Irrationality exponents of certain reciprocal sums

Daniel Duverney*, Takeshi Kurosawa**, and Iekata Shiokawa***

- * Baggio Engineering School, Lille, France
- ** Tokyo University of Science, Tokyo, Japan
 - *** Keio University, Yokohama, Japan

1 Introduction

For any sequence $\{x_n\}$ of positive integers such that $x_n^2 \mid x_{n+1}$ and $x_n^2 \neq x_{n+1}$ for all sufficiently large n and $\varepsilon_n \in \{-1, 1\}$, we define the sum

$$S = 1 + \sum_{n=1}^{\infty} \frac{\varepsilon_n}{x_n}.$$

In this paper we give the explicit continued fraction expansion of the sum and compute its irrationality exponent, where the irrationality exponent $\mu(\alpha)$ of a real number α is defined by the supremum of the set of numbers μ for which the inequality

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{\mu}}$$

has infinitely many rational solutions p/q. Every irrational α has $\mu(\alpha) \geq 2$. If $\mu(\alpha) > 2$, then α is transcendental by Roth's theorem. Our result is as follows (see Theorem 2 in Section 3):

$$\mu(S) = \limsup_{n \to \infty} \frac{\log x_{n+1}}{\log x_n}.$$

For the proof of Theorem 2, we first expand the partial sums

$$S_n = 1 + \sum_{k=1}^n \frac{\varepsilon_k}{x_k}$$

in continued fractions in the generic case $x_1 \geq 3$, $x_n^2 \mid x_{n+1}$, and $x_n^2 \neq x_{n+1}$ $(n \geq 1)$ (see Theorem 2 in Section 3), which were given by Hone [4] when $\varepsilon_n = 1$ for all $n \geq 1$. The continued fractions obtained in Theorem 1 have certain symmetric patterns; namely, if the continued fraction expansion of the *n*th partial sum is written using the standard notation as

$$S_n = [1; a_1, a_2, \dots, a_{l_n}]$$

with $a_{l_n} \neq 1$, then

$$S_{n+1} = [1; a_1, a_2, \dots, a_{l_{n+1}}]$$

= $[1; a_1, a_2, \dots, a_{l_n}, x_{n+1}/x_n^2 - 1, 1, a_{l_n} - 1, a_{l_{n-1}}, \dots, a_1]$

if $\varepsilon_{n+1} = 1$, and otherwise,

$$S_{n+1} = [1; a_{l_{n+1}}, \dots, a_2, a_1]$$

(see the formula (11) in Theorem 1). By means of this recursive construction of the continued fraction expansions of S_n , we can compute the irrationality exponent of the sum $S = \lim_{n\to\infty} S_n$ using the following formula (cf., eg., [5, Theorem 1]): The irrationality exponent of the simple continued fraction $\alpha = [a_0; a_1, a_2, \ldots]$ with the *n*th convergent $p_n/q_n = [a_0; a_1, a_2, \ldots, a_n]$ is given by

$$\mu(\alpha) = 2 + \limsup_{n \to \infty} \frac{\log a_{n+1}}{\log q_n}.$$
 (1)

The assumption $x_1 \geq 3$ in Theorem 1 is indispensable, since the minimal partial denominator in the continued fraction expansions of the sums S_n is $x_1 - 2$, which vanishes if $x_1 = 2$. In this degenerate case, we remove these zeros using the formula (6) below and obtain the simple continued fraction expansions, which will be exhibited in Theorem 3 in the final section 4.

2 Continued fraction expansion of the sums

We employ the standard notion for continued fractions:

$$[a_0; a_1, a_2, \dots] = \lim_{n \to \infty} [a_0; a_1, \dots, a_n],$$

where

$$[a_0; a_1, a_2, \ldots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_2}}}}$$

The numerators p_n and denominators q_n of the *n*th convergent p_n/q_n satisfy the following relations:

$$\begin{cases}
 p_{-1} = 1, & p_0 = a_0, & p_n = a_n p_{n-1} + p_{n-1}, \\
 q_{-1} = 0, & q_0 = 1, & q_n = a_n q_{n-1} + q_{n-1},
\end{cases}$$
(2)

$$\frac{q_n}{q_{n-1}} = [a_n; a_{n-1}, \dots, a_2, a_1], \tag{3}$$

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^{n+1}. (4)$$

We also use the formulas:

$$1 - [0; a_1, a_2, \dots, a_n] = [0; 1, a_1 - 1, a_2, \dots, a_n],$$
(5)

$$[\ldots, a, 0, b, \ldots] = [\ldots, a + b, \ldots]. \tag{6}$$

A continued fraction $[a_0; a_1, a_2, \ldots]$ is said to be simple, if a_0 is an integer and a_1, a_2, \ldots are positive integers. We define the length of a finite continued fraction $[a_0; a_1, a_2, \ldots, a_n]$ by n.

