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A C^{*} ‐algebraic approach to quantum measurement

名古屋大学大学院情報科学研究科

岡村 和弥 *

I Introduction

A  C^{*} ‐algebraic approach to quantum measurement theory is proposed in the paper. Here, we

treat processes of measurements in the Schrödinger picture, that enables us to totally describe

dynamical changes induced by measurements in general quantum systems including those with

infinite degrees of freedom.
 C^{*} ‐algebraic quantum theory can make the best use of noncommutative probability theory

[12] and the duality theorem for  C^{*} ‐algebras proven by Takesaki [21] and Bichteler [2]. The ex‐

istence of umitarily inequivalent
 *

‐representations of a given  C^{*} ‐algebra is not inevitable usually.

This fact is, however, the merit of the theory rather than its difficulty: We can naturally intro‐

duce macroscopic classical levels in quantum systems described by  C^{*} ‐algebras. The quasi‐

equivalence o  f^{*} ‐representations of  C^{*} ‐algebras then takes the place of the umitary equivalence.

The theory of operator algebras has been greatly contributed to quantum measurement theory

from early days. In 1962, Nakamura and Umegaki [13] used the notion of conditional expecta‐
tion [24, 23] to characterize the class of measurements for discrete observables called “the von

Neumann‐Lüders projection postulate”. The importance of operator algebraic methods remains

unchanged and is increasingly recognized now.

In Section II, we introduce preliminaries on algebraic quantum theory and sector theory. An

equivalence relation o f^{*} ‐representations of  C^{*} ‐algebras, called the quasi‐equivalence, is essen‐

tial for the definition of sectors. In Section III, we describe measurements in the Schrödinger

picture by completely positive (CP) instruments defined on central subspaces of duals of  C^{*} ‐

algebras. Mathematical analysis for CP instruments defined on von Neumann algebras is effi‐

ciently used.

II Algebraic Quantum Theory and Sector Theory

To begin with, we give an axiomatic system of algebraic quantum theory.

Axiom 1 (Observables and states [17]). All the statistical aspects of a physical system are

registered in a  C^{*} ‐probablity space  (\mathcal{X}, \omega) . Observables are described by self‐adjoint elements
of  \mathcal{X} . On the other hand,  \omega statistically correponds to a physical situation (or an experimental

setting).
 *
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Axiom 2 (Sector as event [17]). For a state  \omega and a Borel set  \triangle of  E_{\mathcal{X}},  \mu_{\omega}(\triangle) gives the prob‐

ability that a sector belongs to  \triangle under the situation described by  \omega . When available observ‐

ables are restricted, the coarse‐grained probability is given by  \mu_{\omega,\mathcal{B}}(\triangle) for some subalgebra  \mathcal{B}

of  \mathcal{Z}_{\omega}(\mathcal{X}) .

From now on, we shall introduce the mathematical notions appeared in the above axioms.

We assume that  C^{*} ‐algebras are unital herein. The pair  (\mathcal{X}, \omega) of a  C^{*} ‐algebra  \mathcal{X} and a state  \omega

on  \mathcal{X} is called a  C^{*} ‐probablity space. Axiom 1 states that every quantum system is described

in the language of noncommutative probability theory (See [12] for an introduction to noncom‐

mutative probability theory).

Here we call a
 *

‐representation of a  C^{*} ‐algebra  \mathcal{X} a representation of  \mathcal{X} for simplicity.

 (\pi_{\omega}, \mathcal{H}_{\omega}, \Omega_{\omega}) denotes the GNS representation of a positive linear functional  \omega on  \mathcal{X}.  \mathbb{B}(\mathcal{H})
denotes the set of bounded linear operators on a Hilbert space  \mathcal{H} . For any subset  S of  \mathbb{B}(\mathcal{H}) ,
we define the commutant  S' of  S by  S'=\{A\in \mathbb{B}(\mathcal{H})|\forall B\in S, AB =BA\} and the double

commutant  S" of  S by  S"=(S')'.

Definition 1 (Factor states).  A^{*} ‐representation  (\pi, \mathcal{H}) of  \mathcal{X} is called a factor
 *

‐representation

of  \mathcal{X} if the center  \mathcal{Z}_{\pi}(\mathcal{X})=\pi(\mathcal{X})"\cap\pi(\mathcal{X}) ’ of  \pi(\mathcal{X}) ” is trivial, i. e.,  \mathcal{Z}_{\pi}(\mathcal{X})=\mathbb{C}1. A state  \omega on
a  C^{*} ‐algebra  \mathcal{X} is called a factor state on  \mathcal{X} if  (\pi_{\omega}, \mathcal{H}) is a factor representation of  \mathcal{X}.

