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1 Introduction

This paper is a résumé of the paper [8]. The odd writhe J(K) is one of fundamental
invariants of a virtual knot  K (cf. [5]). In [10], Taniguchi and the third author intro‐
duced local moves called :‐moves and proved that :‐moves correspond to the odd writhe;
namely, two virtual knots have the same odd writhe if and only if they are related by a
finite sequence of 三‐moves.

On the other hand, there is another invariant of a virtual knot  K called the writhe
polynomial  W_{K}(t) (cf. [1, 6, 10]). The writhe polynomial is stronger than the odd writhe
in the sense that  J(K)=-W_{K}(-1)/2 holds. Therefore, it is natural to ask which local
moves correspond to the writhe polynomial.

In Section 2, we introduce local moves for virtual knots and links called shell moves. In
Section 3, we prove that the writhe polynomial correspond to shell moves. In Section 4,
we study which invariants of a 2‐component virtual link correspond to shell moves.

2 Gauss diagrams

A Gauss diagram consists of a finite number of oriented circles and oriented, signed chords
equipped with signs of endpoints as shown in Figure 1.

 \prime.<'\cdots\cdot  \prime^{\prime'}..\prec\cdots\cdot  \prime\prec-\cdot\cdot\cdot\cdot\backslash \backslash \backslash 

 \dot{j}

Figure 1: Self‐ and nonself‐chords of a Gauss diagram

A  \mu‐component virtual link is an equivalence class of Gauss diagrams with  \mu circles up
to Reidemeister moves RI‐R3 (cf. [4, 5]). See Figure 2. If  \mu=1 , it is called a virtual
knot.
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R2 R2

 \sim  \sim

 \sim R3

Figure 2: Reidemeister moves for Gauss diagrams

The shells for a chord  \gamma are parallel self‐chords which are oriented with respect to the
sign of the endpoint of  \gamma as shown in Figure 3. We remark that a shell in this paper is a
special case of an anklet in [7].

Figure 3: Shells for  \gamma

The shell moves Sl and S2 are local moves defined by using Gauss diagrams as shown
in Figure 4. Precisely, an Sl‐move slides a shell along a chord to the opposite side with
the same sign, and an S2‐move changes the position of the adjacent endpoints of chords
with making a pair of shells with respect to the signs of the endpoints.

 S1

 \sim

Figure 4: Shell moves Sl and S2

We say that two Gauss diagram are  S‐equivalent if they are related by a finite sequence
of Reidemeister moves and shell moves, and two virtual links are  S‐equivalent if their Gauss
diagrams are  S‐equivalent.
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Lemma 2.1. If two Gauss diagrams are related by a deformation (1) or (2) as shown in
Figure 5, then they are  S‐equivalent.  \square 

the su of

signs  y
(1)

 \sim

 \sim_{-\delta_{1}^{-}}(2)  \Sigma^{\delta_{J}}\delta_{j}

Figure 5:  S‐equivalent Gauss diagrams in Lemma 2.1

Lemma 2.2. If two Gauss diagrams are related by a deformation (1)  -(4) as shown in
Figure 6, then they are  S‐equivalent. Here,  P and  Q are portions of whole chords.  \square 

(1)

 \sim

 \sim(2)

(3)
 '

(4)
 \sim

Figure 6:  S‐equivalent Gauss diagrams in Lemma 2.2

Let  G be a Gauss diagram with  \mu circles  C_{1} , .  C_{\mu} . For  n\in \mathbb{Z} and  1\leq i\neq j\leq\mu,
we define the  n ‐snail of type  i and the  n ‐snail of type  (i, j) to be the portion of chords as
shown in Figure 7. Then we have the following.

Lemma 2.3. If two Gauss diagrams are related by a deformation (1)  -(4) as shown in
Figure 8, then they are  S‐equivalent.  \square 

By using Lemmas 2.1−2.3, we have the following standard form of a Gauss diagram up
to  S‐moves.
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um   0\dagger
 =-\epsilon n

 \in S_{i}(n) \epsilon 5_{ij}(n)

Figure 7: The  n‐snails  \varepsilon S_{\dot{i}}(n) and  \varepsilon S_{ij}(n)

(1) (2)
 \sim  \sim

 c_{i}arrow

(3)  C_{j}arrow
 \sim

 C_{i}arrow

(4)
 \sim

 \subset_{i}arrow

Figure 8:  S‐equivalent Gauss diagrams in Lemma 2.3

Proposition 2.4. Any Gauss diagram of an oriented  \mu ‐component virtual link is S‐
equivalent to a Gauss diagram  G with  \mu circles  C_{1} , .  C_{\mu} which satisfies the following
conditions. Figure 9 shows the case  \mu=3.