Theorem 1. Let $\{x_n\}$ be a sequence of positive integers such that

$$x_0 = 1, \quad x_1 \ge 3, \quad x_n^2 \mid x_{n+1}, \quad z_{n+1} = \frac{x_{n+1}}{x_n^2} \ge 2 \qquad (n \ge 0),$$
 (7)

and let $\varepsilon_n \in \{-1, 1\}$. Then the sums

$$S_n = 1 + \sum_{k=1}^n \frac{\varepsilon_k}{x_k} \tag{8}$$

have the following simple continued fraction expansions:

Case 1. Let $\varepsilon_1 = 1$. Then

$$S_2 = \begin{cases} [1; z_1 - 1, 1, z_2 - 1, z_1] & if \quad \varepsilon_2 = 1, \\ [1; z_1, z_2 - 1, 1, z_1 - 1] & if \quad \varepsilon_2 = -1. \end{cases}$$

$$(9)$$

For $n \geq 2$, if the expansion

$$S_n = [1; a_1, a_2, \dots, a_{l_n}] \tag{10}$$

with $a_{l_n} \neq 1$ and $l_n = 3 \cdot 2^{n-1} - 2$ $(n \geq 2)$ is given, then

$$S_{n+1} = \begin{cases} [1, a_1, \dots, a_{l_n}, z_{n+1} - 1, 1, a_{l_n} - 1, a_{l_{n-1}}, \dots, a_1] & \text{if } \varepsilon_{n+1} = 1, \\ [1, a_1, \dots, a_{l_{n-1}}, a_{l_n} - 1, 1, z_{n+1} - 1, a_{l_n}, \dots, a_1] & \text{if } \varepsilon_{n+1} = -1 \end{cases}$$

$$(11)$$

with length $l_{n+1} = 2l_n + 2$.

Case 2. Let $\varepsilon_1 = -1$. Then

$$S_n = [0; 1, b_1 - 1, b_2, \dots, b_{l_n}]$$
(12)

with $b_{l_n} \neq 1$, where the expansion

$$[1; b_1, b_2, \dots, b_{l_n}] = 1 - \sum_{k=1}^n \frac{\varepsilon_k}{x_k}$$

is given by Case 1.

Corollary 1. Make the same notations as in Theorem 1. Then

$$1 + \sum_{n=1}^{\infty} \frac{\varepsilon_n}{x_n} = \begin{cases} \lim_{n \to \infty} [1; a_1, a_2, \dots, a_{l_n}] & \text{if } \varepsilon_1 = 1, \\ \lim_{n \to \infty} [0; 1, b_1 - 1, b_2, \dots, b_{l_n}] & \text{if } \varepsilon_1 = -1. \end{cases}$$

Theorem 1 follows immediately from the following formulas.

Lemma 1 (cf. [6]). Let A, a_1, a_2, \ldots, a_k be positive real numbers and let $p_k/q_k = [0; a_1, a_2, \ldots, a_k]$. Assume that $a_k > 1$ and A > 1. Then

$$[0; a_1, a_2, \dots, a_k, A - 1, 1, a_k - 1, a_{k-1}, \dots, a_2, a_1] = \frac{p_k}{q_k} + \frac{(-1)^k}{Aq_k^2},$$
(13)

$$[0; a_1, a_2, \dots, a_{k-1}, a_k - 1, 1, A - 1, a_k, \dots, a_2, a_1] = \frac{p_k}{q_k} - \frac{(-1)^k}{Aq_k^2}.$$
 (14)

Proof of Theorem 1. The expansions (9) can be obtained by direct calculation. Noting that $x_k \mid x_{k+1}$, we have by (8) and (10) $x_n = q_{l_n}$ $(n \ge 1)$.

Case 1. Let $\varepsilon_1 = 1$. Assume first that $\varepsilon_{n+1} = 1$. Applying the formula (13) with $k = l_n$, $A = z_{n+1}$, and $q_{l_n} = x_n$, we get

$$[1; a_1, \dots, a_{l_n}, z_{n+1} - 1, 1, a_{l_n} - 1, a_{l_{n-1}}, \dots, a_1] = \frac{p_{l_n}}{q_{l_n}} + \frac{(-1)^{l_n}}{z_{n+1}q_{l_n}^2} = S_n + \frac{1}{x_{n+1}} = S_{n+1}.$$

Similarly, we can prove (11) with $\varepsilon_{n+1} = -1$ using (14).

