THREE-TERM MACHIN-TYPE FORMULAE

TOMOHIRO YAMADA*

ABSTRACT. We shall show that there exist only finitely many nondegenerate
three-term Machin-type formulae and give explicit upper bounds for the sizes
of variables.

1. INTRODUCTION

The Machin’s formula

(1) Zlalrctan1 — arctan 1 = E,

) 239 4
is well known and have been used to calculate approximate values of . Analogous
formulae arctan(1/2)+arctan(1/3) = 7/4, 2arctan(1/2) —arctan(1/7) = 7/4 and
2arctan(1/3) —arctan(1/7) = w/4, which are also well known, were attributed to
Euler, Hutton and Hermann, respectively. But according to Tweddle [11], these
formulae also seem to have been found by Machin.

Several three-term formulae such as 8 arctan(1/10)—arctan(1,/239)—4 arctan(1/515) =
/4 due to Simson in 1723 (see [11]) and 12arctan(1/18) + 8arctan(1/57) —
S5arctan(1/239) = % due to Gauss in 1863 also have been known.

More generally, an n-terms Machin-type formula is defined to be an identity
of the form
1 1 1
(2) y1 arctan — + yp arctan — + - - - + yp arctan — = —
T To Tn 4
with integers x1,x2,. .., Tn, Y1,Y2,- .., Yn and 7 # 0.

Theoretical studies of Machin-type formulae have begun with a series of works
of Stgrmer’, who proved that the four formulae mentioned above are all two-
term ones in 1895 [8] and gave a necessary and sufficient condition for given
integers x1,x2,...,o, > 1 to have a Machin-type formula (2) and 102 three-
term ones in 1896 [9]. Stermer asked for other three-term Machin-type formulae
and questioned whether there exist infinitely many ones or not. Up to now
the only known other nontrivial (i.e. not derived from the three formulae given
above) three-term formulae are 5 arctan(1/2)+2 arctan(1/53)+arctan(1/4443) =
3m/4, 5arctan(1/3) — 2 arctan(1/53) — arctan(1/4443) = 7/2 and 5 arctan(1/7) +
4 arctan(1/53)+2arctan(1/4443) = 7 /4. [12] attributes these formulae to Wrench
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[14] although these formulae cannot be found there. We note that the second and
the third formulae follow from the first formula using arctan(1/2)+arctan(1/3) =
/4 and 2arctan(1/2) — arctan(1/7) = 7/4 respectively.

The purpose of this paper is to answer to Stgrmer’s other question in negative.
We shall show that there exist only finitely many three-term Machin-type formu-
lae which does not arise from a linear combinations of three two-term formulae.

Stermer’s criterion is essentially as follows: For given integers x1, x2, ..., x, >
1, (2) holds for some integers y1, y2, - . . , yn and r # 0 if and only if there exist inte-
gers s; (1 =1,2,...,n,7=1,2,...,n— 1) and Gaussian integers ni,m2, ..., 7n—1
such that

|:5L’i + \/—_1] _ [@] +i1 [@] 50,2 o [Tlnl]isi’"_l
T; — V-1 m 12 Mn—1

fori=1,2,...,n.

(3)

Writing m; = n;7; for j = 1,2,...,n—1, this condition can be reformulated as
follows: there exist nonnegative integers s; ;(i = 1,2,...,n,j = 1,2,...,n) with
0 < s;», < 1 such that the equation
(4) x? +1= 25i*"mii’1m§i’2 . -mfj’_"l_l

holds for ¢ = 1,2,...n and, additionally, z; = +2; (mod my,) for three indices
i,7, k with x?+15m]2-+150 (mod my).