(i) The chords of  G form a finite number of snails.

(ii) There is an arc  \alpha_{i} on each  C_{i} such that all snails of type  i spans  \alpha_{i}.

(iii) All snails of type  (i, j) spans  (C_{i}\backslash \alpha_{i})\cup(C_{j}\backslash \alpha_{j}) in parallel.

(iv) There is no snails  \pm S_{i}(0)  or\pm S_{i}(1) for any  i.

(v) There is no pair of snails  +S_{i}(n)  and-S_{\dot{i}}(n) for any  i and  n.

(vi) There is no pair of snails  +S_{\dot{\iota}j}(n)  and-S_{ij}(n) for any  i\neq j and  n.  \square 

3 The case  \mu=1

In this section, we consider an oriented virtual knot  K and its Gauss diagram  G with a

circle  C . For portions  P_{1} , .  P_{k} of chords, we denote by  ( \sum_{i=1}^{k}P_{i}) the Gauss diagram

as shown in Figure 10. For integers  a,  n\in \mathbb{Z},  aS(n) denotes the concatenation of  |a|
copies of  \varepsilon S(n) , where  \varepsilon is the sign of  a.

Lemma 3.1. Any Gauss daigram of  K is  S ‐equivalent to  ( \sum_{n\neq 0,1}a_{n}S(n)) for some
 a_{n}\in \mathbb{Z}.  \square 
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Figure 9: A Gauss diagram with three circles

Figure 10: The Gauss diagram  ( \sum_{i=1}^{k}P_{i})

A chord  \gamma divides the circle  C into two arcs. Let  \alpha be the one oriented from the initial

to the terminal endpoint of  \gamma . We define the index of  \gamma to be the sum of signs of endpoints
of chords on  \alpha . For each  n\neq 0 , the sum of signs of all chords whose index is equal to
 n defines an invariant of  K . It is called the  n ‐writhe of  K and denoted by  J_{n}(K) . The
writhe polynomial is defined by

 W_{K}(t)= \sum_{n\neq 0}J_{n}(K)(t^{n}-1)\in \mathbb{Z}[t, t^{-1}].
Refer to [1, 2, 6, 10] for more details.

Lemma 3.2. Let  K be an oriented virtual knot.

(i) The writhe polynomial  W_{K}(t) is invariant under  S‐moves.

(ii) If  K is presented by a Gauss diagram given in Lemma 3.1, then we have

 W_{K}(t)= \sum_{n\neq 0,1}a_{n}t^{n}-(\sum_{n\neq 0,1}na_{n})t+\sum_{n\neq 0,1}
(n-1)a_{n}.
 \square 

By Lemma 3.1 and Lemma 3.2(ii), we have the following.

Proposition 3.3. Let  K and  K' be oriented virtual knots. If  W_{K}(t)=W_{K'}(t) holds,
then  K and  K' are  S‐equivalent.  \square 
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Therefore the following holds by Lemma 3.2(i) and Proposition 3.3.

Theorem 3.4. For two oriented virtual knots  K and  K' , the following are equivalent.

(i)  W_{K}(t)=W_{K'}(t) .

(ii)  K and  K' are related by a finite sequence of shell moves.  \square 

4 The case  \mu=2

In this section, we consider an oriented 2‐component virtual link  L=K_{1}\cup K_{2} and its
Gauss diagram  G with a pair of circles  C_{1} and  C_{2} . By Proposition 2.4, we have the
following.

