Nonexistence of some Griesmer codes of dimension 5 *

Wataru Kuranaka, Tatsuya Maruta [†] Department of Mathematical Sciences Osaka Prefecture University

1 Introduction

A linear code over \mathbb{F}_q , the field of q elements, of length n, dimension k is a k-dimensional subspace \mathcal{C} of the vector space \mathbb{F}_q^n of n-tuples over \mathbb{F}_q . \mathcal{C} is called an $[n,k,d]_q$ code if it has minimum Hamming weight d. A $k \times n$ matrix G whose rows form a basis of \mathcal{C} is a generator matrix of \mathcal{C} . A fundamental problem in coding theory is to find $n_q(k,d)$, the minimum length n for which an $[n,k,d]_q$ code exists for given q,k,d [6, 7]. A natural lower bound on $n_q(k,d)$ is the Griesmer bound:

$$n_q(k,d) \ge g_q(k,d) := \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil,$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x, see [1]. A linear code attaining the Griesmer bound is called a *Griesmer code*. The values of $n_q(k,d)$ are determined for all d only for some small values of q and k [5, 16]. Note that $n_q(k,d) = g_q(k,d)$ for all d when k = 1 or 2 [6]. The problem to determine $n_q(k,d)$ for all d has been solved for $k \leq 8$ when q = 2, for $k \leq 5$ when q = 3, for $k \leq 4$ when q = 4 and only for k = 3 when $5 \leq q \leq 9$, see [16]. For the case k = 5, the following results are known.

Theorem 1.1 ([2, 9, 10, 15]). For any prime power q, $n_q(5, d) = g_q(5, d)$ for

(1)
$$q^4 - q^3 - q + 1 \le d \le q^4 - q^3 + q^2 - q$$
,

(2)
$$q^4 - 2q^2 + 1 \le d \le q^4 + q$$
,

(3)
$$2q^4 - 3q^3 + 1 \le d \le 2q^4 - 3q^3 + q^2$$
,

(4)
$$2q^4 - 2q^3 - q^2 + 1 \le d \le 2q^4 + q^2 - q$$
,

^{*}This paper is a preliminary version and the final version will be submitted to elsewhere.

[†]Corresponding author. E-mail address: maruta@mi.s.osakafu-u.ac.jp

(5)
$$3q^4 - 5q^3 + q^2 + 1 \le d \le 3q^4 - 5q^3 + 2q^2$$
,

(6)
$$d > 3q^4 - 4q^3 + 1$$
.

Theorem 1.2 ([3, 4, 11, 15, 16]). $n_q(5, d) = g_q(5, d) + 1$ for

(1)
$$q^4 - q^3 - q^2 + 1 < d \le q^4 - q^3 - q \text{ for } q \ge 3$$
,

(2)
$$q^4 - 2q^2 - 2q + 1 \le d \le q^4 - 2q^2 - q$$
 for $q \ge 4$,

(3)
$$q^4 - 2q^2 - q + 1 \le d \le q^4 - 2q^2$$
 for $q \ge 3$,

(4)
$$2q^4 - 2q^3 - q^2 - 2q + 1 \le d \le 2q^4 - 2q^3 - q^2$$
 for $q \ge 3$,

(5)
$$3q^4 - 4q^3 - 2q + 1 \le d \le 3q^4 - 4q^3 - q$$
 for $q \ge 11$,

(6)
$$3q^4 - 4q^3 - q + 1 \le d \le 3q^4 - 4q^3$$
 for $q \ge 5$.

Our main result is the following.

Theorem 1.3. $n_q(5,d) = g_q(5,d) + 1$ for $3q^4 - 4q^3 - 4q + 1 \le d \le 3q^4 - 4q^3 - q$ for $q \ge 5$.