Case 2. Let $\varepsilon_1 = -1$. The expansion (12) follows from Case 1 and the formula (5), and the proof is completed.

3 Irrationality exponent of the sum

Theorem 2. Let $\{x_n\}$ be a sequence of positive integers such that

$$x_n^2 \mid x_{n+1}, \quad x_n^2 \neq x_{n+1}$$
 (15)

for all sufficiently large n and let $\varepsilon_n \in \{-1,1\}$. Then the irrationality exponent of the sum

$$S = 1 + \sum_{n=1}^{\infty} \frac{\varepsilon_n}{x_n} \tag{16}$$

is given by

$$\mu(S) = \limsup_{n \to \infty} \frac{\log x_{n+1}}{\log x_n}.$$
 (17)

Corollary 2. The sum S as in (16) is transcendental, if

$$\mu(S) = \limsup_{n \to \infty} \frac{\log x_{n+1}}{\log x_n} > 2. \tag{18}$$

Corollary 3. Let $\{x_n\}$ and $\{\varepsilon_n\}$ be as in Theorem 2. Then

$$\mu\left(1 + \sum_{n=1}^{\infty} \frac{\varepsilon_n}{x_n^l}\right) = \limsup_{n \to \infty} \frac{\log x_{n+1}}{\log x_n} \qquad (l = 1, 2, \ldots).$$

For the proof of Theorem 2, we need the following lemma (cf., eg., [3, Lemma 1]):

Lemma 2. If α is an irrational number, then

$$\mu(\alpha) = \mu \left(\frac{a\alpha + b}{c\alpha + d} \right)$$

for any integers a, b, c, and d with $ad - bc \neq 0$.

Proof of Theorem 2. We may assume in view of Lemma 2 that $\{x_n\}$ fulfills (7). So we can apply Theorem 1 to the sum $S = \lim_{n \to \infty} S_n$.

Case 1. Let $\varepsilon_1 = 1$. Then by (10) and (11), we have

$$\max_{1 < k \le l_{n+1}} \frac{\log a_k}{\log q_{k-1}} = \max \left\{ \max_{1 < k \le l_n} \frac{\log a_k}{\log q_{k-1}}, \frac{\log(z_{n+1} - 1)}{\log q_{l_n}} \right\}$$

if $\varepsilon_{n+1} = 1$. Otherwise, namely, if $\varepsilon_{n+1} = -1$, the last formula holds with the equality replaced by the inequality \leq . Hence, we obtain

$$\limsup_{k \to \infty} \frac{\log a_k}{\log q_{k-1}} = \limsup_{n \to \infty} \frac{\log(z_{n+1} - 1)}{\log x_n} = \limsup_{n \to \infty} \frac{\log x_{n+1}}{\log x_n} - 2,$$

and the formula (1) yields (17).

Case 2. Let $\varepsilon_1 = -1$. Then

$$\mu(S) = \mu(2 - S) = \mu\left(1 + \frac{1}{x_1} + \sum_{k=2}^{\infty} \frac{-\varepsilon_k}{x_k}\right) = \limsup_{n \to \infty} \frac{\log x_{n+1}}{\log x_n}$$

by Lemma 2 and Case 1, and the proof is completed.

4 Continued fraction expansions in the degenerate case

In this section we give the continued fraction expansions of the sums S_n in the case $x_1 = 2$. We focus on the case $\varepsilon_1 = 1$, since the other case can be dealt with by using the formula (5). By the formulas (10) and (11) in Theorem 1, partial denominators a_k ($1 \le k \le l_{n+1}$) in the expansion of S_{n+1} consist of those in the expansion of S_n , namely, a_k ($1 \le k \le l_n$), plus 1, $z_{n+1} - 1 \ne 0$), and $a_{l_n} - 1$. We start with the expansions of S_3 with length $l_3 = 10$.