Lemma 4.1. Any Gauss daigram of  L is  S ‐equivalent to a Gauss diagram

 ( \sum_{n\neq 0,1}a_{n}S_{1}(n), \sum_{n\neq 0,1}b_{n}S_{2}(n);\sum_{m\in Z}
c_{m}S_{12}(m), \sum_{m\in Z}d_{m}S_{21}(m))
for some integers  a_{n},  b_{n}(n\neq 0,1) and  c_{m},  d_{m}(m\in \mathbb{Z}) as shown in Figure 11. Here, the
entries present the concatenations of snails of type 1, 2, (1, 2), and (2, 1), respectively.  \square 

Figure 11: A Gauss diagram of an oriented 2‐component virtual link

For  (i, j)=(1,2) or (2, 1), the  (i, j) ‐linking number of  L , denoted by  Lk(K_{i}, K_{j}) , is
defined to be the sum of signs of all nonself‐chords oriented from  C_{i} to  C_{j} . The virtual
linking number of  L is defined by  \lambda(L)=Lk(K_{1}, K_{2})-Lk(K_{2}, K_{1}) [9] (cf. [3]). It is easy
to see that  Lk(K_{1}, K_{2}),  Lk(K_{2}, K_{1}) , and  \lambda(L) are invariant under  S‐moves.

If  \lambda(L)<0 , then by switching the roles of  K_{1} and  K_{2} , the case reduces to  \lambda(L)>0.
In what follows, we may assume that  \lambda(L)\geq 0 . We denote  \lambda(L) by  \lambda for simplicity. The
following propositions give standard forms of  L up to  S‐equivalence.

Proposition 4.2. Let  G be a Gauss diagram of  L.

(i) If  \lambda\geq 1 , then

 G \sim(\sum_{n\neq 0,1,-\lambda,-\lambda+1}a_{n}S_{1}(n),\sum_{n\neq 0,1,
\lambda,\lambda+1}b_{n}S_{2}(n) ;
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  \sum_{m=0}^{\lambda-1}c_{m}S_{12}(p+m),\sum_{m=0}^{\lambda-1}d_{m}S_{21}(-p-m)
)
for some integers  a_{n}(n\neq 0,1, -\lambda, -\lambda+1),  b_{n}(n\neq 0,1, \lambda, \lambda+1),  c_{m},   d_{m}(0\leq m\leq
 \lambda-1) , and  p.

(ii) In particular, if  \lambda=1 , then

 G \sim(\sum_{n\neq 0,1,-1}a_{n}S_{1}(n), \sum_{n\neq 0,12},b_{n}S_{2}(n);c_{0}
S_{12}(0), d_{0}S_{21}(0))
for some integers  a_{n}(n\neq 0,1, -1),  b_{n}(n\neq 0,1,2),  c_{0} , and  d_{0}.  \square 

Proposition 4.3. We have the following  S‐equivalent Gauss diagrams.

(i) If  \lambda=0 , then

 (P, Q; \sum_{m\in \mathbb{Z}}c_{m}S_{12}(m),\sum_{m\in \mathbb{Z}}d_{m}S_{21}
(m))
  \sim(P, Q;\sum_{m\in \mathbb{Z}}c_{m}S_{12}(m+k),\sum_{m\in \mathbb{Z}}d_{m}S_
{21}(m-k))

for any  k\in \mathbb{Z}.

(ii) If  \lambda\geq 2 , then

 (P, Q; \sum_{m=0}^{\lambda-1}c_{m}S_{12}(p+m),\sum_{m=0}^{\lambda-1}d_{m}S_{21}
(-p-m))
  \sim(P, Q;\sum_{m=0}^{\lambda-1}c_{m}'S_{12}(p'+m),\sum_{m=0}^{\lambda-1}d_{m}
'S_{21}(-p'-m)) ,

where

 \{\begin{array}{ll}
(c\'{O}, .   c_{\lambda-k-1}', c_{\lambda-k}', \ldots, c_{\lambda-1}') =(c_{k}, 
\ldots, c_{\lambda-1}, c_{0}, \ldots, c_{k-1}) ,
(d\'{O}   d_{\lambda-k-1}', d_{\lambda-k}', \ldots, d_{\lambda-1}')=(d_{k}, 
\ldots, d_{\lambda-1}, d_{0}, \ldots, d_{k-1}) ,
\end{array}
and  p'=p+k- \sum_{i=0}^{k-1}(c_{i}-d_{i}) for any  k with  1\leq k\leq\lambda-1.  \square 

