A property of the undominated core for TU games

Kensaku Kikuta School of Business Administration, University of Hyogo

Abstract

For a coalitional game with transferble utility, the undominated core is a set of imputations which are not dominated by any other imputations. This set is characterized by reduced game property, individual rationality and a kind of monotonicity.

1 Introduction

In this note we treat solutions for coalitional games with transferable utility. The solutions are the core and the undominated core which were considered in Gillies[3]. We characterize the undominated core, that is, the set of all undominated imputations. The characterization is by axioms, one of which is the reduced game property. In Tadenuma[10], the reduced game by Moulin[7] is used for characterizing the core. We use a variation of the reduced game by Moulin[7]. Llerena/Rafels[6] characterizes the undominated core by another reduced game. The results by Rafels/Tijs[9] and Chang[2] connects the undominated core with the core, and these are effective in our study. For other earlier contributions in this area, see the Reference of [6] and see [8]. For other contributions related to this area, see [1],[4] and [5].

2 Definition of a game

Let \mathbb{N} be the set of natural numbers and let it be the set of players. A cooperative game with transferable utility (abbreviated as a game) is an ordered pair (N, v), where $N = \{1, \ldots, n\} \subset \mathbb{N}$ is a finite set of n players and v, called the characteristic function, is a real-valued function on the power set of N, satisfying $v(\emptyset) = 0$. A coalition is a subset of N. We denote by Γ the set of all games. For a finite set Z, |Z| denotes the cardinality of Z. For a coalition S, \mathbb{R}^S is the |S|-dimensional product space $\mathbb{R}^{|S|}$ with coordinates indexed by players in S. The ith component of $x \in \mathbb{R}^S$ is denoted by x_i . For $S \subseteq N$ and $x \in \mathbb{R}^N$, x_S means the restriction of x to S. We call $x \in \mathbb{R}^N$ a (payoff) vector. For $S \subseteq N$ and $x \in \mathbb{R}^N$, we define $x(S) = \sum_{i \in S} x_i$ (if $S \neq \emptyset$) and $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ we define $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ we define $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ we define $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ we define $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ we define $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ we define $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ we define $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ we define $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ we define $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ and $S \in \mathbb{R}^N$ we define $S \in \mathbb{R}^N$ and $S \in$

game $(N, v) \in \Gamma$ is a vector $x \in \mathbb{R}^N$ that satisfies

$$x(N) = v(N). (1)$$

The set of all pre-imputations for a game $(N, v) \in \Gamma$ is denoted by X(N, v). An *imputation* for a game $(N, v) \in \Gamma$ is a vector $x \in X(N, v)$ that satisfies

$$x_i \ge v(\{i\}), \quad \forall i \in N.$$
 (2)

I(N,v) is the set of all imputations for a game $(N,v) \in \Gamma$. A feasible vector for a game $(N,v) \in \Gamma$ is a vector $x \in \mathbb{R}^N$ that satisfies

$$x(N) \le v(N). \tag{3}$$

The set of all feasible vectors for a game (N, v) is denoted by $X^*(N, v)$. Let σ be a mapping that associates with every game $(N, v) \in \Gamma'$ a set $\sigma(N, v) \subseteq X^*(N, v)$ where Γ' is a subset of Γ . σ is called a solution on Γ' .

Definition 2.1 A solution σ on Γ' satisfies the Pareto optimality (PO) if for every game $(N, v) \in \Gamma'$, $\sigma(N, v) \subseteq X(N, v)$.

Definition 2.2 A solution σ on Γ' satisfies the individual rationality (IR) if for every game $(N, v) \in \Gamma'$, any $x \in \sigma(N, v)$, $x_i \ge v(\{i\})$ for all $i \in N$.

For a game $(N, v) \in \Gamma$, define a game (N, v^{-}) by

$$v^{-}(S) = \min\{v(S), v(N) - \sum_{i \in N \setminus S} v(\{i\})\}, \quad \forall S \subseteq N,$$

$$\tag{4}$$

Definition 2.3 A solution σ on Γ' satisfies the property I (PR-I) if for games $(N, v), (N, w) \in \Gamma'$ such that $v^-(S) \geq w^-(S)$ for all $S \subset N$, and $v^-(N) = w^-(N), \sigma(N, v) \subseteq \sigma(N, w)$.

