
83

Divisibility of Lee’s class and its relation with Rasmussen’s
invariant

Taketo Sano

Graduate School of Mathematical Sciences, The University of Tokyo

1 Introduction

In this article we introduce a knot invariant \overline{s}_{c} derived from the divisibility of Lee’s class,
and summarize its relation with Rasmussen’s  s‐invariant. A more detailed discussion can

be found in the author’s preprint [13].
Rasmussen [12] introduced the  s ‐invariant and he proved that: (i)  s defines a homo‐

morphism from the knot concordance group in  S^{3} to  2\mathbb{Z} , (ii) it provides a lower bound
for the slice genus  g_{*} of knots, and (iii)  s and  g_{*} are equal for positive knots. Then the
Milnor conjecture [10] follows as a corollary. The conjecture was originally proved by
Kronheimer and Mrowka in [4] using gauge theory, but Rasmussen’s result was notable
since it provides a purely combinatorial proof of an important fact of four‐dimensional
topology.

The definition of  s is based on Lee homology [6] (a variant of Khovanov homology [2]).
The above stated results are obtained from the invariance of the “canonical generators” of
Lee homology over  \mathbb{Q} . For a knot diagram  D , there are two distinct cycles  \alpha,  \beta constructed
combinatorially from  D , and those homology classes form a basis of  H_{Lee}(D;\mathbb{Q}) . Lee
originally introduced these classes, and Rasmussen proved that they are knot invariants
(up to multiplication by units), hence called them the canonical generators.

Figure 1: Construction of the cycle  \alpha.

The construction of Lee’s classes can be done over  \mathbb{Z} , so one may expect that they
also generate the homology group over  \mathbb{Z} . However this is not the case. In fact by direct
computation, we observe that many of these classes are divisible by 2‐powers. The aim of
our research is to explore what information we can obtain from the 2‐divisibility of these
classes.

We consider this situation in a more generalized setting. By following the arguments
given by Khovanov in [3] and by Mackaay, Turner, Vaz in [9], we define a family of
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Khovanov‐type link homology theories  H_{c}(-;R)_{c\in R} over an arbitrary commutative ring
 R parameterized by  c\in R . Here Khovanov’s original theory corresponds to  c=0 , and
Lee’s theory corresponds to  c=2 . For each  c\in R , Lee’s classes  [\alpha],  [\beta] of a knot diagram
 D can be defined in  H_{c}(D;R) .

Proposition 1. With the above setting:

1. If  c is invertible in  R , then  [\alpha],  [\beta] form a basis of  H_{c}(D;R) .

2. If  D,  D' are two diagrams related by a single Reidemeister move, then the  /ratio ’ of
the corresponding two classes is given  by\pm c^{j} for some  j\in\{0, \pm 1\}.

Thus the situation is completely analogous to  \mathbb{Q}‐Lee theory when  c is invertible. As for
 \mathbb{Z}‐Lee theory  c=2 is not invertible, so our concern is when  c is not invertible in  R . In the
following we assume  R is an integral domain and  c is non‐zero, non‐invertible. We define
the  c‐divisibility of  [\alpha] (or  [\beta] ) by the exponent of its  c‐power factor (modulo torsions),
and denote it by  k_{c}(D) . From following proposition we may regard  k_{c} as measuring the
“non‐positivity” of the diagram.

Proposition 2. If  D is positive, then  k_{c}(D)=0.

From Proposition 1 (2.) we see that  k_{c} varies by the exponent  j of the ratio under the
Reidemeister moves, hence  k_{c} is not a knot invariant. Here  j can be calculated without
computing the homology group or the homology class:

Proposition 3. The exponentj is given by the difference of   \frac{r-w}{2} between the two diagrams,
where  w is the writhe and  r is number of Seifert circles.

If we subtract   \frac{r-w}{2} from  k_{c} , then the value becomes constant under the Reidemeister
moves. Hence we obtain a knot invariant:

Theorem 1. Let  K be a knot. For any diagram  D of  K , the value

 \overline{s}_{c}(K) :=2k_{c}(D)+w(D)-r(D)+1

is an invariant of  K.