By the definition, we can understand that each factor state corresponds to a physical situation

whose values of order parameters are definite. Here we classify representations and states by

the quasi‐equivalence and the disjointness of them defined as follows.

Definition 2 (Quasi‐equivalence and disjointness [3]).

(1) Let  (\pi_{1}, \mathcal{H}_{1}) and  (\pi_{2}, \mathcal{H}_{2}) b  e^{*} ‐representations of  \mathcal{X}.

(i)  (\pi_{1}, \mathcal{H}_{1}) and  (\pi_{2}, \mathcal{H}_{2}) are said to be quasi‐equivalent if  \pi_{1}(\mathcal{X})" i s^{*} ‐isomorphic to  \pi_{2}(\mathcal{X})
(ii)  (\pi_{1}, \mathcal{H}_{1}) and  (\pi_{2}, \mathcal{H}_{2}) are said to be disjoint if there is no non‐zero  V :  \mathcal{H}_{1}arrow \mathcal{H}_{2} such that
 \pi_{2}(X)V=V\pi_{1}(X) for all  X\in \mathcal{X}.

(2) Let  \omega_{1} and  \omega_{2} be positive linearfunctionals on  \mathcal{X}.  \omega_{1} and  \omega_{2} are said to be quasi‐equivalent
(or disjoint, respectively) if  (\pi_{\omega_{1}}, \mathcal{H}_{\omega_{1}}) and  (\pi_{\omega_{2}}, \mathcal{H}_{\omega_{2}}) are quasi‐equivalent (or disjoint, respec‐

tively).

Let  \mathcal{X} be a  C^{*} ‐algebra and  (\pi, \mathcal{H}) a representation of  \mathcal{X} . Let  \mathcal{M} be a von Neumann algebra

on a Hilbert space  \mathcal{K}.  \mathcal{M}_{*} denotes the set of ultraweakly continuous linear functionals on  \mathcal{M}

and  S_{n}(\mathcal{M}) denotes that of normal states on  \mathcal{M} . We define the subset  V(\pi) of  \mathcal{X}^{*} by

 V(\pi)=\{\varphi\in \mathcal{X}^{*}|\exists\rho\in\pi(\mathcal{X})_{*}", 
\forall X\in \mathcal{X}, \varphi(X)=\rho(\pi(X))\} (1)

and the subset  S_{\pi}(\mathcal{X}) of  S(\mathcal{X}) by

 \mathcal{S}_{\pi}(\mathcal{X})=\{\varphi\in \mathcal{S}(\mathcal{X})
|\exists\rho\in \mathcal{S}_{n}(\pi(\mathcal{X})"), \forall X\in \mathcal{X}, 
\varphi(X)=\rho(\pi(X))\} . (2)

Let  C be a central projection of  \mathcal{X}^{**} , i.e.,  C\in \mathcal{Z}(\mathcal{X}") . A subspace  \mathcal{L} of  \mathcal{X}^{*} is called a central

subspace of  \mathcal{X}^{*} if it has the form
 \mathcal{L}=C\mathcal{X}^{*} . (3)

Axiom 2 (Sector as event [17]). For a state ω and a Borel set Δ of EX , μω(Δ) gives the prob-

ability that a sector belongs to Δ under the situation described by ω. When available observ-

ables are restricted, the coarse-grained probability is given by μω,B(Δ) for some subalgebra B

of Zω(X ).

From now on, we shall introduce the mathematical notions appeared in the above axioms.

We assume that C∗-algebras are unital herein. The pair (X , ω) of a C∗-algebra X and a state ω

on X is called a C∗-probablity space. Axiom 1 states that every quantum system is described

in the language of noncommutative probability theory (See [12] for an introduction to noncom-

mutative probability theory).

Here we call a ∗-representation of a C∗-algebra X a representation of X for simplicity.
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denotes the set of bounded linear operators on a Hilbert space H. For any subset S of B(H),

we define the commutant S ′ of S by S ′ = {A ∈ B(H) | ∀B ∈ S,AB = BA} and the double

commutant S ′′ of S by S ′′ = (S ′)′.