Thus, for given three integers x1,x2,x3 > 1, there exist nonzero integers
Y1,Y2,---,Yn and r such that a three-term Machin-type formula

1 1 1 rT
(5) y1 arctan — + y9 arctan — + y3 arctan — = —

T To T3 4
holds if and only if there exist integers k;,l;(i = 1,2,3) and Gaussian integers
11, M2 such that

o pARE

vi—v=1] |m] |®

holds for ¢ = 1,2, 3 or, equivalently, writing m; = n;7j; for j =1,2,...,n—1 and
choosing v; € {0,1} appropriately, the equation
(7) 41 = 2”im’fiml2"

holds for ¢ = 1,2,3 and, additionally, z; = +xzy (mod m;) for two indices ¢, 4’
with 22 + 1 = 22 + 1 = 0 (mod m;). Furthermore, (6) implies (5) with y; =
+kols 4+ kslo, yo = +ksly + k1ls and y3 = +k1lo + koly with appropriate choices of
signs.

Now we shall state our result in more detail.

Theorem 1.1. Assume that x1,x2,T3,y1,Y2,y3 and v are nonzero integers with
x1,xe,x3 > 1 and {x1,x2,23} # {2,3,7} satisfying (5) and m1,ma, s;, ki, l;i(i =
1,2,3) are corresponding integers with mg > my > 0 satisfying (7).
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L Ifz2+1>my fori=1,2,3, then my < my < 5.19-10%, z; < exp(9.726 -
101 and |y;| < 2K L < 5.656 - 1019.

. Ifx2+1 < my for some i, then my < 4.14-108!, my < exp(9964497.86) <
2.7261 x 10%327526 2. < exp(3.18 - 10%%) and y; < 2.7 - 103!,

We use a lower bound for linear forms in three logarithms in order to obtain
upper bounds for exponents k;’s and [;’s in terms of m1, mo.

These upper bounds themselves do not give finiteness of m; and my. However,
noting that r # 0, which gives |>, y; arctan(1/z;)| > /4, the first case can be
easily settled using these upper bounds. In order to settle the second case, we
additionally need an upper bound ms in terms of my. This can be done using a
lower bound for a quantity of the form yarctan(1/x) — r7/2, which gives a linear
form of two logarithms.

(4) can be seen as a special case of the generalized Ramanujan-Nagell equation
(8) 2>+ Az + B =pi'ps? - ppt,

where A and B are given integers with A2 — 4B # 0 and pq,po,. .., p, are given
primes. Evertse [2] proved that (8) has at most 3 - 74"*6 solutions. In the case
n = 2, the author [15] reduced Evertse’s bound 3 - 714 to 63.

On the other hand, our result does not give an upper bound for numbers of
solutions

9) 2”41 =2°plph

since the case r = 0 is not considered. Indeed, Stgrmer [9] implicitly pointed out
that, if 22 + 1 = ay, then

1 1
— arctan —— = arctan

10)  arct '
(10) arctan —— azta—zx az(z+1)—(2z+ 1)z +y

Stormer [10] showed that (9) has at most one solution with each fixed combi-
nation of parities of s;, k;,[; with zero and nonzero-even distinguished. Although
there exist 18 combinations (0 | 1,0 | 1 | 2,0 | 1| 2), all-even combinations can
clearly be excluded and therefore (9) has at most 14 solutions totally.

2. PRELIMINARIES

In this section, we introduce some notation and some basic facts.

For integers N composed of prime factors = 1 (mod 4), we define lo/\gN =
log N if N > 13 and 16%5 = 4arctan(1/2). If we decompose N = 17 in Gaussian
integers, then log(n/7) < (ﬂ)?gN)/Z We write v(N) = l?)TgN/ logN. ~(b) =
1.1523 -+ and y(N) =1 for N > 13.

Moreover, we define 10ng N by l;)vg N = max{log N, (1/2.648)+max4 arg(n/7)/log N},
where the inner maximum is taken over all decompositions N = nfj with |argn| <
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/4. We write 6(N) = lg/gN/ log N. We see that §(N) = 1 when N > 22685 and
there exist exactly 401 integers N such that §(N) > 1.

