44

BBLREAT IS TR 2E 0k B52126% 20194F 44-52
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Abstract

For a coalitional game with transferble utility, the undominated core is a set of imputations
which are not dominated by any other imputations. This set is characterized by reduced game

property, individual rationality and a kind of monotonicity.

1 Introduction

In this note we treat solutions for coalitional games with transferable utility. The solutions are the core
and the undominated core which were considered in Gillies[3]. We characterize the undominated core,
that is, the set of all undominated imputations. The characterization is by axioms, one of which is the
reduced game property. In Tadenuma[10], the reduced game by Moulin[7] is used for characterizing
the core. We use a variation of the reduced game by Moulin[7]. Llerena/Rafels[6] characterizes the
undominated core by another reduced game. The results by Rafels/Tijs[9] and Chang[2] connects the
undominated core with the core, and these are effective in our study. For other earlier contributions
in this area, see the Reference of [6] and see [8]. For other contributions related to this area, see [1],[4]
and [5].

2 Definition of a game

Let N be the set of natural numbers and let it be the set of players. A cooperative game with
transferable utility (abbreviated as a game) is an ordered pair (N,v), where N = {1,...,n} C Nisa
finite set of n players and v, called the characteristic function, is a real-valued function on the power
set of NV, satisfying v(0) = 0. A coalition is a subset of N. We denote by I" the set of all games. For
a finite set Z, | Z| denotes the cardinality of Z. For a coalition S, R® is the |S|-dimensional product
space RIS with coordinates indexed by players in S. The ith component of = € RS is denoted by z;.
For S € N and # € RY, 25 means the restriction of # to S. We call € RN a (payoff) vector. For
S C N and z € RY, we define z(S) = >, .z (if S # 0) and = 0 (if S = (). A pre-imputation for a



game (N,v) € I'is a vector z € RV that satisfics
z(N) = v(N). (1)

The set of all pre-imputations for a game (N, v) € T is denoted by X (N,v). An imputation for a game
(N,v) € T'is a vector & € X(N,v) that satisfies

x> v({i}), VieN. 2)

I(N,v) is the set of all imputations for a game (N,v) € I'. A feasible vector for a game (N,v) € ' is
a vector € RY that satisfies
z(N) < v(N). 3)

The set of all feasible vectors for a game (N,v) is denoted by X*(N,v). Let o be a mapping that
associates with every game (N,v) € I a set o(N,v) C X*(N,v) where I is a subset of I'. ¢ is called

a solution on I".

Definition 2.1 A solution o on I satisfies the Pareto optimality (PO) if for every game (N,v) € IV,
o(N,v) C X(N,v).

Definition 2.2 A solution o on 1" satisfies the individual rationality (IR) if for every game (N,v) € IV,
any x € o(N,v), z; > v({i}) for all i € N.

For a game (N,v) € I, define a game (N, v™) by!

v (S) = min{v(S),v(N) = > v({i})}, VSCN, @

i€EN\S

Definition 2.3 A solution o on 1" satisfies the property I (PR-1) if for games (N, v), (N,w) € I such
that v=(S) > w=(S) for all S C N, and v~ (N) = w™(N), o(N,v) C o(N,w).

For a game (N,v) € I, z € X*(N,v) and S C N, a reduced game is a game (S,v§) € I'. Here S is the

player set and v¢ is the characteristic function which is defined by v,  and S.

Definition 2.4 A solution o on 1" satisfies the reduced game property (RGP) if for a game (N,v) € I,
any x € o(N,v) and any S C N, S # 0, (S,vE) € I and xg € 0(5,v%).

Definition 2.5 A solution o on I satisfies the property I (PR-II) if for a game (N,v) € I, v(S) =
Yicgv({i}) for all S € N, then x € o(N,v), where z; = v({i}) for all i € N.

'n [6], this game is expressed as (N,v’).
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3 Core for TU games

In this section the undominated core on I' is characterized by axioms where the reduced game is

defined as follows.
Definition 3.1 For (N,v) € I', x € RN and S C N, we define a reduced game (S,v%) € I' by

v§(T) = min{v(T U (N'\ $)),o(N) = > v({i})} — (N \S)
i€S\T
— v (TU(N\S) —2(N\S), VTCS,T+0, )
vg(0) = 0.
Remark 3.2 This reduced game is a variation of the reduced game by Moulin [7]. The latter is used

for characterizing the core (See [10]).