2 Preliminaries

In this section, we give the geometric method through PG(r,q), the projective geometry of dimension r over \mathbb{F}_q , and preliminary results to prove the main result. The 0-flats, 1-flats, 2-flats, 3-flats, (r-2)-flats and (r-1)-flats in PG(r,q) are called points, lines, planes, solids, secundums and hyperplanes, respectively.

Let \mathcal{C} be an $[n, k, d]_q$ code having no coordinate which is identically zero. The columns of a generator matrix G of \mathcal{C} can be considered as a multiset of n points in $\Sigma = \mathrm{PG}(k-1,q)$, denoted by $\mathcal{M}_{\mathcal{C}}$. A point P of Σ is an i-point if it has multiplicity $m_{\mathcal{C}}(P) = i$ in $\mathcal{M}_{\mathcal{C}}$. In other words, $m_{\mathcal{C}}(P)$ is the number of times which P appears as columns of G. Denote by γ_0 the maximum multiplicity of a point from Σ in $\mathcal{M}_{\mathcal{C}}$. For any subset S of Σ , the multiplicity of S with respect to $\mathcal{M}_{\mathcal{C}}$, denoted by $m_{\mathcal{C}}(S)$, is defined as $m_{\mathcal{C}}(S) = \sum_{P \in S} m_{\mathcal{C}}(P)$. Then $m_{\mathcal{C}}$ satisfies $n = m_{\mathcal{C}}(\Sigma)$ and

$$n - d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\},\tag{2.1}$$

where \mathcal{F}_j denotes the set of j-flats of Σ . Conversely, such a mapping $m_{\mathcal{C}}: \Sigma \to \mathbb{N}_0 = \{0, 1, 2, \ldots\}$ as above gives an $[n, k, d]_q$ code in the natural manner, see [1]. For an m-flat Π in Σ , we define

$$\gamma_j(\Pi) = \max\{m_{\mathcal{C}}(\Delta) \mid \Delta \subset \Pi, \ \Delta \in \mathcal{F}_j\} \text{ for } 0 \le j \le m.$$

We denote simply by γ_j instead of $\gamma_j(\Sigma)$. Then $\gamma_{k-2} = n - d$, $\gamma_{k-1} = n$. For a Griesmer $[n, k, d]_q$ code, it is known (see [15]) that

$$\gamma_j = \sum_{u=0}^{j} \left\lceil \frac{d}{q^{k-1-u}} \right\rceil \quad \text{for } 0 \le j \le k-1.$$
 (2.2)

A line l with $t = m_{\mathcal{C}}(l)$ is called a t-line. A t-plane and so on are defined similarly. Denote by a_i the number of i-hyperplanes in Σ . The list of a_i 's is called the spectrum of \mathcal{C} . We usually use τ_j 's for the spectrum of a hyperplane Π of Σ to distinguish from the spectrum of \mathcal{C} (τ_j is the number of j-secundums contained in Π). Let θ_j be the number of points in a j-flat, i.e., $\theta_j = (q^{j+1} - 1)/(q - 1)$. Simple counting arguments yield the following.

Lemma 2.1 ([17]). Let Π be a w-hyperplane through a t-secundum δ . Then

- (a) $t \le \gamma_{k-2} (n-w)/q = (w + q\gamma_{k-2} n)/q$.
- (b) $a_w = 0$ if an $[w, k-1, d_0]_q$ code with $d_0 \ge w \left\lfloor \frac{w + q\gamma_{k-2} n}{q} \right\rfloor$ does not exist, where $\lfloor x \rfloor$ denotes the largest integer less than or equal to x.
- (c) $\gamma_{k-3}(\Pi) = \left\lfloor \frac{w+q\gamma_{k-2}-n}{q} \right\rfloor$ if an $[w, k-1, d_1]_q$ code with $d_1 \ge w \left\lfloor \frac{w+q\gamma_{k-2}-n}{q} \right\rfloor + 1$ does not exist.
- (d) Let c_j be the number of j-hyperplanes through δ other than Π . Then $\sum_j c_j = q$ and

$$\sum_{j} (\gamma_{k-2} - j)c_j = w + q\gamma_{k-2} - n - qt.$$
 (2.3)

(e) For a γ_{k-2} -hyperplane Π_0 with spectrum $(\tau_0, \ldots, \tau_{\gamma_{k-3}})$, $\tau_t > 0$ holds if $w + q\gamma_{k-2} - n - qt < q$.