For any gaussian integer 7, we have an associate n' of n such that —7/4 <
argn < m/4 and therefore —7w/2 < argn’/n < m/2.

We call a formula (2) to be degenerate if

/

1 r'm
11 ! B
(11) Z y; arctan p 1
1€S
for some proper subset S of {1,2,...,n} and integers y.(i € S) and r’ which may
be zero but not all zero.

From Stgrmer’s result in [8] on two-term Machin-type formulae, the degenerate
case only occurs in {x1,x2, 23} = {2,3,7}.

3. A LOWER BOUND FOR LINEAR FORMS OF THREE LOGARITHMS

Our argument depends on a lower bound for linear forms of three logarithms.
Results in Mignotte’s a kit on linear forms in three logarithms[6] are rather tech-
nical but still worthful to use for the purpose of improving our upper bounds.
Proposition 5.2 of [6] applied to the Gaussian rationals gives the following result.

Lemma 3.1. Let ai,as and as be three Gaussian rationals # 1 with absolute
value one and assume that the three numbers ay, ag, as are multiplicatively inde-
pendent or two of these numbers are multiplicatively independent and the third
one is a root of unity, i.e. —1 or 4£/—1. Let b1,by and b3 be three coprime
positive rational integers and

(12) A = bylogas — by logay — bslog as,
where the logarithm of each «; can be arbitrarily determined as long as
(13) by |log as| = by [log a1 | + b3 [log | &= [A].
We put d1 = gcd(bl,bg),dg = ng(bQ, b3>, b2 = dlbIQ = d3b12/, Let w; =
llog ;| = |argay| for each i = 1,2,3, aj,az and ag be real numbers such that

a; > max{4,5.296w; + 2h(«a;)} for each i = 1,2,3 and Q = ajagaz > 100. Fur-
thermore, put

/ / /! /!
” AT
as  ap as  as
and log B = max{0.882 + log ¥/, 10}.
Then, either one of the following holds.

A. The estimate
(15) log |A| > —790.95Q10g® B
holds.
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B. There exist two nonzero rational integers ro and sg such that robs = sgby
with |ro| < 5.61aglog?® B and |so| < 5.61a; log"/® B.

C. There exist four rational integers r1,s1,t1 and ty with r1s1 # 0 such that
(16) (t1b1 +71b3)s1 = ribata, ged(r1,t1) = ged(s1, t2) = 1

and
(17)
|ris1] < 5.61da3 logl/?’ B, |s1t1] < 5.61daq logl/?’ B, |rita] < 5.61das logl/?’ B,

where § = ged(r1, $1). Moreover, when t; = 0 we can take r1 = 1 and then ta =0
we can take s1 = 1.

This result is nonsymmetric for three logarithms and, in order to make each
b; positive, we should arrange the order of logarithms. Thus, the application of
this result requires a fair amount of computations with many branches of cases.

For convenience, we write h; for h(a;). For our purpose, we apply Lemma 3.1
to linear forms of two logarithms and 7v/7/2 = log v/—1. In this special case, we
may assume that (i) log g = 7/2 or (ii) log az = 7/2 by exchanging (a1, b;) and
(as3,bs3). Thus, there exist six cases: A. i, A. ii, B. i, B. ii, C. i, C. ii.

In Case A, (15) gives a desired lower bounds. In cases B and C, we can reduce
A into a linear form of two logarithms and apply results of [3]. Here, we shall
discuss only in the case C. i.

We put ry = drg,s1 = dsg, which immediately yields that ged(rg,sg) = 1.
Dividing (16) by ¢, we have

(18) sot1b1 + rotaba + drgspbs = 0.

From this, we see that rg divides b; and sy divides by. Put by = rouq, by = sgus.
Dividing (18) by rosg, we have

(19) tiug + toug + dbg = 0.
Now we obtain

(20) 0N = us log as — uq log o,
where a5 = o' o, ag = aj'az"'. Moreover,

(21) |sot1]| < 5.61a;log!/® B, |rota| < 5.61aglog!/® B, |0r0so| < 5.61as log'/? B.