For a game $(N, v) \in \Gamma$, $x \in X^*(N, v)$ and $S \subseteq N$, a reduced game is a game $(S, v_S^x) \in \Gamma$. Here S is the player set and v_S^x is the characteristic function which is defined by v, x and S.

Definition 2.4 A solution σ on Γ' satisfies the reduced game property (RGP) if for a game $(N, v) \in \Gamma'$, any $x \in \sigma(N, v)$ and any $S \subset N, S \neq \emptyset$, $(S, v_S^x) \in \Gamma'$ and $x_S \in \sigma(S, v_S^x)$.

Definition 2.5 A solution σ on Γ' satisfies the property H (PR-II) if for a game $(N, v) \in \Gamma'$, $v(S) = \sum_{i \in S} v(\{i\})$ for all $S \subseteq N$, then $x \in \sigma(N, v)$, where $x_i = v(\{i\})$ for all $i \in N$.

¹In [6], this game is expressed as (N, v').

3 Core for TU games

In this section the undominated core on Γ is characterized by axioms where the reduced game is defined as follows.

Definition 3.1 For $(N, v) \in \Gamma$, $x \in \mathbb{R}^N$ and $S \subseteq N$, we define a reduced game $(S, v_S^x) \in \Gamma$ by

$$v_S^x(T) = \min\{v(T \cup (N \setminus S)), v(N) - \sum_{i \in S \setminus T} v(\{i\})\} - x(N \setminus S)$$

$$= v^-(T \cup (N \setminus S)) - x(N \setminus S), \quad \forall T \subseteq S, T \neq \emptyset,$$

$$v_S^x(\emptyset) = 0.$$
(5)

Remark 3.2 This reduced game is a variation of the reduced game by Moulin [7]. The latter is used for characterizing the core (See [10]).

Definition 3.3 For a game $(N, v) \in \Gamma$ and for $x, y \in X(N, v)$, x dominates y via $S \subset N$ if

$$x_i > y_i, \forall i \in S,$$

 $x(S) \le v(S).$ (6)

Definition 3.4 The undominated core of a game $(N, v) \in \Gamma$, denoted by DC(N, v), is defined by

$$DC(N,v) = \{x \in I(N,v) : x \text{ is not dominated by any } y \in I(N,v)\}.$$
(7)

The core of a game $(N, v) \in \Gamma$, denoted by C(N, v), is defined by

$$C(N,v) = \{x \in X(N,v) : x(S) \ge v(S), \forall S \subseteq N, S \ne \emptyset\}. \tag{8}$$

The core and the undominated core were considered in Gillies [3]. The following is the main theorem of this paper.

Theorem 3.5 The undominated core is the only solution on Γ which satisfies RGP, IR, PR-I, and PR-II.

To prove this theorem, we need 6 lemmas.

Lemma 3.6 The undominated core on Γ satisfies RGP.

Proof: It suffices to see when the unmoderated core is nonempty. For $(N, v) \in \Gamma$, suppose $DC(N, v) \neq \emptyset$ and let $x \in DC(N, v)$. Hence $x \in I(N, v)$. For $S \subset N, S \neq \emptyset$, consider (S, v_S^x) . By definition,

$$x(S) = v(N) - x(N \setminus S) = v_S^x(S). \tag{9}$$

Claim 3.6A. $x_i \geq v_S^x(\{i\})$ for all $i \in S$.

Proof of Claim 3.6A: If |S| = 1, that is, $S = \{i\}$ then $v_{\{i\}}^x(\{i\}) = x_i$ because $x \in I(N, v)$. Let $|S| \ge 2$. Assume $x_i < v_S^x(\{i\})$ for $i \in S$. Then

$$x(N \setminus S) + x_i < x(N \setminus S) + v_S^x(\{i\})$$

$$= v^-(\{i\} \cup (N \setminus S))$$

$$= \min\{v(\{i\} \cup (N \setminus S)), v(N) - \sum_{j \in S \setminus \{i\}} v(\{j\})\}$$

$$\leq v(N) - \sum_{j \in S \setminus \{j\}} v(\{j\}).$$

$$(10)$$

From this.