Again by computational experiments done for  (R, c)=(\mathbb{Z}, 2) , we observed that  \overline{s}_{c}

coincides with  s for all prime knots of crossing number up to 11. Here we pose the main
question:

Question 1. Does  \overline{s}_{c} coincide with  s for any  (R, c)^{\beta)}

If this is true, then  s can be given a description in terms of the divisibility of Lee’s
class. If not, then we obtain some potentially new invariants. We give several facts that
support the affirmative answer.

Theorem 2.

1.  \overline{s}_{c} is a  2\mathbb{Z} ‐valued knot concordance invariant in  S^{3},

2.  |\overline{s}_{c}(K)|\leq 2g_{*}(K) for any knot  K , and
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3.  \overline{s}_{c}(K)=2g_{*}(K)=2g(K) if  K is positive.

These properties are common to  s (except that  s also possesses the homomorphism
property), and as a corollary, each  \overline{s}_{c} gives an alternative proof for the Milnor conjecture.
Next, we show that there exists a pair  (R, c) such that  \overline{s}_{c} coincides with  s.

Theorem 3. If  (R, c)=(\mathbb{Q}[h], h) ,

 s(K)=\overline{s}_{h}(K)

for any knot  K.

More generally, we can prove that for any field  F of char  F\neq 2 , the  s‐invariant over
 F and  \overline{s}_{c} for  (R, c)=(F[h], h) coincides. There is a famous open question whether
there exists any  F such that  s(-;F) is distinct from  s=s(-;\mathbb{Q}) (  [8 , Question 6.1]). If
Question 1 is solved affirmatively, then it follows that  s(-;F) are equal among all fields
 F of char  F\neq 2.

Viewing the  s‐invariant from the perspective of divisibility has been suggested by
Kronheimer and Mrowka in [5], and by Collari in [1], both based on the alternative
definition of  s given by Khovanov in [3]. We expect that our approach would also lead to
a better understanding of  s.

2 Preliminaries

In this section we briefly review the construction of Khovanov’s chain complex in the
generalized form, as given in [3]. Let  R be a commutative ring with unity. Given a
Frobenius algebra over  R and a link diagram  D , we obtain a chain complex  C_{A}(D;R) and
its homology  H_{A}(D;R) by following the construction of the original version of Khovanov
homology, except that the algebra  R[X]/(X^{2}) is replaced with  A . The construction is
given as follows: a choice of a simultaneous resolutions for all crossings of  D (which is
called a state) yields a diagram consisting of disjoint circles. Consider all possible states of
 D and place them on the vertices of an  n‐dimensional cube, so that each edge corresponds
to a cobordism between two resolved diagrams. The Frobenius algebra  A determines a
TQFT (i.e. a functor from the category of 2‐dimensional cobordisms to the category of
 R‐modules), and by applying it to the cube we obtain a commutative cubic diagram of
 R‐modules and  R‐homomorphisms. After some adjustment of signs of the maps, the cube
is folded to form the (unnormalized) chain complex (see Figure 2). Finally the normalized
version is obtained after some degree shift.

Here we consider the algebra of the following special form  A_{h,t}=R[X]/(X^{2}-hX-t)
with  h,  t\in R . We denote the corresponding chain complex and its homology by  C_{h,t} and
 H_{h,t} respectively. Khovanov’s original theory [2] and Lee’s theory [6] are given by

 H_{Kh}=H_{0,0}, H_{Lee}=H_{0,1}.

The chain complex is also given a secondary grading called the  q‐degree, and under
some condition  H_{h,t}(D;R) becomes bigraded or filtered. The following theorem assures
that any  H_{h,t} gives a link invariant:
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 D=

 \{ 0arrow\sigma^{-}(D)arrow\overline{C}^{1}(D)arrow\overline{C}^{2}(D)
arrow\overline{C}^{3}(D)arrow 0\}

Figure 2: The (unnormalized) chain complex for the left hand trefoil.