Definition 1 (Factor states). A ∗-representation (π,H) of X is called a factor ∗-representation

of X if the center Zπ(X ) = π(X )′′ ∩ π(X )′ of π(X )′′ is trivial, i.e., Zπ(X ) = C1. A state ω on

a C∗-algebra X is called a factor state on X if (πω,H) is a factor representation of X .

By the definition, we can understand that each factor state corresponds to a physical situation

whose values of order parameters are definite. Here we classify representations and states by

the quasi-equivalence and the disjointness of them defined as follows.

Definition 2 (Quasi-equivalence and disjointness [3]).

(1) Let (π1,H1) and (π2,H2) be ∗-representations of X .

(i) (π1,H1) and (π2,H2) are said to be quasi-equivalent if π1(X )′′ is ∗-isomorphic to π2(X )′′.

(ii) (π1,H1) and (π2,H2) are said to be disjoint if there is no non-zero V : H1 → H2 such that

π2(X)V = V π1(X) for all X ∈ X .

(2) Let ω1 and ω2 be positive linear functionals on X . ω1 and ω2 are said to be quasi-equivalent

(or disjoint, respectively) if (πω1
,Hω1

) and (πω2
,Hω2

) are quasi-equivalent (or disjoint, respec-

tively).

Let X be a C∗-algebra and (π,H) a representation of X . Let M be a von Neumann algebra

on a Hilbert space K. M∗ denotes the set of ultraweakly continuous linear functionals on M

and Sn(M) denotes that of normal states on M. We define the subset V (π) of X ∗ by

V (π) = {ϕ ∈ X ∗ | ∃ρ ∈ π(X )′′∗, ∀X ∈ X , ϕ(X) = ρ(π(X))} (1)

and the subset Sπ(X ) of S(X ) by

Sπ(X ) = {ϕ ∈ S(X ) | ∃ρ ∈ Sn(π(X )′′), ∀X ∈ X , ϕ(X) = ρ(π(X))}. (2)

Let C be a central projection of X ∗∗, i.e., C ∈ Z(X ′′). A subspace L of X ∗ is called a central

subspace of X ∗ if it has the form

L = CX ∗. (3)
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Proposition 3 (See [22, Chapter III] for example). Let  \mathcal{X} be a  C^{*} ‐algebra and  (\pi, \mathcal{H}) a repre‐

sentation of  \mathcal{X}.

There exists a central projection  C(\pi) of  \mathcal{X}^{**}such that

 V(\pi)=C(\pi)\mathcal{X}^{*}=\{C(\pi)\varphi|\varphi\in \mathcal{X}^{*}\}=
\{\varphi\in \mathcal{X}^{*}|C(\pi)\varphi=\varphi\} . (4)

Proposition 4 (See [22, Chapter III] for example). Let  \mathcal{M} be a von Neumann algebra on a
Hilbert space  \mathcal{H} . There exists a central projection  C of  \mathcal{M}^{**}such that  \mathcal{M}_{*}=C\mathcal{M}^{*}.

By the above two propositions, we see that  V(\pi) and  \mathcal{M}_{*} are typical central subspaces. Both

the quasi‐equivalence and the disjointness has equivalent conditions as follows:

Proposition 5 ([3], [22, Chapter III, Proposition 2.12]).
Let  (\pi_{1}, \mathcal{H}_{1}) and  (\pi_{2}, \mathcal{H}_{2}) b  e^{*} ‐representations of  \mathcal{X} . The following conditions are equivalent:

(i)  (\pi_{1}, \mathcal{H}_{1}) and  (\pi_{2}, \mathcal{H}_{2}) are quasi‐equivalent. (ii)  V(\pi_{1})=V(\pi_{2}) .
(iii)  S_{\pi_{1}}(\mathcal{X})=S_{\pi_{2}}(\mathcal{X}) . (iv)  C(\pi_{1})=C(\pi_{2}) .

Proposition 6 ([3]).

Let  (\pi_{1}, \mathcal{H}_{1}) and  (\pi_{2}, \mathcal{H}_{2}) b  e^{*} ‐representations of  \mathcal{X} . The following conditions are equivalent:

(i)  (\pi_{1}, \mathcal{H}_{1}) and  (\pi_{2}, \mathcal{H}_{2}) are disjoint. (ii)  V(\pi_{1})\cap V(\pi_{2})=\{0\}.
(iii)   S_{\pi_{1}}(\mathcal{X})\cap S_{\pi_{2}}(\mathcal{X})=\emptyset . (iv)  C(\pi_{1})C(\pi_{2})=0.