Definition 3.3 For a game (N,v) € ' and for z,y € X(N,v), x dominates y via S C N if

xTi > yi,Vi SR
z(S) < wv(S).

(6)

Definition 3.4 The undominated core of a game (N,v) € I, denoted by DC(N,v), is defined by

DC(N,v) ={x € I(N,v) : x is not dominated by any y € I(N,v)}. (7)
The core of a game (N,v) € I', denoted by C(N,v), is defined by
C(N,v) ={x € X(N,v) : 2(5) = v(5),VS S N, S # 0}. (8)

The core and the undominated core were considered in Gillies [3]. The following is the main theorem

of this paper.

Theorem 3.5 The undominated core is the only solution on I' which satisfies RGP, IR, PR-I, and
PR-IL.

To prove this theorem, we need 6 lemmas.
Lemma 3.6 The undominated core on I' satisfies RGP.

Proof: It suffices to sece when the unmoderated core is nonempty. For (N,v) € T', suppose DC(N,v) #
0 and let € DC(N,v). Hence z € I(N,v). For S C N, S # 0, consider (S,v%). By definition,

2(S) = v(N) = 2(N \ S) = v&(S). (9)



Claim 3.6A. z; > v§({i}) for all i € S.
Proof of Claim 3.6A: If |S| = 1, that is, S = {i} then vy ({z}) = x; because x € I(N,v). Let
[S| > 2. Assume x; < vg({i}) for i € S. Then
z(N\S) +z; <z(N\S)+vs({i})
=v ({IFUN\9))

=min{o({i} U(N\S)),v(N) — Z o({7h)} (10)
jes\{i}
<o)— Y el
JeS\{i}
From this,
(N\S)+zi+ Y v({j}) <v(N)==z(N). (11)
jes\{i}
That is,
> o{dh) <a(S\{i}). (12)
jes\{i}

This implies that there exists j* € S\ {i} such that

zje > v({j}). (13)
Define z € RY by
zj+e, ifje{iJU(N\S);
Z = \we =0, i =75 (14)
xj, otherwise,

where ¢ and ¢ are determined so that
0<d=cl{i} UN\S)| <min{z; —v({5*}), 0" ({iJUN\S) —2z{ifU(N\S))} (1)

Then z € I(N,v) and z dominates z via {i} U (N \ S) in (N, v). This contradicts « € DC(N,v). This
completes the proof of Claim 3.6A. O

From Claim 3.6A and (9), we see (S,v%) € I'r and zg € I(S,v§). We shall show x5 € DC(S,v%).
Assume that y € I(S,v§) dominates zg via T C S in (5, v§). That is,

y(S) = v5(S) = x(9),
> vs({i}) = v ({iU(NV\ S)) —z(N\ S), Vi€ S, 16)
yi > x,VieT,

y(T) <vg(T) = v~ (TU(N\5)) = z(N\ 5).
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Welet Q={ie S\T:z;>v({{i})}and P={ie S\T:z; =v({i})}. By (16),

z(T)+x(N\S) <y(T)+xz(N\S)
<o (TU(N\S)) =min{v(TU(N\S)),v(N)— Z v({i})}

iES\T 17)
<o(N)= Y o({i}).
i€S\T
This implies
> o({i}) < v(N) = 2(T) — x(N\ S) = 2(S\ T). (18)

i€eS\T

Hence there exists i € S\ T such that z; > v({i}). That is, Q # 0. Define z € RV as follows.

xi+e;, ifie N\S;
Yi — 6i, ifi e T;
zZ; = (19)
v({i}), ifie P;
Ty — MNiy ifie Q:
where
0 < 9; <yi*l‘i,V’l‘€T,
gi>0,¥ie N\ S,
0<m <z —v({i}),Vie Q (20)
y(T) —2(T) = 6(T) + (N \ §) = n(Q),
e(N\S) <o(T).
Indeed, we can find &;,&; and n; which satisty (20) as follows. Since 2(Q) — >_;co v({i}) > 0, choose
k > 2 so that

y(T) — =(T)

0< YO0 < i) - 3wl (1)
i€Q
Second, choose n; > 0,Vi € @ so that
n(Q) = LICI(T) >0and n; <z —o({i}),Vi € Q. (22)

Choose 0; > 0,7 € T so that y; —z; — §; < "‘(ﬁ) for all 4 € T. This implies y(T) — x(T) — §(T) < n(Q).