$$x(N \setminus S) + x_i + \sum_{j \in S \setminus \{i\}} v(\{j\}) < v(N) = x(N).$$

$$\tag{11}$$

That is,

$$\sum_{j \in S \setminus \{i\}} v(\{j\}) < x(S \setminus \{i\}). \tag{12}$$

This implies that there exists $j^* \in S \setminus \{i\}$ such that

$$x_{j^*} > v(\{j^*\}). (13)$$

Define $z \in \mathbb{R}^N$ by

$$z_{j} = \begin{cases} x_{j} + \varepsilon, & \text{if } j \in \{i\} \cup (N \setminus S); \\ x_{j^{*}} - \delta, & \text{if } j = j^{*}; \\ x_{j}, & \text{otherwise,} \end{cases}$$

$$(14)$$

where δ and ε are determined so that

$$0 < \delta = \varepsilon |\{i\} \cup (N \setminus S)| < \min\{x_{j^*} - v(\{j^*\}), v^-(\{i\} \cup (N \setminus S)) - x(\{i\} \cup (N \setminus S))\}.$$
 (15)

Then $z \in I(N, v)$ and z dominates x via $\{i\} \cup (N \setminus S)$ in (N, v). This contradicts $x \in DC(N, v)$. This completes the proof of Claim 3.6A. \square

From Claim 3.6A and (9), we see $(S, v_S^x) \in \Gamma_I$ and $x_S \in I(S, v_S^x)$. We shall show $x_S \in DC(S, v_S^x)$. Assume that $y \in I(S, v_S^x)$ dominates x_S via $T \subset S$ in (S, v_S^x) . That is,

$$y(S) = v_S^x(S) = x(S),$$

$$y_i \ge v_S^x(\{i\}) = v^-(\{i\} \cup (N \setminus S)) - x(N \setminus S), \forall i \in S,$$

$$y_i > x_i, \forall i \in T,$$

$$y(T) \le v_S^x(T) = v^-(T \cup (N \setminus S)) - x(N \setminus S).$$

$$(16)$$

We let $Q \equiv \{i \in S \setminus T : x_i > v(\{i\})\}$ and $P \equiv \{i \in S \setminus T : x_i = v(\{i\})\}$. By (16),

$$x(T) + x(N \setminus S) < y(T) + x(N \setminus S)$$

$$\leq v^{-}(T \cup (N \setminus S)) \equiv \min\{v(T \cup (N \setminus S)), v(N) - \sum_{i \in S \setminus T} v(\{i\})\}$$

$$\leq v(N) - \sum_{i \in S \setminus T} v(\{i\}).$$
(17)

This implies

$$\sum_{i \in S \setminus T} v(\{i\}) < v(N) - x(T) - x(N \setminus S) = x(S \setminus T).$$
(18)

Hence there exists $i \in S \setminus T$ such that $x_i > v(\{i\})$. That is, $Q \neq \emptyset$. Define $z \in \mathbb{R}^N$ as follows.

$$z_{i} = \begin{cases} x_{i} + \varepsilon_{i}, & \text{if } i \in N \setminus S; \\ y_{i} - \delta_{i}, & \text{if } i \in T; \\ v(\{i\}), & \text{if } i \in P; \\ x_{i} - \eta_{i}, & \text{if } i \in Q, \end{cases}$$

$$(19)$$

where

$$0 < \delta_{i} < y_{i} - x_{i}, \forall i \in T,$$

$$\varepsilon_{i} > 0, \forall i \in N \setminus S,$$

$$0 < \eta_{i} \leq x_{i} - v(\{i\}), \forall i \in Q$$

$$y(T) - x(T) - \delta(T) + \varepsilon(N \setminus S) = \eta(Q),$$

$$\varepsilon(N \setminus S) \leq \delta(T).$$

$$(20)$$

Indeed, we can find δ_i , ε_i and η_i which satisfy (20) as follows. Since $x(Q) - \sum_{i \in Q} v(\{i\}) > 0$, choose $k \ge 2$ so that

$$0 < \frac{y(T) - x(T)}{k} \le x(Q) - \sum_{i \in Q} v(\{i\}). \tag{21}$$

Second, choose $\eta_i > 0, \forall i \in Q$ so that

$$\eta(Q) = \frac{y(T) - x(T)}{k} > 0 \text{ and } \eta_i \le x_i - v(\{i\}), \forall i \in Q.$$
(22)

Choose $\delta_i > 0, i \in T$ so that $y_i - x_i - \delta_i < \frac{\eta(Q)}{|T|}$ for all $i \in T$. This implies $y(T) - x(T) - \delta(T) < \eta(Q)$. Finally, determine $\varepsilon_i > 0, i \in N \setminus S$ so that the equality in (20) is satisfied. Then

$$\varepsilon(N \setminus S) - \delta(T) = \eta(Q) - [y(T) - x(T)] = (\frac{1}{k} - 1)[y(T) - x(T)] \le 0.$$
 (23)