Theorem 2.1 ([3, Proposition 6]). Let  L be a link. For any diagram  D of  L , the isomor‐
phism class of  H_{h,t}(D;R) as  a (graded / bigraded/filtered)  R ‐module is an invariant of
 L.

3 Generalizing Lee’s class

For simplicity we focus on knots, but the following discussion can be extended to links
otherwise stated. We assume that  h,  t\in R satisfies the following:

Condition 3.1.  X^{2}-hX-t factors into linear polynomials.

Fix one  c=\sqrt{h^{2}+4t} , and take the two roots:

 u=(h-c)/2, v=(h+c)/2\in R.

Then  X^{2}-hX-t=(X-u)(X-v) in  R[X] . Define

 a=X-u, b=X-v\in A.

Then obviously ab  =ba=0 . Also with a—b  =v-u=c , we have:

 m(a\otimes a)=ca, \triangle(a)=a\otimes a,
 m(a\otimes b)=0, \triangle(b)=b\otimes b
 m(b\otimes a)=0
 m(b\otimes b)= −cb

where  m,  \triangle is the multiplication and the comultiplication of  A respectively. In the case of
Lee’s theory (where  (R, h, t)=(\mathbb{Q}, 0,1) ), the corresponding values are  c=2,  a=X+1
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and  b=X-1 . We call a and  b colors. For any state  s , a coloring on the resolved circles
defines an element in  C_{h,t}(D;R) by the tensor product of factors in a and  b . Recall that
any oriented knot diagram possesses a unique orientation preserving state  s , where every
state circle admits an orientation coherent with the given orientation of  D . From the
standard procedure of the bicoloring of the Seifert circles (see Figure 1), we obtain an
element  \alpha\in C_{h,t}(D;R) , which is in fact a cycle. By reversing the orientation of  D , we
obtain another cycle  \beta . (In the case of an  \ell‐component link diagram  D , there are  2^{\ell}

distinct cycles, one for each alternative orientation on  D. )
Lee proved in [6] that  H_{Lee}(D;\mathbb{Q}) is freely generated by these classes, so in particular

 H_{Lee}(D;\mathbb{Q})\cong \mathbb{Q}^{2} . This generalizes as follows:

Proposition 3.2. If  c=\sqrt{h^{2}+4t} is invertible in  R , then  H_{h,t}(D;R) is freely generated
by  [\alpha],  [\beta] over R. In particular  H_{h,t}(D;R)\cong R^{2}.

Lee’s proof cannot be applied directly, since it uses Hodge theory and requires that  R

is a field. However there is an alternative proof that can be applied to our case, that is
the admissible coloring decomposition of  C_{h,t}(D;R) proposed by Wehrli in [15, Remark
5.4]. Briefly, if  c is invertible, then the colored states form a basis of  C_{h,t}(D;R) , and there
is a decomposition of  C_{h,t}(D;R) by the set of admissible colorings of  D . The subcomplex
spanned by  \alpha,  \beta gives the homology, while the remaining part is acyclic. A detailed proof
can be found in Lewark’s paper [7, Lemma I.14].

The following proposition is a generalization of [12, Proposition 2.3], and is essential
for the definition of the invariant  \overline{s}_{c} in the next section.

Proposition 3.3. Suppose  D,  D' are two diagrams related by a Reidemeister move. There
is an isomorphism  \rho :  H_{h,t}(D;R)arrow H_{h,t}(D';R) such that the  \alpha,  \beta ‐classes correspond as:

 [\alpha']=\varepsilon c^{j}\rho[\alpha],
 [\beta']=\varepsilon'd\rho[\beta]

with some  j\in\{0, \pm 1\} and  \varepsilon,  \varepsilon'\in\{\pm 1\} satisfying  \varepsilon\varepsilon'=(-1)^{j} . (Here  c is not necessarily
invertible, so the equation  z=c^{j}w is to be understood as  c^{-j}z=w when  j<0.) Moreover
 j is determined as in Table 1 by the type of the move and the difference of the numbers
of Seifert circles.