Finally, determine ¢; > 0,7 € N \ S so that the equality in (20) is satisfied. Then

e(N\S) = (1) =n(Q) - [y(T) — 2(T)] = (% —Dy(T) = =(T)] < 0. (23)



So (20) is feasible with respect to d;,&; and 7;. From (19) and (20)

2N)=2(N\S)+e(N\8) +y(T) = 5(T) + > _ v({i}) + 2(Q) — n(Q)

iceP

#(N) = v(N).
ATUNNS) =y(T) +a(N\S) = (T) +e(N\ 5)
Us(T) +a(N\S) =6(T) +e(N\ 5)
min{v(TU (N \ S)),0o(N) — > v({i})} - 6(T) +e(N\ S)

ieS\T

min{o(TU (N \ S)),o(N) = Y o({i})}

i€S\T

I/\

IN

o(TU(N\ S)).

From (19) and (20), we see z; > v({i}) for all ¢ € N. From this and (24), z € I(N,v). Consequently,
z dominates = via T'U (N \ S) in (N,v), which contradicts # € DC(N,v). This completes the proof
of Lemma 3.6. O

Lemma 3.7 The undominated core on I' satisfies IR, PO PR-I and PR-II.

Proof: By definition, the undominated core satisfies IR and PO. It is known (Rafels/Tijs(1997))
that for any game (N,v) such that I(N,v) # 0, DC(N,v) = C(N,v™). By the definition of the
core, C(N,v™) C C(N,w™) for any (N,v),(N,w) such that v=(S) > w~(S) for all S C N, and
v (N) = w (N). Since I(N,v) # 0, we have I(N,w) # 0, which implies DC(N,w) = C(Nw™).
Hence DC(N,v) € DC(N,w) and the unmoderated core satisfies PR-I. It satisfies PR-II since any

imputation can not dominate itself. [J
Lemma 3.8 If a solution o on ' satisfiecs RGP and IR, then it satisfies PO.
Proof: For (N,v) €T, let z € 0(N,v). By RGP and IR,

zi > vfy({i}) = min{o({i} U (N \ {i}),v(N) = > v({ih} — =N\ {i})
FRoNG! (25)
=v(N) —z(N\ {i}).

From this, z(N) > v(N). Since o(N,v) € X*(N,v), 2(N) < v(N). Hence we have z(N) = v(N). O

Lemma 3.9 If a solution o on T satisfies RGP, IR, PR-I and PR-II, then DC(N,v) C o(N,v) for
all (N,v) eT.
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Proof: Suppose that a solution o satisfiecs RGP, IR and PR-I. For (N,v) € I, it DC(N,v) = 0
, then it trivially holds. Suppose DC(N,v) # 0. So I(N,v) # 0. Let x € DC(N,v) C I(N,v).
Since DC(N,v) = C(N,v™), € C(N,v™). Hence, z(S) > v~ (9) for all S € N. Define a game
(N,vg) € T by v,(S) = x(S) for all S C N. Since z(S) = v,(S) for all S C N and (v;)” = vy, wWe
have (v;)~(S) > v~ (S) for all S € N and (v,)”(N) = v~ (N) = v(N). By PR-L, 0(N,v;) C o(N,v).
By the assumption and by Lemma 3.8, o satisfies IR and PO. That is, o(N,v,) C I(N,v,). By PR-II,
x € 0(N,v;). Hence, x € o(N,v). O

Lemma 3.10 Suppose that o on T satisfies RGP and IR. If v(S) = v~ (S) for all S C N then
o(N,v) C C(N,v).

Proof: Let z € o(N,v). By RGP, zg € o(S,v%) for all S C N. By IR, z; > v§({i}) for all i € S.
Since v(S) = v~ (S) for all S C N, we have v(S) < v(N) — 32 ;cp g v({5}) for all S € N. This implies
vE({i}) = v({i} U (N \ S)) — (N \ S) for all : € S. Hence, (N \ S) +z; > v({i} U (N \ S)) for all
i € S. This implies 2(T") > v(T) for all T'C N since

{{i}U(N\S):ie S5, SCN}={T C N} (26)
Hence we have z € C(N,v). O

Lemma 3.11 If a solution o on ' satisfies RGP, IR and PRI, then o(N,v) € DC(N,v) for all
(N,v) eT.