Lemma 2.2 ([12]). Let Π be an i-hyperplane and let \mathcal{C}_{Π} be an $[i, k-1, d_0]$ code generated by $\mathcal{M}_{\mathcal{C}}(\Pi)$. If any γ_{k-2} -hyperplane has no t-secundum with $t = \left\lfloor \frac{i+q\gamma_{k-2}-n}{q} \right\rfloor$, then $d_0 \geq i-t+1$.

Lemma 2.3. The spectrum of an $[n, k, d]_q$ code satisfies $\sum_{i < u} a_i \le 1$, where

$$u = \left\lfloor \frac{n - (n - d)(q - 1) - 1}{2} \right\rfloor.$$

Proof. Assume $a_i > 0$ for an $i \le u$. Then, the right hand side of (2.3) is at most u + (n-d)q - n. Since u < (n-(n-d)(q-1))/2, we have n-d-u > u+(n-d)q - n, which implies that $c_j = 0$ for any $j \le u$. Hence, $a_i = 1$ and $a_j = 0$ for other $j \le u$.

An f-multiset \mathcal{F} on PG(r,q) satisfying

$$m = \min\{m_{\mathcal{F}}(\pi) \mid \pi \in \mathcal{F}_{r-1}\}\$$

is called an (f, m)-minihyper. When an $[n, k, d]_q$ code is projective (i.e. $\gamma_0 = 1$), the set of 0-points forms a $(\theta_{k-1} - n, \theta_{k-2} - (n-d))$ -minihyper in PG(k-1, q), and vice versa.

Lemma 2.4 ([8]). Every (x(q+1), x)-minihyper in PG(2, q) with $q = p^m$, p prime, $m \ge 1$, $1 \le x \le q - q/p$, is a sum of x lines.

3 A sketch of the proof of Theorem 1.3

Lemma 3.1. Let $q \geq 3$ be a prime power.

- (a) $A [2q^2, 3, 2q^2 2q]_q$ code has spectrum $(a_0, a_{2q}) = (1, q^2 + q)$.
- (b) $A [2q^2 + q + 1, 3, 2q^2 q]_q$ code has spectrum $(a_{q+1}, a_{2q+1}) = (1, q^2 + q)$.
- (c) $A [2q^2 + 2q + 1, 3, 2q^2 1]_q$ code has spectrum $(a_{2q+1}, a_{2q+2}) = (q+1, q^2)$.
- (d) $A [2q^2 + 2q + 2, 3, 2q^2 2q]_q$ code has spectrum $a_{2q+2} = q^2 + q + 1$.

Lemma 3.2. Let C_1 be a Griesmer $[3q^2-q-1,3,3q^2-4q]_q$ code with $q \geq 5$. Then, the spectrum of C_1 is $(a_{2q-1},a_{3q-1})=(4,\theta_2-4)$ and $\mathcal{M}_{C_1}=3\Sigma-(l_1+l_2+l_3+l_4)$, where $\Sigma=\mathrm{PG}(2,q)$ and l_1,\ldots,l_4 are four non-concurrent lines.

Proof. Since $\gamma_0 = 3$ from (2.2), the multiset $\mathcal{F} = 3\Sigma - \mathcal{M}_{\mathcal{C}_1}$ forms a (4 θ_1 , 4)-minihyper. Hence \mathcal{F} is a sum of four lines, say l_1, \ldots, l_4 , by Lemma 2.4, which are non-concurrent because of $\gamma_0 = 3$.

Using Lemmas 3.1 and 3.2, one can prove the following.