For any pair of factor states, the following theorem of alternatives holds, which enhances the

importance of the quasi‐equivalence of factor states.

Theorem 7. Two factor states  \omega_{1} and  \omega_{2} on  \mathcal{X} are either quasi‐equivalent or disjoint.

This theorem follows from the proposition below.

Proposition 8 (Dixmier [5, Corollary 5.3.6]). Twofactor representations of  \mathcal{X} are either quasi‐
equivalent or else disjoint.

We shall define the concept of sector, which is introduced by Ojima in order to present the

extension of the superselection theory by Doplicher, Haag and Roberts [6, 7] and Doplicher and

Roberts [8, 9, 10] into broken symmetry in a unified way (See also [15]).

Definition 9 (Sector [16]). A quasi‐equivalent class ofa factor state is called a sector of  \mathcal{X}.\hat{\mathcal{X}}
denotes the set of sectors of  \mathcal{X}.

A sector corresponds to a “pure phase”’ as a generalization of thermodynamic (pure) phase.
We can understand that two different factor states in the same sector of course describe differ‐

ent physical situations but they share the same value of order parameters. In other words, the

concept of sector is a higher object than that of states and should be regarded as a generalization

of the definition of thermodynamic pure phases in thermodynamics into the context of quan‐

tum theory and (quantum or noncommutative) probability  theory\wedge Geometric objects living in

macroscopic classical levels are described via the sector space  \mathcal{X} of the system. To describe

“mixed phases”, we shall use the following theorem:
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This theorem follows from the proposition below.

Proposition 8 (Dixmier [5, Corollary 5.3.6]). Two factor representations of X are either quasi-
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We shall define the concept of sector, which is introduced by Ojima in order to present the

extension of the superselection theory by Doplicher, Haag and Roberts [6, 7] and Doplicher and

Roberts [8, 9, 10] into broken symmetry in a unified way (See also [15]).

Definition 9 (Sector [16]). A quasi-equivalent class of a factor state is called a sector of X .
�

X

denotes the set of sectors of X .

A sector corresponds to a “pure phase” as a generalization of thermodynamic (pure) phase.

We can understand that two different factor states in the same sector of course describe differ-

ent physical situations but they share the same value of order parameters. In other words, the

concept of sector is a higher object than that of states and should be regarded as a generalization

of the definition of thermodynamic pure phases in thermodynamics into the context of quan-
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�

X of the system. To describe

“mixed phases”, we shall use the following theorem:
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Theorem 10 ([3, Theorem 4.1.25 and Proposition 4.2.9]). Let  \mathcal{X} be a  C^{*} ‐algebra and  \omega a state

on  \mathcal{X} . There is  a one‐to‐one correspondence between the two sets below:

(1) The set ofbarycentric measures  \mu of  \omega such that   \int_{\triangle}\rho d\mu(\rho) and   \int_{E_{\mathcal{X}\backslash \triangle}}\rho d\mu(\rho) are disjoint
for any  \triangle\in \mathcal{B}(E_{\mathcal{X}}) .

(2) The set ofvon Neumann subalgebras  \mathcal{B} of  \mathcal{Z}_{\omega}(\mathcal{X}) .
The above  \mathcal{B} i s^{*} ‐isomorphic to the image of the map  \kappa_{\mu} :  L^{\infty}(E_{\mathcal{X}}, \mu)\ni f\mapsto\kappa_{\mu}(f)\in \mathcal{Z}
_{\omega}(\mathcal{X})
defined by

  \langle\Omega_{\omega}|\kappa_{\mu}(f)\pi_{\omega}(X)\Omega_{\omega}\rangle=
\int f(\rho)\rho(X)d\mu(\rho) (5)

for all  X\in \mathcal{X} and  f\in L^{\infty}(E_{\mathcal{X}}, \mu) .

The measure corresponding to the center  \mathcal{Z}_{\omega}(\mathcal{X}) is called the central measure of  \omega and de‐

noted by  \mu_{\omega} . Furthermore,  \mu_{\omega,\mathcal{B}} denotes the barycentric measure of  \omega corresponding to a von

Neumann subalgebra  \mathcal{B} of  \mathcal{Z}_{\omega}(\mathcal{X}) . Central measures of states have the following good property

for our purpose.