Type  \triangle r|  j

  \frac{RM1_{R}1RM1_{L}11_{1}^{0}}{RM20,21_{1}^{0}}
RM3  0

2

 -2

RM3  0

2

 -2

RM3  0

2

 -2

RM3  0

2

 -2

 0

1

 -1

Table 1: The exponent  j corresponding to the Reidemeister moves
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This is proved by considering all possible patterns that occur under each move. In
particular if  c is not invertible, then  [\alpha],  [\beta] are not invariant under the Reidemeister
moves. From Table 1 we see that  j is given by a single equation:

Corollary 3.4. The exponent  j is given by

 j= \frac{\triangle r-\triangle w}{2}
where  w denotes the writhe,  r denotes the number of Seifert circles, and the prefixed  \triangle

denotes the difference of the corresponding values of  D and  D'.

Finally we state that under Condition 3.1 the two parameters  h,  t\in R can be reduced
to a single parameter  c\in R.

Proposition 3.5. Let  (h, t),  (h', t') be two pairs satisfying  \sqrt{h^{2}+4t}=\sqrt{h^{\prime 2}+4t'} . For
any link diagram  D , there is an isomorphism  \sigma :  H_{h,t}(D;R)arrow H_{h',t'}(D;R) that commutes
with the isomorphism  \rho of Proposition 3.3, and that the  \alpha,  \beta ‐classes correspond one‐to‐
one.

We denote the isomorphism class of  H_{h,t}(D;R) by  H_{c}(D;R) . Lee’s classes  [\alpha],  [\beta] are
well‐defined under the identification. Figure 3 depicts the  (h, t) ‐parameter space, where
each point  (h, t) corresponds to  H_{h,t}(D;R) and the parabola  h^{2}+4t=c^{2} corresponds to
the isomorphism class  H_{c}(D;R) .

Figure 3: The  (h, t) ‐parameter space.

From the above propositions, we conclude that the situation is completely analogous to
 \mathbb{Q}‐Lee theory when  c is invertible:  [a] and  [\beta] form a basis of  H_{c}(D;R) and are invariant
(up to unit) under the Reidemeister moves. Now our main concern is when  c is not
invertible in  R.

4 Divisibility of Lee’s class

In the remaining we assume that  R is an integral domain and  c is non‐zero, non‐invertible.
Denote by  H_{c}(D;R)_{f} the free part of  H_{c}(D;R) , i.e. the quotient of  H_{c}(D;R) by its torsion
submodule. By abuse of notation, we denote the image of an element  [z]\in H_{c}(D;R) by
the same symbol  [z]\in H_{c}(D;R)_{f} . We define the  c ‐divisibility of  [\alpha] by the exponent of
its  c‐power factor (modulo torsions). More formally,
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Definition 4.1. For any knot diagram  D , define

 k_{c}(D)= \max\{k\geq 0|[\alpha]\in c^{k}\cdot H_{c}(D;R)_{f} \} \in[0, \infty]
.

Example 4.2.  k_{c}(O)=0 since  H(O)=c(O)=R\langle 1,  X }.

Example 4.3.  D= (unknot with one negative crossing). Let  (R, h, t)=(\mathbb{Z}, 0,1) and
 c=2 . We have

 C(D)= \{ Aarrow^{\triangle}A^{\otimes 2} \}, \alpha(D)=(X-1)\otimes(X+1) .

From  \triangle(X)=X\otimes X+1\otimes 1 and  \triangle(1)=1\otimes X+X\otimes 1 , we see that  \alpha(D) is homologous
to  2(1\otimes X-1\otimes 1) . Since  \{[1\otimes X], [1\otimes 1]\} form a basis of  H(D)_{f} , we have  k_{2}(D)=1.

These examples show that  k_{c}(D) is not a link invariant. In fact from Proposition 3.3,
the difference of  k_{c} between the two diagrams can be given without even computing the
homology groups.