So (20) is feasible with respect to δ_i, ε_i and η_i . From (19) and (20)

$$z(N) = x(N \setminus S) + \varepsilon(N \setminus S) + y(T) - \delta(T) + \sum_{i \in P} v(\{i\}) + x(Q) - \eta(Q)$$

$$= x(N) = v(N).$$

$$z(T \cup (N \setminus S)) = y(T) + x(N \setminus S) - \delta(T) + \varepsilon(N \setminus S)$$

$$\leq v_S^x(T) + x(N \setminus S) - \delta(T) + \varepsilon(N \setminus S)$$

$$= \min\{v(T \cup (N \setminus S)), v(N) - \sum_{i \in S \setminus T} v(\{i\})\} - \delta(T) + \varepsilon(N \setminus S)$$

$$\leq \min\{v(T \cup (N \setminus S)), v(N) - \sum_{i \in S \setminus T} v(\{i\})\}$$

$$\leq v(T \cup (N \setminus S)).$$
(24)

From (19) and (20), we see $z_i \geq v(\{i\})$ for all $i \in N$. From this and (24), $z \in I(N, v)$. Consequently, z dominates x via $T \cup (N \setminus S)$ in (N, v), which contradicts $x \in DC(N, v)$. This completes the proof of Lemma 3.6. \square

Lemma 3.7 The undominated core on Γ satisfies IR, PO, PR-I and PR-II.

Proof: By definition, the undominated core satisfies IR and PO. It is known (Rafels/Tijs(1997)) that for any game (N,v) such that $I(N,v) \neq \emptyset$, $DC(N,v) = C(N,v^-)$. By the definition of the core, $C(N,v^-) \subseteq C(N,w^-)$ for any (N,v),(N,w) such that $v^-(S) \geq w^-(S)$ for all $S \subset N$, and $v^-(N) = w^-(N)$. Since $I(N,v) \neq \emptyset$, we have $I(N,w) \neq \emptyset$, which implies $DC(N,w) = C(Nw^-)$. Hence $DC(N,v) \subseteq DC(N,w)$ and the unmoderated core satisfies PR-I. It satisfies PR-II since any imputation can not dominate itself. \square

Lemma 3.8 If a solution σ on Γ satisfies RGP and IR, then it satisfies PO.

Proof: For $(N, v) \in \Gamma$, let $x \in \sigma(N, v)$. By RGP and IR,

$$x_{i} \ge v_{\{i\}}^{x}(\{i\}) = \min\{v(\{i\} \cup (N \setminus \{i\})), v(N) - \sum_{j \in \{i\} \setminus \{i\}} v(\{j\})\} - x(N \setminus \{i\})$$

$$= v(N) - x(N \setminus \{i\}).$$
(25)

From this, $x(N) \ge v(N)$. Since $\sigma(N,v) \subseteq X^*(N,v)$, $x(N) \le v(N)$. Hence we have x(N) = v(N). \square

Lemma 3.9 If a solution σ on Γ satisfies RGP, IR, PR-I and PR-II, then $DC(N, v) \subseteq \sigma(N, v)$ for all $(N, v) \in \Gamma$.

Proof: Suppose that a solution σ satisfies RGP, IR and PR-I. For $(N,v) \in \Gamma$, if $DC(N,v) = \emptyset$, then it trivially holds. Suppose $DC(N,v) \neq \emptyset$. So $I(N,v) \neq \emptyset$. Let $x \in DC(N,v) \subseteq I(N,v)$. Since $DC(N,v) = C(N,v^-)$, $x \in C(N,v^-)$. Hence, $x(S) \geq v^-(S)$ for all $S \subseteq N$. Define a game $(N,v_x) \in \Gamma$ by $v_x(S) = x(S)$ for all $S \subseteq N$. Since $x(S) = v_x(S)$ for all $S \subseteq N$ and $(v_x)^- = v_x$, we have $(v_x)^-(S) \geq v^-(S)$ for all $S \subseteq N$ and $(v_x)^-(N) = v^-(N) = v(N)$. By PR-I, $\sigma(N,v_x) \subseteq \sigma(N,v)$. By the assumption and by Lemma 3.8, σ satisfies IR and PO. That is, $\sigma(N,v_x) \subseteq I(N,v_x)$. By PR-II, $x \in \sigma(N,v_x)$. Hence, $x \in \sigma(N,v)$. \square

Lemma 3.10 Suppose that σ on Γ satisfies RGP and IR. If $v(S) = v^-(S)$ for all $S \subseteq N$ then $\sigma(N, v) \subseteq C(N, v)$.