Taking
|81|7T
a5 = max |t2|h3,|t2|ﬂ)3+ 9 ,ag:max{|r1|h1—|—|t1|h3,|r1|w1+|t1|w3}
and
polul el b b
as  ag ~ |solas  [so|as

Corollaire 1 of [3] gives

(22) log |[0A| > —30.9 max{log?b”, 441} asas.
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TABLE 1. Constants in (24)

Case c B p2 | B | V1| V2 B T
AT | 28962fi(ma,mo) [ 1 1] 2 [12]12] e+ 535 | 2351
A ii | 28962f1(mi,me) | 1| 1| 2 | 0 |1/2 \/ﬁ + o | 2:393

1212 5+ s555= | 4.574

log m1 5.2967

B,i | 460.63f5(my,ms) | 1 | 1 |7/3

0] 0 2 3.967
1 1
B, ii | 127.408fy(my,ma) | 1| 1 [ 773 | O |1/ \/_2.6487r + fogmr | 4:902
0] 1 126.844 2.838
T T
C,i| 6631gs(mi, ma) 1|2 18/3 U213/2 ] pmy + 53062 | 4529
0 1 T2+ 2 1025

1 1
Cii | 275745my)5(ms) | 1| 1 |8y3 | 0 |12 V Zos i | 4475
00 2 1.006

4. UPPER BOUNDS FOR EXPONENTS

In this section, we shall prove upper bounds for exponents in (6) or, equiva-
lently, (7).

Lemma 4.1. Let n; and 1y be Gaussian integers with —w/2 < argn;/i; < 7/2
and m; = n;7; > 1 for i = 1,2 with ma > my both odd.

We set
fi(mi,ma) = (1 + f;ii?) (1 + ?02922) ,
fs(m1, ma) = max{d(mi),y(m1)d(m2)},
fa(ma, ma)

1 5.2966, 10.9862 10.986, 5.29664
== (1+ 1+ + {1+ 1+ )
2 log my log mo log mq log ma

n 2.648#(10/\g m1 + logma)

fs(mi,ma) =1 —
log m1 log meo

and
g5(m1,ma) = fs5(m1,ma)y(m1)d(ma).

If x,e1,es are nonnegative integers such that
x+v-1 m | ]
(23) —| = | —= :
r—v-1 m 2
then we have
(24) e1logmy + ez log ms < 27C log" mq logh? mo logh Y

with (C, w1, pa, th, V1,2, 8, 7) taken from one of ten rows in Table 1 and Y =
2CBlog" mq log"? my.
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Proof. From the result of [4], 22 + 1 = m! with > 0,¢ > 1 has no solution.
Théoreéme 8 of [10] shows that 22 + 1 = 2m!, then t must be a power of two. By
Ljunggren’s result [5], the only integer solution of 22 + 1 = 2m?* with z,m > 1
is (z,m) = (239,13) (Easier proofs of Ljunggren’s result have been obtained by
Steiner and Tzanakis [7] and Wolfskill [13]). Thus, we may assume that ejes # 0
since e; = 0 implies that es—; = 1,2 or 4. Furthermore, we may assume that
m{ms? > 10%.

We can decompose m; = 7;7j; in a way such that —7/4 < argn’ < w/4. We
put & = n;/7; and write §; = |arg &;| = |log&;|, so that 6; < 7/2.