Proposition 4.4. Let  D,  D' be two diagrams of the same knot. Then

  \triangle k_{c}=\frac{\triangle r-\triangle w}{2},
where  w denotes the writhe,  r denotes the number of Seifert circles, and the prefixed  \triangle

denotes the difference of the corresponding values of  D,  D'.

Thus we obtain a knot invariant:

Theorem 1. For any knot  K,

 \overline{s}_{c}(K)=2k_{c}(D)+w(D)-r(D)+1,

gives an invariant of  K , where  D is any diagram of  K.

First we state some basic properties of  k_{c} . The following ones can be proved by
observations of the diagram with some elementary algebraic arguments.

Proposition 4.5. For any knot diagram  D

 0\leq k_{c}(D)\leq n^{-}(D) ,

where  n^{-}(D) denotes the number of negative crossings. In particular if  D is positive, then
 k_{c}(D)=0.

Thus we may regard  k_{c} as measuring the “non‐positivity” of the diagram.

Proposition 4.6.
 k_{c}(D)=k_{c}(-D) .

The above proposition tells us that we may either use  [\alpha] or  [\beta] for the definition of
 k_{c}(D) .

Proposition 4.7. Let  D,  D' be knot diagrams.
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1.  k_{c}(D\sqcup D')\geq k_{c}(D)+k_{c}(D') .

2.  k_{c}(D\# D')\leq k_{c}(D\sqcup D')\leq k_{c}(D\# D')+1.

Moreover, if  R is a PID and  c is prime in  R , then instead we have:

1’  k_{c}(DuD')=k_{c}(D)+k_{c}(D') .

2’  k_{c}(D\# D')=k_{c}(D)+k_{c}(D') or  k_{c}(D)+k_{c}(D')-1.

Next we state some basic properties of  \overline{s}_{c} . The following can be obtained immediately
from the definition and the corresponding results for  k_{c}.

Proposition 4.8. Let  K,  K' be any two knot diagrams.

1.  \overline{s}_{c}(O)=0.

2.  \overline{s}_{c}(K)=\overline{s}_{c}(-K) .

3.  \overline{s}_{c}(KuK')\geq\overline{s}_{c}(K)+\overline{s}_{c}(K')-1.

4.  \overline{s}_{c}(K\# K')=\overline{s}_{c}(K\sqcup K')\pm 1.

Moreover if  R is a PID and  c is prime in  R , then we have

3’.  \overline{s}_{c}(K\sqcup K')=\overline{s}_{c}(K)+\overline{s}_{c}(K')-1.

4’.  \overline{s}_{c}(K\# K')=\overline{s}_{c}(K)+\overline{s}_{c}(K') or  \overline{s}_{c}(K)+\overline{s}_{c}(K')-2.

Proposition 4.9.
 \overline{s}_{c}(K)\equiv 0mod 2.

Proposition 4.10. Let  K be a positive knot, and  D be a positive diagram of L. Let  S be
the Seifert surface of  K obtained by applying the Seifert’s algorithm to D. Then

 \overline{s}_{c}(K)=2g(S) .

The above two propositions easily follows from

 \chi(S)=1-2g(S)=r(D)-n(D) .

Remark 4.11. We have modded out the torsions so that Proposition 4.4 holds. In general,
if there is a torsion, then  c‐divisibility is not additive under multiplying a power of  c.