A self‐chord  \gamma spanning  C_{i} divides  C_{i} into two arcs. Let  \alpha be the one oriented from the
initial to the terminal endpoint of  \gamma in  C_{i} . we define the index of  \gamma in  G to be the sum
of signs of endpoints of self‐ and nonself‐chords on  \alpha . For  n\in \mathbb{Z} and  i=1,2 , the sum
of signs of all self‐chords whose indices are equal to  n defines the invariants  J_{n}(K_{1};L) for
 n\neq 0,  -\lambda and  J_{n}(K_{2};L) for  n\neq 0,  \lambda . These are called the  n ‐writhes of  K_{1} and  K_{2} in  L,
respectively.
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On the other hand, for nonself‐chords  \gamma and  \gamma_{0} , the relative index of  \gamma with respect to
 \gamma_{0} to be the index of  \gamma in the Gauss diagram obtained from  G by surgery along  \gamma_{0} . For
 n\in \mathbb{Z} and  (i, j)=(1,2),  (2,1) , let  J_{n}^{ij}(G;\gamma_{0}) denote the sum of signs of nonself‐chords  \gamma

oriented from  C_{i} to  C_{j} whose relative index with respect to  \gamma_{0} are equal to  n . Put

 F_{ij}(t; \gamma_{0})=\sum_{n\in \mathbb{Z}}J_{n}^{ij}(G;\gamma_{0})t^{n}.
For an integer  s\geq 0 , let  \Lambda_{s} denote the Laurent polynomial ring  \mathbb{Z}[t, t^{-1}]/(t^{s}-1) . In

particular, we have  \Lambda_{0}=\mathbb{Z}[t, t^{-1}] and  \Lambda_{1}=\mathbb{Z} . We consider an equivalence relation on
 \Lambda_{s}\cross\Lambda_{s} such that  (f_{1}(t), g_{1}(t)) and  (f_{2}(t), g_{2}(t)) are equivalent if there is an integer  k with

 f_{2}(t)=t^{k}f_{1}(t) and  g_{2}(t)=t^{-k}g_{1}(t) .

We denote by  [f(t), g(t)] the equivalence class represented by  (f(t), g(t)) , and by  \Gamma(s) the
set of such equivalence classes.

Then the equivalence class  [F_{12}(t;\gamma_{0}), F_{21}(t;\gamma_{0})]\in\Gamma(\lambda) defines the invariant of  L

(cf. [2]). We call it the linking class of  L and denote it by  F(L) . In particular,  F(L)=
 (Lk(K_{1}, K_{2}), Lk(K_{2}, K_{1}))\in \mathbb{Z}\cross \mathbb{Z} for  \lambda=1 . Then by Propositions 4.2 and 4.3, we have
the following.

Theorem 4.4. Let  L=K_{1}\cup K_{2} and  L'=K_{1}'\cup K_{2}' be oriented 2‐component virtual links
with  \lambda=\lambda'=0 . Then  L and  L' are related by a finite sequence of shell moves if and only
if

(i)  J_{n}(K_{1};L)=J_{n}(K_{1}';L') for any  n\neq 0,1,

(ii)  J_{n}(K_{2};L)=J_{n}(K_{2}'; L') for any  n\neq 0,1 , and

(iii)  F(L)=F(L') .

 \square 

Theorem 4.5. Let  L=K_{1}\cup K_{2} and  L'=K_{1}'\cup K_{2}' be oriented 2‐component virtual links
with  \lambda=\lambda'=1 . Then  L and  L' are related by a finite sequence of shell moves if and only
if

(i)  J_{n}(K_{1};L)=J_{n}(K_{1}';L') for any  n\neq 0,1,  -1,

(ii)  J_{n}(K_{2};L)=J_{n}(K_{2}'; L') for any  n\neq 0,1,2 , and

(iii)  F(L)=F(L') .

 \square 

Theorem 4.6. Let  L=K_{1}\cup K_{2} and  L'=K_{1}'\cup K_{2}' be oriented 2‐component virtual links
with  \lambda=\lambda'\geq 2 . Then  L and  L' are related by a finite sequence of shell moves if and only
if
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(i)  J_{n}(K_{1};L)=J_{n}(K_{1}';L') for any  n\neq 0,1,  -\lambda,  -\lambda+1,

(ii)  J_{n}(K_{2};L)=J_{n}(K_{2}'; L') for any  n\neq 0,1,  \lambda,  \lambda+1,

(iii)  F(L)=F(L') , and

(iv)  J_{1}(K_{1};L)+J_{-\lambda+1}(K_{1};L)+J_{1}(K_{2};L)+J_{\lambda+1}(K_{2};L)
 =J_{1} (Kí;  L' )  +J_{-\lambda+1} (Kí;  L' )  +J_{1}(K_{2}';L')+J_{\lambda+1}(K_{2}';L') .

 \square 
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