Example 1. The continued fraction expansions of S_3 with $\varepsilon_1 = 1$.

$$\begin{aligned} &[1;z_1-1,1,z_2-1,z_1,z_3-1,1,z_1-1,z_2-1,1,z_1-1] & if \quad (\varepsilon_2,\varepsilon_3)=(1,1), \\ &[1;z_1-1,1,z_2-1,z_1-1,1,z_3-1,z_1,z_2-1,1,z_1-1] & if \quad (\varepsilon_2,\varepsilon_3)=(1,-1), \\ &[1;z_1,z_2-1,1,z_1-1,z_3-1,1,z_1-2,1,z_2-1,z_1] & if \quad (\varepsilon_2,\varepsilon_3)=(-1,1), \\ &[1;z_1,z_2-1,1,z_1-2,1,z_3-1,z_1-1,1,z_2-1,z_1] & if \quad (\varepsilon_2,\varepsilon_3)=(-1,-1). \end{aligned}$$

Example 1 implies that, if $\varepsilon_2 = -1$, there is only one zero $z_1 - 2$ in the expansions of S_3 and $a_1 = a_{l_n} = z_1$ for all $n \geq 3$. Hence, since $a_{l_n} - 1 = z_1 - 1 \neq 0$, all zeros appearing in the expansion of S are generated from the zero $z_1 - 2$ in S_3 by the recursive procedure from (10) to (11). On the other hand, if $\varepsilon_2 = 1$, there is no zero in the expansions of S_3 . To study this case more precisely, we observe:

Example 2. The continued fraction expansions of S_4 with $(\varepsilon_1, \varepsilon_2) = (1, 1)$.

[1;
$$a_1, \ldots, a_9, z_1 - 1, z_4 - 1, 1, z_1 - 2, a_9, \ldots, a_1$$
] if $\varepsilon_4 = 1$,
[1; $a_1, \ldots, a_9, z_1 - 2, 1, z_4 - 1, z_1 - 1, a_9, \ldots, a_1$] if $\varepsilon_4 = -1$

with length $l_4 = 22$, where the expansions $S_3 = [1; a_1, \ldots, a_{10}]$ are given in Example 1 with $\varepsilon_2 = 1$.

Example 1 and 2 with (11) imply that, if $\varepsilon_2 = 1$, there is only one zero $z_1 - 2$ in the expansions of S_4 and $a_1 = a_{l_n} = z_1 - 1$ for all $n \ge 3$. Hence each of the expansions of S_{n+1} $(n \ge 4)$ contains zeros which come from that of S_n plus one new zero $a_{l_n} - 1 = z_1 - 2$.

In this way, we can locate all zeros, namely, $z_1 - 2$, in the expansions of S and remove them using the formula (6). Rewriting the continued fractions of the form $[\ldots, 1, z_1 - 1]$ as $[\ldots, 2]$, we obtain:

Theorem 3. Let $\{x_n\}$ be a sequence of positive integers such that

$$x_1 = 2$$
, $x_n^2 | x_{n+1}$, $z_{n+1} = \frac{x_{n+1}}{x_n^2} \ge 2$ $(n \ge 1)$,

and let $\varepsilon_n \in \{-1, 1\}$. Then the sums

$$T_n = 1 + \sum_{k=1}^n \frac{\varepsilon_k}{x_k}$$

have the following simple continued fraction expansions:

Case 1.1. Let $(\varepsilon_1, \varepsilon_2) = (1, 1)$. Then

$$T_3 = \begin{cases} [1; 1, 1, z_2 - 1, 2, z_3 - 1, 1, 1, z_2 - 1, 2] & if \quad \varepsilon_3 = 1, \\ [1; 1, 1, z_2 - 1, 1, 1, z_3 - 1, 2, z_2 - 1, 2] & if \quad \varepsilon_3 = -1 \end{cases}$$

with length 9. For $n \geq 3$, if the expansion $T_n = [1; 1, 1, a_3, \dots, a_{t_n-1}, 2]$ with $t_n = 5 \cdot 2^{n-2} - 1$ is given, then

$$T_{n+1} = \begin{cases} [1; 1, 1, a_3, \dots, a_{t_n-1}, 1, 1, z_{n+1} - 1, 2, a_{t_n-2}, \dots, a_3, 2] & if \quad \varepsilon_{n+1} = 1, \\ [1; 1, 1, a_3, \dots, a_{t_n-2}, 2, z_{n+1} - 1, 1, 1, a_{t_n-1}, \dots, a_3, 2] & if \quad \varepsilon_{n+1} = -1 \end{cases}$$

with length $t_{n+1} = 2t_n + 1$.