Lemma 3.3. Let C_2 be a Griesmer $[3q^3 - q^2 - q - a, 4, 3q^3 - 4q^2 - a + 1]_q$ code with $q \ge 5$ and $2 \le a \le 4$. Then, the spectrum of C_2 satisfies that $a_i > 0$ implies $2q^2 - q - a \le i \le 2q^2 - q - 1$ or $3q^2 - q - a \le i \le 3q^2 - q - 1$ and that

$$\sum_{i < 2q^2 - q - 1} a_i = 4. \tag{3.1}$$

Lemma 3.4 ([14]). $n_q(4, d) = g_q(4, d) + 1$ for $2q^3 - 3q^2 - q + 1 \le d \le 2q^3 - 3q^2$ for $q \ge 4$.

It is known that $[g_q(5,d)+1,5,d]_q$ codes exist for $3q^4-4q^3-4q+1 \le d \le 3q^4-4q^3-q$ for $q \ge 5$, see [11]. Hence, it suffices to show the following to prove Theorem 1.3.

Lemma 3.5. There exists no $[g_q(5,d), 5, d]_q$ code for $d = 3q^4 - 4q^3 - aq + 1$ with $2 \le a \le 4$ for $q \ge 5$.

Proof. We prove the lemma only for a=3. One can prove the lemma similarly for a=2,4. Let \mathcal{C} be a putative $[g_q(5,d),5,d=3q^4-4q^3-3q+1]_q$ code with $q\geq 5$. Then, a γ_3 -solid Δ_0 gives a Griesmer $[3q^3-q^2-q-3,4,3q^3-4q^2-2]_q$ code. Since an *i*-solid through a *t*-plane satisfies

$$t \le \frac{i+q+2}{q} \tag{3.2}$$

by Lemma 2.1, we have

$$i \ge (2q^2 - q - 3)q - (q + 2) = 2q^3 - q^2 - 4q - 2.$$

Hence, $a_i = 0$ for all $i < 2q^3 - q^2 - 4q - 2$. Applying Lemma 2.1(d), we have $\sum_i c_i = q$ and

$$\sum_{j} (3q^3 - q^2 - q - 3 - j)c_j = i - qt + q + 2.$$
(3.3)

Suppose an *i*-solid Δ exists for $i=2q^3-q^2-q-2+y$ with $0\leq y\leq q-1$. Then, we have $t\leq 2q^2-q-1$ by (3.2) and Lemma 3.3. Hence, Δ gives an $[i,4,2q^3-3q^2-1+y]_q$ code, which does not exist for y>1 by the Griesmer bound. For $y=0,1,\,\Delta$ gives a Griesmer code, which does not exist by Lemma 3.4. Hence $a_i=0$ for $2q^3-q^2-q-2\leq i\leq 2q^3-q^2-3$.

Next, suppose an *i*-solid Δ exists for $i=2q^3-q^2+xq-2+y$ with $0 \le x \le q^2-5$, $0 \le y \le q-1$. Then, we have $t \le 2q^2-q+1+x$ by (3.2). Since (3.3) satisfies $c_{n-d}=0$ for $t=2q^2-q+1+x$ and $c_{n-d}=c_{n-d-1}=0$ for $t=2q^2-q+x$ by Lemma 3.3, we have $t \le 2q^2-q-1+x$. Hence, Δ gives an $[i,4,2q^3-3q^2+(x+1)q-1-x+y]_q$ code, which does not exist by the Griesmer bound. Hence, $a_i=0$ for $2q^3-q^2-2 \le i \le 3q^3-q^2-4q-3$. Now, the spectrum of $\mathcal C$ satisfies that $a_i>0$ implies

$$sq^3 - q^2 - 4q - 2 \le i \le sq^3 - q^2 - q - 3$$
 with $s = 2$ or 3.