Consider the case  (R, c)=(\mathbb{Z}, 2),  H=\mathbb{Z}\oplus \mathbb{Z}_{2} , and  z=(2,1) . In this case  k_{2}(z)=0,
but  2z=(4,0) so  k_{2}(2^{1}z)=2 . The  c‐invariant of a transverse link is introduced by
Collari in [1], whose definition is similar to  k_{c}(D) but it is defined without modding out
the torsions.
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5 Behavior of  \overline{s}_{c} under cobordisms

Let  K,  K' be two knots in  \mathbb{R}^{3} and  D,  D' be diagrams of  K,  K' respectively. Let   S\subset

 \mathbb{R}^{3}\cross[0,1] be an (oriented smooth) cobordism between  K and  K' with  \partial S=(-K)\cross
 \{0\}\cup K'\cross\{1\} . By following the arguments of [2, Section 6.3] and [12, Section 4], we
define a homomorphism

 \phi :  H_{c}(D;R)arrow H_{c}(D';R)

as follows. By modifying  S by a small isotopy, we may assume that  S decomposes as a
union of elementary cobordisms, such that for each  t\in[0,1] the section  S\cap(\mathbb{R}^{3}\cross\{t\}) is a
link and its projection onto the plane is regular, except for finitely many  t' s . Decompose
 S= \bigcup_{i=0}^{N-1}T_{i} so that each  T_{i}=S\cap(\mathbb{R}^{3}\cross[t_{i}, t_{i+1}]) corresponds to a Reidemeister move
or a Morse move. Denote by  D_{i} the projection of the link  S\cap(\mathbb{R}^{3}\cross\{t_{i}\}) . Each  T_{i} gives
a homomorphism  \phi_{i} :  H_{C}(D_{i})arrow H_{C}(D_{i+1}) , namely if  T_{i} corresponds to a Reidemeister
move then  \phi_{i} is the isomorphism  \rho given in Proposition 3.3, and if  T_{i} corresponds to a
Morse move, then  \phi_{i} is induced from the chain map given by the corresponding operation
of the Frobenius algebra  A . Define  \phi by the composition of all  \phi_{i}' s . The following is a
generalization of [12, Proposition 4.1] and [11, Proposition 3.2].

Proposition 5.1. If  S is a connected cobordism between  K and  K' , then  \phi maps

  \phi[\alpha(D)]=\pm c^{l}[\alpha(D')] , l=\frac{1}{2}(-\triangle r+\triangle w
-\chi(S)) ,

where the prefixed  \triangle denotes the difference of the corresponding values of  D,  D'.

Proof. This is proved by carefully inspecting the successive images of  [\alpha(D)] under the
maps  \phi_{i} . Figure 4 depicts the schematic picture. Here we may assume that  c is invertible,
since the canonical map  H_{c}(D;R)_{f}arrow H_{c}(D;R)_{f}\otimes R[c^{-1}]=H_{c}(D;R[c^{-1}]) is injective.

 L'  [a_{4}]

 \ovalbox{\tt\small REJECT}  c^{-1}m1\Delta 1\iota[a_{3}][a_{1}]  0\Delta]
 \rho 1 L

 [a_{0}]

Figure 4: The cobordism map

 \square 

We immediately obtain:
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Proposition 5.2. Proposition 5.1,

 |\overline{s}_{c}(K')-\overline{s}_{c}(K)|\leq-\chi(S) .

From Proposition 5.2 we obtain properties of  \overline{s}_{c} that are common to  s . From these
properties, the Milnor conjecture can be reproved using each of  \overline{s}_{c}.

Theorem 2. 1.  \overline{s}_{c} is a knot concordance invariant,

2.  |\overline{s}_{c}(K)|\leq 2g_{*}(K) for any knot  K , and

3.  \overline{s}_{c}(K)=2g_{*}(K)=2g(K) if  K is positive,
where  g_{*} is the slice genus, and  g is the ordinary genus of a knot.

Corollary 5.3 (The Milnor Conjecture [10]). The slice genus and the unknotting number
of the  (p, q) torus knot are both equal to  (p-1)(q-1)/2.

6 Coincidence with  s

Finally we prove that  \overline{s}_{c} coincides with  s for the case  (R, c)=(\mathbb{Q}[h], h) . We declare that
 h is an indeterminate of degree  -2 , so that the corresponding homology group  H_{h}(D;R)
becomes bigraded. Recall that in the case of  (R, c)=(\mathbb{Q}, 2) , Rasmussen called the
corresponding classes  [\alpha],  [\beta] the “canonical generators from the fact that they form a
basis and that they are invariant (up to unit) under the Reidemeister moves. We have
seen that this does not hold for a general  (R, c) . However for  (R, c)=(\mathbb{Q}[h], h) , by
“normalizing” the two classes we obtain a pair of classes  [\zeta],  [\zeta'] that are reasonable to be
called the “canonical generators” of  H_{h}(D;\mathbb{Q}[h])_{f}.