Theorem 11 ([3, Theorem 4.2.10]). For every state  \omega on  \mathcal{X} , the central measure  \mu_{\omega} of  \omega is

pseudo‐supported on the set  F_{\mathcal{X}} offactor states on  \mathcal{X} . lf  \mathcal{X} is separable, then  \mu_{\omega} is supported

by  F_{\mathcal{X}}.

The above theorem states that every state can be always decomposed into mutually disjoint

factor states by its central measure. This fact allows us to interpret a general state as a prob‐
abilistic mixture of representatives of “sectors as elementary events”. Therefore, we adopted
Axiom 2.

III CP instruments defined on  C^{*} ‐algebras

Due to previous investigations [4, 19, 18], it is valid that we adopt the description of processes

of quantum measurement in the Schrödinger picture by the concept of completely positive (CP)

instrument when the observable algebra of the quantum system under consideration is a von

Neumann algebra. It is known that there exists its operational characterization (see [18] for
instance).

In order to define CP instruments on  C^{*} ‐algebras, we have to take transitions among sectors

into account. For the purpose, we use central subspaces of the dual space of a given  C^{*} ‐algebra.
The results presented here are simple extensions of those for the case of CP instruments defined

on von Neumann algebras.

Let  \mathcal{M} and  \mathcal{N} be  W^{*} ‐algebras.  P(\mathcal{M}_{*},\mathcal{N}_{*}) denotes the set of positive linear maps of  \mathcal{M}_{*}

into  \mathcal{N}_{*} . Also,  \{\cdot,  \cdot\} denotes the pairing of  \mathcal{M}_{*} and  \mathcal{M}.

Definition 12. Let  \mathcal{X} be a  C^{*} ‐algebra and  (S, \mathcal{F}) a measurable space.  \mathcal{I} is called an instrument

for  (\mathcal{X}, S) if it satisfies the following three conditions:

(1)  \mathcal{I} is a map of  \mathcal{F} into  P(C_{in}\mathcal{X}^{*}, C_{out}\mathcal{X}^{*}) for some non‐zero  \sigma ‐finite central projections
 C_{in},  C_{out} of  \mathcal{X}^{**}.

Theorem 10 ([3, Theorem 4.1.25 and Proposition 4.2.9]). Let X be a C∗-algebra and ω a state

on X . There is a one-to-one correspondence between the two sets below:

(1) The set of barycentric measures μ of ω such that
∫
∆
ρ dμ(ρ) and

∫
EX \∆

ρ dμ(ρ) are disjoint

for any Δ ∈ B(EX ).

(2) The set of von Neumann subalgebras B of Zω(X ).

The above B is ∗-isomorphic to the image of the map κμ : L∞(EX , μ) ∋ f 
→ κμ(f) ∈ Zω(X )

defined by

〈Ωω|κμ(f)πω(X)Ωω〉 =

∫
f(ρ)ρ(X) dμ(ρ) (5)

for all X ∈ X and f ∈ L∞(EX , μ).

The measure corresponding to the center Zω(X ) is called the central measure of ω and de-

noted by μω. Furthermore, μω,B denotes the barycentric measure of ω corresponding to a von

Neumann subalgebra B of Zω(X ). Central measures of states have the following good property

for our purpose.

Theorem 11 ([3, Theorem 4.2.10]). For every state ω on X , the central measure μω of ω is

pseudo-supported on the set FX of factor states on X . If X is separable, then μω is supported

by FX .

The above theorem states that every state can be always decomposed into mutually disjoint

factor states by its central measure. This fact allows us to interpret a general state as a prob-

abilistic mixture of representatives of “sectors as elementary events”. Therefore, we adopted

Axiom 2.

III CP instruments defined on C∗-algebras

Due to previous investigations [4, 19, 18], it is valid that we adopt the description of processes

of quantum measurement in the Schrödinger picture by the concept of completely positive (CP)

instrument when the observable algebra of the quantum system under consideration is a von

Neumann algebra. It is known that there exists its operational characterization (see [18] for

instance).

In order to define CP instruments on C∗-algebras, we have to take transitions among sectors

into account. For the purpose, we use central subspaces of the dual space of a given C∗-algebra.

The results presented here are simple extensions of those for the case of CP instruments defined

on von Neumann algebras.