Setting $(i,t) = (3q^3 - q^2 - q - 3, 2q^2 - q - 3 + e)$ with $0 \le e \le 2$, the RHS of (3.3) is equal to $q^3 + (3-e)q - 1$. Hence

$$\sum_{i \le 2q^3 - q^2 - q - 3} a_i = 4 \tag{3.4}$$

by (3.1). Setting $i=2q^3-q^2-q-3$ in (3.3), (RHS of (3.3))= $2q^3-q^2-1-qt$. When $\sum_{j\leq 2q^3-q^2-q-3}c_j>0$, we have $t\leq q^2-q-1$ from (3.3). It follows from Lemma 2.3 with length n=i and $n-d=2q^2-q-1$ that $u=\lfloor q^2-\frac{q+5}{2}\rfloor>q^2-q-1$. Hence, $\sum_{i\leq 2q^3-q^2-q-3}a_i\leq 2$, which contradicts (3.4). Similarly, we get $\sum_{i\leq 2q^3-q^2-q-3}a_i\leq 2$ for $2q^3-q^2-4q-2\leq i\leq 2q^3-q^2-q-4$, which contradicts (3.4) again. Thus, there exists no $[g_q(5,d),5,d]_q$ code for $d=3q^4-4q^3-3q+1$.

References

- [1] J. Bierbrauer, Introduction to Coding Theory, Chapman & Hall/CRC, 2005.
- [2] E.J. Cheon, Y. Kageyama, S.J. Kim, N. Lee, T. Maruta, Construction of two-weight codes over finite fields and its applications, Bull. Korean Math. Soc. **54** (2017) 731–736.
- [3] E.J. Cheon, T. Kato, S.J. Kim, On the minimum length of some linear codes of dimension 5, Design Codes Cryptogr. **37** (2005) 421–434.
- [4] E.J. Cheon, T. Kato, S.J. Kim, Nonexistence of a $[g_q(5,d), 5, d]_q$ code for $3q^4 4q^3 2q + 1 \le d \le 3q^4 4q^3 q$, Discrete Math. **308** (2008) 3082–3089.

- [5] M. Grassl, Tables of linear codes and quantum codes (electronic table, online). http://www.codetables.de/.
- [6] R. Hill, Optimal linear codes, in: Mitchell C. (ed.) Cryptography and Coding II, pp. 75–104. Oxford Univ. Press, Oxford, 1992.
- [7] R. Hill, E. Kolev, A survey of recent results on optimal linear codes, in: Holroyd F.C. et al (ed.) Combinatorial Designs and their Applications, pp.127–152. Chapman and Hall/CRC Press Research Notes in Mathematics CRC Press. Boca Raton, 1999.
- [8] R. Hill, H. Ward, A geometric approach to classifying Griesmer codes, Des. Codes Cryptogr. 44 (2007) 169-196.
- [9] Y. Inoue, T. Maruta, Construction of new Griesmer codes of dimension 5, Finite Fields Appl. **55** (2019), 231–237.
- [10] Y. Kageyama, T. Maruta, On the construction of Griesmer codes of dimension 5, Des. Codes Cryptogr. **75** (2015) 277–280.
- [11] Y. Kageyama, T. Maruta, On the geometric constructions of optimal linear codes, Des. Codes Cryptogr. 81 (2016) 469–480.
- [12] K. Kumegawa, T. Okazaki, T. Maruta, On the minimum length of linear codes over the field of 9 elements, *Electronic J. Combin.* **24**(1) (2017), #P1.50.
- [13] I.N. Landjev, T. Maruta, On the minimum length of quaternary linear codes of dimension five, *Discrete Math.* **202** (1999) 145–161.
- [14] T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math. **208/209** (1999) 427–435.
- [15] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. **22** (2001) 165–177.
- [16] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer/.
- [17] M. Takenaka, K. Okamoto, T. Maruta, On optimal non-projective ternary linear codes, Discrete Math. 308 (2008) 842–854.