Proposition 6.1. There is a unique pair of classes  [\zeta],  [\zeta']\in H_{h}(D;\mathbb{Q}[h])_{f} such that:

 \bullet they form a basis of  H_{h}(D;\mathbb{Q}[h])_{f},
 \bullet they are (strictly) invariant under the Reidemeister moves, and,

 \bullet  [\alpha],  [\beta] can be written as

 [\alpha]= h^{k}( (h/2)[\zeta]+[\zeta'])
 [\beta]=(-h)^{k}(-(h/2)[\zeta]+[\zeta'])

where  k=k_{h}(D) .

Note that from the descriptions of  [\alpha],  [\beta] , it is obvious that those  h‐divisibility is
given by  k . Here we only state that the proof is non‐constructive, and it depends on the
algebraic property of  R=\mathbb{Q}[h] . Also this result is only obtained for knots at the time of
writing.

Denote by  D^{*} the mirror image of  D . There is a unimodular pairing

 \langle-, -\rangle:C_{h}(D)\otimes C_{h}(D^{*})arrow R
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defined by the composition of the natural identification  T :  C(D^{*})arrow C(D)^{*} (the dual
complex of  C(D) ) and the standard pairing between  C(D) and  C(D)^{*} . From a general
argument of homological algebra, this descends to

 \langle-, -\}:H_{h}(D)_{f}\otimes H_{h}(D^{*})_{f}arrow R,

and is unimodular since  R=\mathbb{Q}[h] is a PID.

Lemma 6.2. Let  (\alpha, \beta)=(\alpha(D), \beta(D)) and  (\alpha^{*}, \beta^{*})=(\alpha(D^{*}), \beta(D^{*})) . Then

 \langle  (\begin{array}{l}
\alpha
\beta
\end{array}) ,  (\alpha^{*} \beta^{*})\rangle=h^{r(D)}  (\begin{array}{ll}
\pm 1   0
0   \pm 1
\end{array}) .

Proof. From

 a=X+(h/2)1 , b=X-(h/2)1
 T(a)=1^{*}+(h/2)X^{*}, T(b)=1^{*}-(h/2)X^{*}

we have:

 \langle  (\begin{array}{l}
a
b
\end{array}) ,  (T(a) T(b))\rangle=(\begin{array}{ll}
c   0
0   -c
\end{array})
The result follows since the Seifert circles of  D and  D^{*} are identical, and from the con‐
struction of the cycles  \alpha,  \beta.  \square 

Proposition 6.3 (Mirror formula).

 k_{h}(D)+k_{h}(D^{*})=r(D)-1.

Proof. With the description of Proposition 6.1,

 \langle  (\begin{array}{l}
\alpha
\beta
\end{array}) ,  (\alpha^{*} \beta^{*})\rangle
 =h^{k+k^{l}}  (\begin{array}{ll}
h/2   1
\mp h/2\pm 1   
\end{array})  \langle  (\begin{array}{l}
\zeta
\zeta
\end{array}) ,  (\zeta^{*}, \zeta^{\prime*})\rangle(\begin{array}{ll}
h/2   \mp h/2
1   \pm 1
\end{array})

Since the pairing is unimodular, the middle matrix on the right hand side must have
unital determinant. By comparing the determinants on both sides we have

 2r(D)=2(k+k')+2.

 \square 

Proposition 6.4. Let  D,  D' be knot diagrams.

 k_{h} (  D#  D’)  =k_{h}(D)+k_{h}(D') .