Let M and N be W ∗-algebras. P (M∗,N∗) denotes the set of positive linear maps of M∗

into N∗. Also, 〈·, ·〉 denotes the pairing of M∗ and M.

Definition 12. Let X be a C∗-algebra and (S,F) a measurable space. I is called an instrument

for (X , S) if it satisfies the following three conditions:

(1) I is a map of F into P (CinX
∗, CoutX

∗) for some non-zero σ-finite central projections

Cin, Cout of X ∗∗.
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(2)  \{\mathcal{I}(\triangle)\rho, 1\}=\{\rho,   1\rangle for all  \rho\in C_{in}\mathcal{X}^{*}.

(3) For every  \rho\in C_{\dot{{\imath}}n}\mathcal{X}^{*},  M\in(C_{out}\mathcal{X}^{*})^{*}and mutually disjoint sequence  \{\triangle_{j}\}_{j\in \mathbb{N}} of  \mathcal{F},

  \{\mathcal{I}(\bigcup_{j}\triangle_{j})\rho, M\}=\sum_{j=1}^{\infty}\{\mathcal
{I}(\triangle_{j})\rho, M\} . (6)

An instrument  \mathcal{I}for(\mathcal{X}, S) is said to be completely positive  (CP)if\mathcal{I}(\triangle) is completely positive

for all  \triangle\in \mathcal{F}.

When we emphasize that an instrument  \mathcal{I} for  (\mathcal{X}, S) is a map of  \mathcal{F} into  P(C_{in}\mathcal{X}^{*}, C_{out}\mathcal{X}^{*}) ,

we say that  \mathcal{I} is an instrument for  (\mathcal{X}, C_{\dot{{\imath}}n}, C_{out}, S) .

Let  \mathcal{M} be a von Neumann algebra on a Hilbert space  \mathcal{H} . As seen in Section II, the predual  \mathcal{M}_{*}

of  \mathcal{M} is a central subspace of  \mathcal{M}^{*} . Thus the von Neumann algebraic defimition of instruments

is a special case of the above definition.

For every CP instrument  \mathcal{I} for  (\mathcal{X}, C_{in}, C_{out}, S) and normal state  \varphi on (Cın  \mathcal{X}* )
 *

, we define
the probability measure  \Vert \mathcal{I}\varphi\Vert on  (S, \mathcal{F}) by  \Vert \mathcal{I}g\Vert(\triangle)=\Vert \mathcal{I}(\triangle)\varphi\Vert for all  \triangle\in \mathcal{F}.

For every instrument  \mathcal{I} for  (\mathcal{X}, S) , the dual map  \mathcal{I}^{*} :  (C_{out}\mathcal{X}^{*})^{*}\cross \mathcal{F}arrow(C_{in}\mathcal{X}^{*})^{*} of  \mathcal{I} is

defined by

 \langle \mathcal{I}(\triangle)\rho, M\rangle=\{\rho,\mathcal{I}^{*}(M, 
\triangle)\rangle (7)

for all  \rho\in C_{in}\mathcal{X}^{*},  M\in(C_{out}\mathcal{X}^{*})^{*} and  \triangle\in \mathcal{F} . For every map  \mathcal{J} :  (C_{out}\mathcal{X}^{*})^{*}\cross \mathcal{F}arrow(C_{in}\mathcal{X}^{*})^{*}
satisfying the following three conditions, there uniquely exists an instrument  (\mathcal{X}, S) such that
 \mathcal{J}=\mathcal{I}^{*} :

(1) For every  \triangle\in \mathcal{F} , the map  (C_{out}\mathcal{X}^{*})^{*}\ni M\mapsto \mathcal{J}(M, \triangle)\in(C_{in}
\mathcal{X}^{*})^{*} is normal, positive
and linear.

(2)  \mathcal{J}(1, S)=1.
(3) For every  \rho\in C_{\dot{{\imath}}n}\mathcal{X}^{*},  M\in(C_{out}\mathcal{X}^{*})^{*} and mutually disjoint sequence  \{\triangle_{j}\}_{j\in \mathbb{N}} of  \mathcal{F},

  \langle\rho, \mathcal{J}(M, \bigcup_{j}\triangle_{j})\rangle=\sum_{j=1}
^{\infty}\langle\rho, \mathcal{J}(M, \triangle_{j})\rangle . (8)

From now on,  \mathcal{I} denotes the dual map  \mathcal{I}^{*} of an instrument  \mathcal{I} for  (\mathcal{X}, S) .