Now A = log[(z + v/—1)/(z — v/—1)] can be represented as a linear form of
three logarithms

v—1
(25) A =+tejlogé £ eglogés + %

for an appropriate integer e3 > (0. Moreover, we can easily see that

e1logmi + exlogmsy

107°.
5 +

(26) log|A| < —logz < —

Applying Lemma 3.1 and some technical argument in each of six cases, which
are too complicated to describe here, we are led to 24. This proves the lemma. [

5. PROOF OF THE THEOREM

Let x1,x9,23,y1,y2,y3 and 7 be integers with z1,x9,23 > 1,7 # 0 satisfying
(5) and mq,ma, s, ki, 1;(i = 1,2,3) be corresponding integers, 11,72 be gaussian
integers satisfying (6) and (7). We write K = maxk; and L = max[;. We may
assume that {z1,x9, 23} # {2,3,7}. From a note in the preliminaries, this implies
that (5) is nondegenerate.

We have two cases: 1. LC% + 1> mo and II. x% + 1 < mas.

Case I. In this case, x; > /mg — 1 for ¢ = 1,2, 3. Since (5) is nondegenerate,
u; = 0 for at most one index i. In the case there exists such an index i, we may
assume that 4 = 1. Since 23 + 1 = 22 +1 = 0 (mod my), Stermer’s criterion
implies that xo > mo/2 or x3 > ma/2.

It immediately follows from (5) with » # 0 that

+ 2
ol + lyol | 2lys| 7

Vme — 1 ma 4’

Since |y1| < kalz + ksla < 2TU and so on, we have my < (4(24+ 107K L/7)? <
6.49(K L)2.

(27)

Combining with Lemma 4.1, we have m; < mg < 5.19 - 10%, lyi] < 2KL <
5.656-10' and log x; < k; logmi+1;logms < 9.726-10! | that is, 2; < exp(9.726-
10'). This shows the Theorem in Case I.
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Case II. We may assume that ar% + 1 < mo. We must have [; = 0 and
x% +1= 2m’f1 < ma.

Combining diophantine results mentioned in the proof of Lemma 4.1 allow us
to assume that k3 = 1 or 2. Since (5) is nondegenerate, [; # 0 for another index
1> 1. Thus, lo,l3 > 0 and ar% + 1,x§ + 1 > ma.

Now we clearly have

1 1 1
(28) y1 arctan — =+ I3kq arctan — = loky arctan — = Ly
T To T3 4
Let
1 ++v-1
29 A1 =2y log ———+ — ravV—1.
( ) 1 Y1 1og 21— \/_—1

Then, observing that |rm/4 — y; arctan(1/z1)| < (14 1078)ky(Io + ls)/mé/Q with
ly1| < kals + lska < 2K L, we have

4(14+1078)k L

my

while Théoréme 3 of [3] gives that

(31) —log |Ay] < 8.87aH?,

where a = max{20, 10.98log mi+(logmi)/2} and Hy = max{17,2.38+log((r/2a)+
(241/68.9))}.

We observe that 10.98@;N > 20 for any N and therefore a = 10.9816;; my +

log%. Moreover, we have
(32) ‘%T < 2KL n 2ui L 2?/[;
x1 Z2 my

and |r| < 3KL/m\/?.

If KL > 4-107, then, from (37), we obtain logms < 8.87(10.98v(m;) +
0.51) logmy log?(KL). If mg < €7, then m; < €7 < 4.14 - 10%" and the
Theorem immediately follows. If mo > ¥, then Lemma 4.1 yields that KL <
1og®88163 ;my. Observing that 8.87-8.88163%(10.98~(m1)+0.51) logm; > 14822.4,
we obtain

(33) logms < 881.32(10.98v(mq) + 0.51) log m; log log m.

Recalling (34), we have

2KL 2k1L 1—-10"8
(34) _2KL m_ 2l ).
m1 — 1 4 /mo—1 4

Combining this with (39) and Lemma 4.1, we have mj < 4.14 - 103 my <
exp(9964497.86) < 2.7261 x 10*32726 1og x; = k;logmy + I;logms < 3.18 - 10%°,
that is, 7; < exp(3.18-10%°), and y; < 2K L < 2.7-103!. This completes the proof
of the Theorem.
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