Proof: Let $x \in \sigma(N, v)$. By RGP, $x_S \in \sigma(S, v_S^x)$ for all $S \subseteq N$. By IR, $x_i \geq v_S^x(\{i\})$ for all $i \in S$. Since $v(S) = v^-(S)$ for all $S \subseteq N$, we have $v(S) \leq v(N) - \sum_{j \in N \setminus S} v(\{j\})$ for all $S \subseteq N$. This implies $v_S^x(\{i\}) = v(\{i\} \cup (N \setminus S)) - x(N \setminus S)$ for all $i \in S$. Hence, $x(N \setminus S) + x_i \geq v(\{i\} \cup (N \setminus S))$ for all $i \in S$. This implies $x(T) \geq v(T)$ for all $T \subseteq N$ since

$$\{\{i\} \cup (N \setminus S) : i \in S, S \subseteq N\} = \{T \subseteq N\}. \tag{26}$$

Hence we have $x \in C(N, v)$. \square

Lemma 3.11 If a solution σ on Γ satisfies RGP, IR and PR-I, then $\sigma(N, v) \subseteq DC(N, v)$ for all $(N, v) \in \Gamma$.

Proof: Assume $I(N,v) \neq \emptyset$. Since $(v^-)^-(S) = v^-(S)$ for all $S \subseteq N$, by PR-I and Lemma 3.10 we have $\sigma(N,v) = \sigma(N,v^-)$ and $\sigma(N,v^-) \subseteq C(N,v^-)$. Then $C(N,v^-) = DC(N,v)$. Hence $\sigma(N,v) \subseteq DC(N,v)$. Next assume $I(N,v) = \emptyset$. By Lemma 3.8 and IR, $\sigma(N,v) \subseteq I(N,v) = \emptyset$. Hence $\sigma(N,v) = \emptyset \subset DC(N,v)$. \square

From Lemmas 3.6 and 3.7, the undominated core satisfies all properties in the statement of the theorem. From Lemma 3.9 and 3.11, a solution on Γ must coincide with the undominated core if it satisfies all properties in the statement of the theorem. This completes the proof of the theorem. \square

The next examples show that the properties in Theorem 3.5 are independent.

Example 3.12 Let $\sigma^1(N,v) = I(N,v)$ for all $(N,v) \in \Gamma$. By definition, σ^1 satisfies IR, PR-I and PR-II. Let $N = \{1,2,3\}$ and v(N) = 3, v(13) = v(23) = 2, v(12) = 1 and v(i) = 0 for i = 1,2,3. Then $x = (1,2,0) \in I(N,v)$. Let $S = \{1,2\}$. We see $x_{\{1,2\}} \notin I(\{1,2\},v_{\{1,2\}}^x) = \sigma^2(\{1,2\},v_{\{1,2\}}^x)$ because $v_{\{1,2\}}^x(\{1\}) = 2 > x_1 = 1$. Hence it does not satisfy RGP.

Example 3.13 Let $\sigma^2(N, v) = \emptyset$ for all $(N, v) \in \Gamma$. Then σ^2 satisfies IR,PR-I and RGP. But it does not satisfy PR-II.

Example 3.14 Let $\sigma^3(N,v) = C(N,v)$ for all $(N,v) \in \Gamma$. By definition, σ^3 satisfies IR and PR-II. Let's see it satisfies RGP. Let $x \in C(N,v)$. Then by definition, $v_S^x(S) = x(S)$ for all $S \subseteq N$. $x(T) = x((N \setminus S) \cup T) - x(N \setminus S) \ge v((N \setminus S) \cup T) - x(N \setminus S) \ge v_S^x(T)$ for all $T \subseteq S$. Hence $x_S \in C(N,v_S^x)$. Next, let's see it does not satisfy PR-I. For $N = \{1,2,3\}$, let v(i) = w(i) = 0 for i = 1,2,3 and v(N) = w(N) = 5. Let v(12) = w(12) = 2 and v(13) = w(13) = 3. Let v(23) = 5 and v(23) = 6. Then $C(N,v) = \{(0,2,3)\}$ and $C(N,w) = \emptyset$, while $v^-(S) = w^-(S)$ for all $S \subseteq N$.