Let  \mathcal{X},  \mathcal{Y} be  C^{*} ‐algebras and  \mathcal{M},  \mathcal{N} von Neumann algebras.  \mathcal{X}\otimes_{\min}\mathcal{Y} denotes the injective

tensor product of  \mathcal{X} and  \mathcal{Y} , and  \mathcal{M}\overline{\otimes}\mathcal{N} does the  W^{*} ‐tensor product of  \mathcal{M} and  \mathcal{N} . For every

CP instrument  \mathcal{I} for  (\mathcal{X}, S) , there exists a unital (binormal) CP map  \Psi_{\mathcal{I}} :  (C_{out}\mathcal{X}^{*})^{*}\otimes_{\min}
 L^{\infty}(S,\mathcal{I})arrow(C_{\dot{{\imath}}n}\mathcal{X}^{*})^{*} such that

 \Psi_{\mathcal{I}}(M\otimes[\chi_{\triangle}])=\mathcal{I}(M, \triangle) (9)

for all  M\in(C_{out}\mathcal{X}^{*})^{*} and  \triangle\in \mathcal{F}.

Here we define the normal extension property, family of posterior states and measuring pro‐

cess. All of them have played the role of deepening physics and mathematics of instruments

defined von Neumann algebras [18]. We will see in Theorem 16 that their importance is not

different for the case of instruments defined on  C^{*} ‐algebras.

(2) 〈I(Δ)ρ, 1〉 = 〈ρ, 1〉 for all ρ ∈ CinX
∗.

(3) For every ρ ∈ CinX
∗, M ∈ (CoutX

∗)∗ and mutually disjoint sequence {Δj}j∈N of F ,

〈I(∪jΔj)ρ,M〉 =
∞∑

j=1

〈I(Δj)ρ,M〉. (6)

An instrument I for (X , S) is said to be completely positive (CP) if I(Δ) is completely positive

for all Δ ∈ F .

When we emphasize that an instrument I for (X , S) is a map of F into P (CinX
∗, CoutX

∗),

we say that I is an instrument for (X , Cin, Cout, S).

Let M be a von Neumann algebra on a Hilbert space H. As seen in Section II, the predual M∗

of M is a central subspace of M∗. Thus the von Neumann algebraic definition of instruments

is a special case of the above definition.

For every CP instrument I for (X , Cin, Cout, S) and normal state ϕ on (CinX
∗)∗, we define

the probability measure ‖Iϕ‖ on (S,F) by ‖Iϕ‖(Δ) = ‖I(Δ)ϕ‖ for all Δ ∈ F .

For every instrument I for (X , S), the dual map I∗ : (CoutX
∗)∗ × F → (CinX

∗)∗ of I is

defined by

〈I(Δ)ρ,M〉 = 〈ρ, I∗(M,Δ)〉 (7)

for all ρ ∈ CinX
∗, M ∈ (CoutX

∗)∗ and Δ ∈ F . For every map J : (CoutX
∗)∗×F → (CinX

∗)∗

satisfying the following three conditions, there uniquely exists an instrument (X , S) such that

J = I∗:

(1) For every Δ ∈ F , the map (CoutX
∗)∗ ∋ M 
→ J (M,Δ) ∈ (CinX

∗)∗ is normal, positive

and linear.

(2) J (1, S) = 1.

(3) For every ρ ∈ CinX
∗, M ∈ (CoutX

∗)∗ and mutually disjoint sequence {Δj}j∈N of F ,

〈ρ,J (M,∪jΔj)〉 =
∞∑

j=1

〈ρ,J (M,Δj)〉. (8)

From now on, I denotes the dual map I∗ of an instrument I for (X , S).

Let X ,Y be C∗-algebras and M,N von Neumann algebras. X ⊗min Y denotes the injective

tensor product of X and Y , and M ⊗ N does the W ∗-tensor product of M and N . For every

CP instrument I for (X , S), there exists a unital (binormal) CP map ΨI : (CoutX
∗)∗ ⊗min

L∞(S, I) → (CinX
∗)∗ such that

ΨI(M ⊗ [χ∆]) = I(M,Δ) (9)

for all M ∈ (CoutX
∗)∗ and Δ ∈ F .

