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1. INTRODUCTION

Let (M, |-]];,) and (NN, ||-|| ;) be normed linear spaces, respectively.
A mapping T: (M, ||-||,) = (V, ||| y) is an isometry if and only if it
preserves the distance of two points in M, that is,

IT(a) =TO)ly = lla=blly,  (a,b€ M).

Here, we assume that T' is not necessarily complex linear. The Mazur-
Ulam theorem [16] states that every surjective isometry 7' between two
normed linear spaces is real linear provided 7'(0) = 0.

We mention the characterization of isometries on several normed
linear spaces. Isometries were studied on various spaces by many re-
searchers, as for example in [3, 12, 13, 21, 22]. In 1932, isometries are
studied by Banach [1, Theorem 3 in Chapter XI] (see also [24, Theo-
rem 83]). There have been numerous papers on isometries defined on
Banach spaces of analytic functions; see [2, 4, 5, 8, 11, 14].

Among the basic problems in analytic function spaces, Novinger and
Oberlin, in [20], characterized complex linear isometries on a normed
space SP. The underlying space SP is a normed space consisting of
analytic functions f on the open unit disc D whose derivative f’ belongs
to the classical Hardy space (H?(D),||||,) for 1 < p < oo. They
introduced the norm |f(0)[ + [[f’[|, on the normed space S”.

In this talk, we study surjective isometries on the Banach space Sy
of analytic functions f defined on D whose derivative can be extended
to the closed unit disc D, and endowed with the norm || f||, = |f(0)| +
sup,ep | f/(2)]. We denote by A(D) the disc algebra, that is, the algebra
of all analytic functions on D which can be extended to continuous
functions on D.



2. MAIN RESULT

Let A(D) be the Banach space of all analytic functions on the open
unit disc D that can be continuously extended to the closed unit disc
D with the supremum norm on D. For each v € A(D), v' means the
derivative of v on D, that is,

/ _v(z+h) —v(z)
v(z) = Jim h

(z e D).

We define Sy by the linear space of all analytic functions f on D whose

derivative f’ belongs to A(D). By [6, Theorem 3.11], we see that S4 C

A(D). By the definition of S4, f’ is an analytic function on D which
can be extended to a continuous function on D. Let ¥ be the unique
continuous extension of v € A(D) to D. In fact, such an extension is
unique since D is dense in D. We define the norm ||f||, of f € Sa by

(2.1) Il = SO+ 1 Fllee (f € Sa),

where || f/||sc = sup{|f'(2)| : = € D} = sup{|f'(z)| : = € D}. It is not
difficult to check that (Sa, [|-||,) is a complex Banach space.

Theorem 1. If T: (Sa,||-||,) = (Sa,|Ill,) is a surjective, not neces-
sarily complex linear, isometry, then one of the following four forms is
occured;

there exist constants ¢y 1,c12,\1 € T and a; € D such that
TR =TOE) +afO+ [ aafl0)dc (9f €S, Y=< D)
there exist constants ca 1, C22, A2 G’T and ay € D such that
T(E) =TOE) + o0+ [ ennf (p(O)dc (9 €4, V=€)
there exist constants cs 1, C32, A3 G’T and az € D such that

T(f)(z) =T(0)(2) + 3. /(0) +/ cs2f'(p(C))dC  (Vf € Sa, Vz € D),

[0,]

there exist constants cq1,c42,\ € T and ay € D such that
T(f)(z) =T(0)(2) + a1 £(0) +/ aaf'(p(Q)d¢  (Vf € 8a, VzeD),
0,2]

Z — Gy
a;z — 1

Conversely, each of the above forms is a surjective isometry on Sy
with the norm ||-||,, where T(0) is an arbitrary element of Sa.

for all z € D and for j =1, 2, 3, 4.

where p(z) = \;



We start by defining an embedding of S, into a subspace B consisting
of complex valued continuous functions. Then using the Arens-Kelley
theorem (see [10, Corollary 2.3.6 and Theorem 2.3.8]), we give a char-
acterization of extreme points of the unit ball B} of the dual space B*
of B. Then we construct some maps to describe extreme points of Bj.

We used an idea by Ellis for the characterization of surjective real
linear isometries on uniform algebras (see [9]). An adjoint operator of a
surjective real linear isometry on the dual space B* preserves extreme
points. The action of such adjoint operator on the set of extreme points
gives a representation for the isometries on B. We show that the isome-
tries of Sy are integral operators of weighted differential operators.

For the details of proof, refer to [18].
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