Proof. From Proposition 4.7 we have

 k_{h} (  D#  D’)  \leq k_{h}(D)+k_{h}(D') .
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Together with Proposition 6.3 we obtain the reverse inequality:

 k_{h} (  D#  D’)  =-k_{h}((D\# D')^{*})+r((D\# D')^{*})-1
 \geq-(k_{h}(D^{*})+k_{h}(D^{\prime*}))+(r(D)+r(D')-1)-1
 =k_{h}(D)+k_{h}(D') .

 \square 

Proposition 6.5.  \overline{s}_{h} defines a homomorphism from the concordance group of knots in
 S^{3} to  2\mathbb{Z}.

Proof. Immediate from Proposition 6.3, 6.4.  \square 

Now we are ready to prove the main statement:

Theorem 3. For any knot  K,

 s(K)=\overline{s}_{h}(K;\mathbb{Q}[h]) .

Proof. Since both  s and  \overline{s}_{h} changes sign by mirroring the knot, it suffices to prove the
inequality

 s(K)\geq\overline{s}_{h}(K) .

Let  \alpha,  \alpha_{h} be the  \alpha‐cycles of  D in  C_{Lee}(D;\mathbb{Q})=C_{2}(D;\mathbb{Q}) and in  C_{h}(D;\mathbb{Q}[h]) respec‐
tively. Then

 \pi:h\mapsto 2

maps  \pi(\alpha_{h})=\alpha . Let  [\alpha_{h}]=h^{k}[\alpha_{h}'] with maximal  k . Obviously

 q\deg_{h}[\alpha_{h}']=2k+q\deg_{h}[\alpha_{h}]=2k+w(D)-r(D) .

Recall that  H_{h}(D;\mathbb{Q}[h]) is bigraded, whereas  H_{Lee}(D;\mathbb{Q}) is only filtered. Since  \pi is
 q‐degree non decreasing, we have

 s(K)= qdeg  [\alpha]+1
 =q\deg(\pi_{*}[\alpha_{h}])+1
 =q\deg(\pi_{*}[\alpha_{h}'])+1
 \geq q\deg_{h}[\alpha_{h}']+1
 =\overline{s}_{h}(K;\mathbb{Q}[h]) .

 \square 

Remark 6.6. There is a well known lower bound for  s ([14, Lemma 1.3])

 s(K)\geq w(D)-r(D)+1,

so we see that  2k_{h}(D) gives the correction term of the inequality.

Corollary 6.7.
 s(K)=q\deg_{h}[\zeta]-1=q\deg_{h}[\zeta']+1.
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Proof. Obvious from Theorem 3 and the description of  [\alpha] given in Proposition 6.1.  \square 

Compared to the definition of  s given by the filtration of  \mathbb{Q}‐Lee homology, this gives a
direct characterization of  s by the canonical generators  [\zeta],  [\zeta'].
Remark 6.8. The above discussion works verbatim for any  (R, c)=(F[h], h) when  F is
a field of char  F\neq 2 . On the other hand there is a generalization of  s over an arbitrary
field  F[8] . Theorem 3 generalizes as

 s(K;F)=\overline{s}_{h}(K;F[h]) , char  F\neq 2.

We end this article with some open questions.

Question 6.9. Is there any  (R, c) such that  \overline{s}_{c}(-;R) is distinct from  s ? Or are they all
equal?

It is a famous open question whether there exists any  F such that  s(-;F) is distinct
from  s=s(-;\mathbb{Q}) (  [8 , Question 6.1]). Theorem 3 implies that if Question 6.9 is solved
affirmatively, then all  s(-;F) are equal among fields  F of char  F\neq 2.

Remark 6.10. As for  F=\mathbb{F}_{2} , Seed showed by direct computation that  K=K14n19265

has  s(K;\mathbb{Q})=0 but  s(K;\mathbb{F}_{2})=-2 (see [8, Remark 6.1]).

Question 6.11. Does the (refined) canonical generators  [\zeta],  [\zeta'] exist for a general  (R, c) ?
Is there any geometric explanation for these classes?
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