Here we define the normal extension property, family of posterior states and measuring pro-

cess. All of them have played the role of deepening physics and mathematics of instruments

defined von Neumann algebras [18]. We will see in Theorem 16 that their importance is not

different for the case of instruments defined on C∗-algebras.
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Definition 13 (The normal extension property). Let  \mathcal{I} be a  CP instrument for  (\mathcal{X}, S) .  \mathcal{I} is

said to have the normal extension property (NEP) if there exists a unital normal  CP map  \overline{\Psi_{\mathcal{I}}} :

 (C_{out}\mathcal{X}^{*})^{*}\overline{\otimes}L^{\infty}(S,\mathcal{I})arrow(C_
{\dot{{\imath}}n}\mathcal{X}^{*})^{*}such that

 \overline{\Psi_{\mathcal{I}}}|_{(C_{out}\mathcal{X}^{*})^{*}\otimes_{\min}
L^{\infty}(S,\mathcal{I})}=\Psi_{\mathcal{I}} . (10)

Definition 14 (Family of posterior states). Let  \mathcal{I} be an instrument for  (\mathcal{X}, S) and  \varphi a normal

state on (Cın  \mathcal{X}* )
 *

. A family  \{\varphi_{s}\}_{s\in S} ofnormal states on  (C_{out}\mathcal{X}^{*})^{*}is called a family ofposte‐
rior states with respect to  (\mathcal{I}, \varphi) if it satisfies the following two conditions:

(1) The function  S\ni s\mapsto\varphi_{s}\in C_{out}\mathcal{X}^{*}is weakly
 *

 \Vert \mathcal{I}\varphi\Vert ‐measurable.
(2) For all  M\in(C_{out}\mathcal{X}^{*})^{*}and  \triangle\in \mathcal{F},

  \{\mathcal{I}(\triangle)\varphi, M\rangle=\int_{\triangle}\langle\varphi_{s}, 
M\rangle d\Vert \mathcal{I}\varphi\Vert(s) . (11)

Definition 15 (Measuring process). A 4‐tuple  \mathbb{M}=(\mathcal{K}, \sigma, E, U) ofa Hilbert space  \mathcal{K}, a normal

state  \sigma on  \mathbb{B}(\mathcal{K}) , a spectral measure  E :  \mathcal{F}arrow B(\mathcal{K}) and a unitary operator  U on  \mathcal{H}\otimes \mathcal{K}, is

called a measuring process for  (\mathcal{X}, S) if it satisfies  \{\mathcal{I}_{\mathbb{M}}(M, \triangle)|M\in(C_{\dot{{\imath}}n}\mathcal{X}
^{*})^{*}, \triangle\in \mathcal{F}\}\subset
 \mathcal{M} , where  C_{in} is a non‐zero a‐finite central projection of  \mathcal{X}^{**},  \mathcal{H} is a Hilbert space on which

faithfully represents elements of  (C_{in}\mathcal{X}^{*})^{*}as bounded operators and  \mathcal{I}_{\mathbb{M}} :  B(\mathcal{H})\cross \mathcal{F}arrow \mathbb{B}(\mathcal{H})
is defined  by^{1}

 \mathcal{I}_{\mathbb{M}}(X, \triangle)=(id\otimes\sigma)[U^{*}(X\otimes 
E(\triangle))U] (12)

for all  X\in \mathbb{B}(\mathcal{H}) and  \triangle\in \mathcal{F}.

The following is the main theorem of this section.

Theorem 16. Let  \mathcal{X} be a  C^{*} ‐algebra and  (S, \mathcal{F}) a measurable space. For an instrument  \mathcal{I} for

 (\mathcal{X}, S) , the following conditions are equivalent:

(1)  \mathcal{I} has the NEP.
(2) For eveノツ normal state  \varphi on  (C_{1}\mathcal{X}^{*})^{*} , there exists astハongly measurablefamily  \{\varphi_{S}\}_{8\in S} of
posterior states with respect to  (\mathcal{I}, \varphi) .
If  C_{\dot{{\imath}}n}=C_{out} , the above conditions are equivalent to the condition below.

(3) There exists a measuring processes  \mathbb{M} for  (\mathcal{X}, S) such that  \mathcal{I}=\mathcal{I}_{\mathbb{M}}.

Proof. We can prove the theorem in the same way as [18, Theorems 3.4 and 5.5].  \square 
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