Example 3.15 Let $\sigma^4(N,v) = \{x \in X^*(N,v) : x_i \leq v(N) - v^-(N \setminus \{i\}), \forall i \in N\}$ for all $(N,v) \in \Gamma$. For sufficiently large $\varepsilon > 0$, $y_i \equiv v(N) - v^-(N \setminus \{i\}) - \varepsilon < v(\{i\})$ for some $i \in N$ as well as $y(N) \leq v(N)$, but $y \in \sigma^4(N,v)$. So $\sigma^4(N,v)$ does not satisfy IR. Suppose $v^-(S) \geq w^-(S)$ for all $S \subseteq N$ and $v^-(N) \geq w^-(N)$. Then v(N) = w(N) and $v(N) - v^-(N \setminus \{i\}) \leq w(N) - w^-(N \setminus \{i\})$ for all $i \in N$. This implies $\sigma^4(N,v) \subseteq \sigma^4(N,w)$. Hence σ^4 satisfies PR-I. Next suppose $v(S) = \sum_{i \in S} v(\{i\})$ for all $S \subseteq N$. Then $\sigma^4(N,v) = \{x \in X^*(N,v) : x_i \leq v(\{i\}), \forall i \in N\}$, which implies $x \in \sigma^4(N,v)$ where $x_i = v(\{i\})$ for all $i \in N$. Hence σ^4 satisfies PR-II. Next suppose v(S) = v(S) = v(S). Since $v(S) \leq v(S)$, it holds $v(S) \leq v(S) = v(S) = v(S)$.

$$v_S^x(S) - (v_S^x)^-(S \setminus \{i\}) = v_S^x(S) - \min\{v_S^x(S \setminus \{i\}), v_S^x(S) - v_S^x(\{i\})\}$$

$$= \max\{v_S^x(S) - v_S^x(S \setminus \{i\}), v_S^x(\{i\})\}$$
(27)

Here

$$v_S^x(S) - v_S^x(S \setminus \{i\}) = v(N) - \min\{v((S \setminus \{i\}) \cup (N \setminus S)), v(N) - v(\{i\})\}$$

$$= \max\{v(N) - v((S \setminus \{i\}) \cup (N \setminus S)), v(\{i\})\}$$
(28)

So

$$v_{S}^{x}(S) - (v_{S}^{x})^{-}(S \setminus \{i\}) = \max\{v(N) - v(N \setminus \{i\}), v(\{i\}), v_{S}^{x}(\{i\})\}$$

$$\geq \max\{v(N) - v(N \setminus \{i\}), v(\{i\})\}$$

$$= v(N) - v^{-}(N \setminus \{i\})$$
(29)

Hence $x_S \in \sigma^4(S, v_S^x)$. So σ^4 satisfies RGP.

References

- [1] Bejan C and Gomez JC (2012) Axiomatizing core extensions. International Journal of Game Theory 41, 885-898.
- [2] Chang C (2000) Note: remarks on the theory of the core. Naval Research Logistics 47, 456-458.
- [3] Gillies D (1959) Solutions to general non-zero sum games. In: Tucker A and Luce R (eds), Contributions to the theory of games, vol.IV, Annals of Math. Studies, 40, Princeton University Press, 47-58.

- [4] Grabish M and Sudhölter P (2012) The bounded core for games with precedence constraints. Annals of Operations Research 201, 251-264.
- [5] Izquierdo J.M. and Rafels C (2018) The core and the steady bargaining set for convex games. International Journal of Game Theory 47, 35-54.
- [6] Llerena F and Rafels C (2007) Convex decomposition of games and axiomatizations of the core and the D-core. International Journal of Game Theory 35, 603-615.
- [7] Moulin H (1985) The separability axiom and equal sharing methods. Journal of Economic Theory **36**,187-200.
- [8] Peleg B and Sudhölter P (2003) Introduction to the Theory of Cooperative Games. Kluwer Academic Publishers, Boston, MA.
- [9] Rafels C and Tijs S (1997) On the cores of cooperative games and the stability of the Weber set. International Journal of Game Theory 26, 491-499.
- [10] Tadenuma K (1992) Reduced games, consistency and the core. International Journal of Game Theory 20, 325-334.

Kensaku Kikuta

Professor Emeritus, School of Business Administration, University of Hyogo

E-mail address: kenkikuta@gmail.com

兵庫県立大学·経営学部 菊田 健作