_{r}}}{\omega(k)}.
In particular

  \lim_{\beta\uparrow\Vert\hat{g}/\sqrt{\omega}\Vert^{-2}}\Vert e^{(\beta/2)\phi
(g)^{2}}\varphi_{g}\Vert=\infty.
Proof In a similar manner to the proof of Theorem 3.4 we have

 (\varphi_{g}, e^{i\beta\phi(g)}\varphi_{g})=E_{\mu_{\infty}}[e^{-k^{2}\beta^{2}
I_{1}/2}e^{-i\beta I_{2}}],
where

 I_{1}= \int_{\mathbb{R}^{3}}dk\frac{|\hat{g}(k)|^{2}}{2\omega(k)},
 I_{2}= \int_{\mathbb{R}^{3}}dkI_{|k|\geq\kappa}\frac{\overline{\hat{g}(k)}}
{2\omega(k)}\int_{-\infty}^{\infty}dse^{-\omega(k)|s|}e^{-ikB_{s}}.

Using the identity

 e^{-\phi(g)^{2}/2}=(2 \pi)^{-1/2}\int_{\mathbb{R}}e^{-ik\phi(g)}e^{-k^{2}/2}dk,
and taking analytic continuation of  \beta to some region in the complex plan, we have the
theorem.  \square 

oscillator h. We have a counterpart of (3.1). Let φ(g) be given by (1.1). We have

(Ω, e(β/2)φ(g)Ω) = (1− β‖ĝ/√ω‖2)−1/2. In particular

lim
β↑‖ĝ/√ω‖−2

‖e(β/2)φ(g)2ϕ0‖ = ∞.

The renormalized Nelson Hamiltonian H∞ has a similar properties. We only mention

the statement.

Theorem 3.5 (Hiroshima and Matte [19]) Let κ > 0. Suppose that ĝ/
√
ω ∈

L2(R3), 1l|k|≥κĝ/ω
2 ∈ L1(R3) and β < 1/‖ĝ/√ω‖2. Let φ(g) be given by (1.1). Then

ϕg ∈ D(e(β/2)φ(g)
2

)

and

‖e(β/2)φ(g)2ϕg‖2 =
1

√

1− β‖ĝ/√ω‖2
Eµ∞

[

e
βK(g)2

1−β‖ĝ/√ω‖2

]

, (3.2)

where K(g) denotes the random variable defined by

K(g) =
1

2

∫ ∞

−∞
dr

∫

κ≤|k|
dk

e−|r|ω(k)ĝ(k)e−ikBr

ω(k)
.

In particular

lim
β↑‖ĝ/√ω‖−2

‖e(β/2)φ(g)2ϕg‖ = ∞.

Proof In a similar manner to the proof of Theorem 3.4 we have

(ϕg, e
iβφ(g)ϕg) = Eµ∞ [e−k2β2I1/2e−iβI2 ],

where

I1 =

∫

R3

dk
|ĝ(k)|2
2ω(k)

,

I2 =

∫

R3

dk1l|k|≥κ
ĝ(k)

2ω(k)

∫ ∞

−∞
dse−ω(k)|s|e−ikBs .

Using the identity

e−φ(g)2/2 = (2π)−1/2

∫

R

e−ikφ(g)e−k2/2dk,

and taking analytic continuation of β to some region in the complex plan, we have the

theorem. ✷
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4 Concluding remarks

4.1 Comparison with  H_{\Lambda}

In this article we show that the renormalized Nelson Hamiltonian has the unique ground

state and the number of bosons in the ground state is super‐exponential decay which

can be proven by using the Gibbs measure derived from Feynman‐Kac type formula.

In [19] it is also shown that for  \kappa=0,  H_{\infty} has no ground state, but Gross‐transformed
renormalized Nelson Hamiltonian  H_{\infty}^{G} has the ground state for all  \kappa\geq 0 . We note that

 H_{\infty} and  H_{\infty}^{G} are unitary equivalent if and only if  \kappa>0 . We can also see localization

such that  \Vert e^{\gamma|x|}\varphi_{g}\Vert<\infty for some  \gamma>0 . These results are counterparts of the results

for  H_{\Lambda} established in [1, 2, 3, 5, 11, 14, 15].

4.2 The Nelson model on a Lorenzian manifold

In [10] the Nelson model is defined on a static Lorenzian manifold instead of  \mathbb{R}^{3} and
ultraviolet cutoff is removed. It is also interesting to studying ground states of the
renormalized Nelson Hamiltonian defined on a static Lorenzian manifold. The Nelson

Hamiltonian with ultraviolet cutoff defined on a static Lorenzian manifold has the

ground state according to local properties (curvature) of the manifold. See [7, 8, 9].
We conjecture that the renormalized Nelson Hamiltonian defined on a static Lorenzian

manifold also has the ground state in the same condition on local properties of manifold
as those of the Nelson Hamiltonian with ultraviolet cutoff.
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