Finitely generated semigroups presented by finite congruence classes II

Kunitaka Shoji Department of Mathematics, Shimane University Matsue, Shimane, 690-8504 Japan

In this paper, we give a necessary and sufficient condition for one relator semigroups to be presented with finite congruence classes in the case of one relator of a special form. under an assumption .

1 Finitely generated monoid and their presentations

Definition Let X be a finite set of alphabets and R a finite subset of $X^* \times X^*$. Then R is string-rewriting system. Define the reduction relation \Rightarrow_R on X^* by $\Rightarrow_R = \{((uw_1v, uw_2v)|u, v \in X^*, (w_1, w_2) \in R\}$. For $u, v \in X^*$, $(w_1, w_2) \in R$, use the denotation : $uw_1v \Rightarrow_R uw_2v$. The congruence μ_R on X^* (or X^+) generated by \Rightarrow_R is called the *Thue* congruence defined by R. A monoid S has a finite presentation if there exists a finite set of X, there exists a surjective homomorphism ϕ of X^* to S and there exists a string-rewriting system R consisting of pairs of words over X such that the Thue congruence μ_R is the congruence $\{(w_1, w_2) \in X^* \times X^* \mid \phi(w_1) = \phi(w_2)\}$. Further, if for each $w \in X^*$, the congruence classes $\mu_R(w) = \{w' \in X^* | (w, w') \in \mu_R\}$ is finite, then the monoid $S = X^*/\mu_R$ is called to be presented by finite congruence classes. (Refer to [2],[3] and and see [1] for examples)

If $R = \{(u, v)\}$ then we say that R is an one relator and S is an one relator monoid.

2 The main theorems

First we have

Theorem 1. Let u, v be word over a finite alphabet X and $R = \{(u, w)\}$ a one-relator rewriting system. Assume that u is an unbordered and the length of u is shorter than one of v. Further,

assume that u is not a subword of v and v contain at least one letter which u does not contain. Then the relator $R = \{(u, v)\}$ does not generate the congruence such that all of the congruence classes are finite if and only if there exist non-empty words $l_{i,j}$, $r_{i,j}$ over X such that $u = l_{s,t}r_{s,t} (1 \le s \le 2k, 1 \le t \le i_s)$, $u = l_0r_0$,

$$v \in X^{+}l_{1,i_{1}} \cdots l_{1,1}l_{0}, \quad v \in r_{1,i_{1}-1}X^{+} \cap \cdots \cap r_{1,1}X^{+},$$

$$v \in r_{1,i_{1}}r_{2,1} \cdots r_{2,i_{2}}X^{+}, \qquad v \in X^{+}l_{2,1} \cap \cdots \cap X^{+}l_{2,i_{2}-1}$$

$$v \in X^{+}l_{2k+1,i_{2k+1}} \cdots l_{2k+1,1}l_{2k,i_{2k}}, \quad v \in r_{2k+1,i_{2k+1}-1}X^{+} \cap \cdots \cap r_{2k+1,1}X^{+},$$

$$and \quad l_{2k+1,i_{2k+1}} = l_{1,i_{1}}.$$

Then Theorem 2 follows from Theorem 1.

Theorem 2. Under the same assumption, the problem of whether one relator monoid $S = X^*/<(u,v)>$ are presented by finite congruence classes or not is decidable.

References

- [1] P.M. Higgins, Techniques of semigroup theory, Oxford Univ. press, 1992.
- [2] K. Shoji, Finitely generated semigroups which have such a presentation that all the congruence classes are regular language, Math. Japonica, **69**(2008), 73-78.
- [3] K. Shoji, Finitely generated semigroups presented by finite congruence classes, Suurikaisekikennkyuujo kokyuroku **1809**(2012), 160-170.