Proof: Assume I(N,v) # (. Since (v7)7(S) = v~ (S) for all S C N, by PR-I and Lemma 3.10 we
have o(N,v) = o(N,v™) and o(N,v") € C(N,v™). Then C(N,v~) = DC(N,v). Hence o(N,v) C
DC(N,v). Next assume I(N,v) = (. By Lemma 3.8 and IR, o(N,v) C I(N,v) = . Hence o(N,v) =
0 c DC(N,v). O

From Lemmas 3.6 and 3.7, the undominated core satisfies all properties in the statement of the

theorem. From Lemma 3.9 and 3.11, a solution on I' must coincide with the undominated core if it

satisfies all properties in the statement of the theorem. This completes the proof of the theorem. [J

The next examples show that the properties in Theorem 3.5 are independent.

Example 3.12 Let ¢'(N,v) = I(N,v) for all (N,v) € T. By definition, o' satisfies IR, PR-I and
PR-II. Let N ={1,2,3} and v(N) = 3,v(13) = v(23) = 2,v(12) = 1 and v(i) = 0 for i = 1,2,3. Then
= (1,2,0) € I(N,v). Let § = {1,2}. We see z(12y ¢ I({1,2},0f, ) = 02({1,2},1)2”1 5)) because
vfm}({l}) =2 >z = 1. Hence it does not satisfy RGP.

Example 3.13 Let 0?(N,v) = 0 for all (N,v) € T'. Then o2 satisfies IR,PR-I and RGP. But it does
not satisfy PR-II.



Example 3.14 Let 03(N,v) = C(N,v) for all (N,v) € . By definition, 03 satisfies IR and PR-
II. Let’s see it satisfies RGP. Let x € C(N,v). Then by definition,v§(S) = x(S5) for all S C N.
z(T) =az(N\S)UT)—a(N\S) > o(N\S)UT) —x(N\S) > v§T) for all T C S. Hence
zg € C(N,vg). Next, let’s see it does not satisfy PR-I. For N = {1,2,3}, let v(i) = w(i) = 0 for
i=1,2,3 and v(N) = w(N) = 5. Let v(12) = w(12) = 2 and v(13) = w(13) = 3. Let v(23) = 5 and
w(23) = 6. Then C(N,v) = {(0,2,3)} and C(N,w) = 0, while v=(S) = w™(S) for all S C N.

Example 3.15 Let o*(N,v) = {z € X*(N,v) : 2; < v(N) — v~ (N \ {i}),Vi € N} for all (N,v) € .
For sufficiently large ¢ > 0, y; = v(N) —v (N \ {i}) — e < v({i}) for some i € N as well as
y(N) < v(N), but y € 0*(N,v). So o*(N,v) does not satisfy IR. Suppose v~ (S) > w~(S) for all
SC Nandv (N)>w (N). Then v(N) = w(N) and v(N)—v~ (N\{i}) < w(N)—w (N\{i}) for all
i € N. This implies o(N,v) C o (N, w). Hence o satisfies PR-I. Next suppose v(S) = 3, s v({i})
for all S C N. Then o*(N,v) = {x € X*(N,v) : z; < v({i}),Vi € N}, which implies z € o*(N,v)
where z; = v({i}) for all i € N. Hence o* satisfies PR-II. Next suppose = € ¢*(N,v). Let S C N.
Since z(N) < v(N), it holds z(S) < v(N) —z(N \ S) = v§(S).

vs(S) = (v5) " (S\A{i}) = vs(S) — minfvg(S\ {i}), v§(S) — vs({i}H)}

(27)
= max{vg(S) —vg(S\{i}),vs({i})}
Here
v5(S) —vg(S\ {i}) = v(N) — min{v((S\ {i}) U (N \ S)),v(N) —v({i})} (28)
=max{v(N) —v((S\ {i}) U (N \ 9)), v({i})}
So

V() — (v8) (S \ (i) = max{u(N) — v(N \ {i}), o({i}),vE({i}))
> max{u(N) — o(N\ {i}),o({i})} (20)
= o(N) — v (N {i})

Hence zg € 04(S,v%). So o satisfies RGP.
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