Case 1.2. Let $(\varepsilon_1, \varepsilon_2) = (1, -1)$. Then

$$T_3 = \begin{cases} [1; 2, z_2 - 1, 1, 1, z_3 - 1, 2, z_2 - 1, 2] & \text{if} \quad \varepsilon_3 = 1, \\ [1; 2, z_2 - 1, 2, z_3 - 1, 1, 1, z_2 - 1, 2] & \text{if} \quad \varepsilon_3 = -1 \end{cases}$$

with length 8. For $n \geq 3$, if the expansion $T_n = [1; 2, a_2, \dots, a_{t_n-1}, 2]$ with length $t_n - 1$ is given, then

$$T_{n+1} = \begin{cases} [1; 2, a_2, \dots, a_{t_n-1}, 2, z_{n+1} - 1, 1, 1, a_{t_n-2}, \dots, a_2, 2] & \text{if } \varepsilon_{n+1} = 1, \\ [1; 2, a_2, \dots, a_{t_n-2}, 1, 1, z_{n+1} - 1, 2, a_{t_n-1}, \dots, a_2, 2] & \text{if } \varepsilon_{n+1} = -1, \end{cases}$$

with length $t_{n+1} - 1$.

Case 2. Let $\varepsilon_1 = -1$. Then

$$T_n = \begin{cases} [0; 2, b_2, \dots, b_{t_n}] & \text{if } \varepsilon_2 = -1, \\ [0; 1, 1, b_2, \dots, b_{t_n-1}] & \text{if } \varepsilon_2 = 1, \end{cases}$$

where the expansion

$$1 - \sum_{k=1}^{n} \frac{\varepsilon_k}{x_k} = [1; b_1, b_2, \dots, b_{u_n}]$$

with $u_n = t_n$ if $\varepsilon_2 = -1$, $= t_{n-1}$ if $\varepsilon_2 = 1$ is given by Case 1.1 or 1.2.

After the conference Amou kindly sent the last named author his joint paper [1] with Bugeaud, in which our Theorem 2 was already generalized (see [1, Lemma 3]). Recently, the authors proved the following theorems which improves the result in [1].

Theorem ([2, Theorem 1]). Let $\{x_n\}$ be a sequence of rational numbers greater than one and let $\varepsilon_n \in \{1, 1\}$ with $\varepsilon_1 = 1$. Put $z_1 = x_1, z_{n+1} = x_{n+1}x_n^{-2}$ $(n \ge 1)$ and define

$$\delta_1 = \operatorname{den} z_1, \qquad \delta_{n+1} = \delta_n^2 \operatorname{den} z_{n+1} \qquad (n \ge 1). \tag{19}$$

Assume that the following two conditions hold:

- (i) $z_n \geq 1$ for all sufficiently large n,
- (ii) $\log \delta_{n+1} = o(\log x_n)$.

Then the irrationality exponent of the number

$$S = \sum_{n=1}^{\infty} \frac{\varepsilon_n}{x_n}$$

is equal to

$$\tau = \limsup_{n \to \infty} \frac{\log x_{n+1}}{\log x_n}.$$

Theorem ([2, Theorem 2]). Make the same notations as in Theorem 2. Put $x_n = t_n/s_n$ with $t_n, s_n \in \mathbb{Z}_{>0}$. Assume that the following two conditions hold:

(i)' $s_n^2 | s_{n+1}, t_n^2 | t_{n+1}$ for all sufficiently large n,

(ii)' $\log s_{n+1} = o(\log t_n)$.

Then the irrationality exponent of the number S is equal to

$$\tau = \limsup_{n \to \infty} \frac{\log t_{n+1}}{\log t_n}.$$

References

- [1] M. Amou and Y. Bugeaud, Expansions in integer basis and exponents of Diophantine approximation, London Math. Soc. 81 (2010), 297–316.
- [2] D. Duverney, T. Kurosawa, and I. Shiokawa, Irrationality exponents of certain sums of rational numbers, preprint.
- [3] D. Duverney and I. Shiokawa, Irrationality exponents of numbers related with Cahen's constant, Mh. Math. (to appear).
- [4] A. N. W. Hone, On the continued fraction expansion of certain Engel series, J. Number theory **164** (2016), 269–281.
- [5] J. Sondow, Irrationality measures, irrationality basis, and a theorem of Jarnik, 2004, http://arxiv.org/abs/math/0406300v1.
- [6] A. J. van der Poorten and J. Shallit, Folded continued fractions, J. Number Theory **40** (1992), 237–259.

Baggio Engineering School

Lille 59000 FRANCE

E-mail address: daniel.duverney@orange.fr

Daniel Duverney

Department of Applied Mathematics Tokyo University of Science

Tokyo 162-8601 JAPAN

E-mail address: tkuro@rs.tus.ac.jp

Takeshi Kurosawa

Department of Mathematics Keio University Yokohama 223-8522 JAPAN E-mail address: shiokawa@beige.ocn.ne.jp

Iekata Shiokawa