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1 Introduction

For any sequence {z,} of positive integers such that z2 | z,.; and 22 # z,., for all
sufficiently large n and ¢,, € {—1,1}, we define the sum

S:1+§:i—”.
n=1""

In this paper we give the explicit continued fraction expansion of the sum and compute
its irrationality exponent, where the irrationality exponent p(a) of a real number « is
defined by the supremum of the set of numbers i for which the inequality

has infinitely many rational solutions p/q. Every irrational a has p(«) > 2. If p(a) > 2,
then « is transcendental by Roth’s theorem. Our result is as follows (see Theorem 2 in
Section 3):

log z;,
1(S) = lim sup —2Xn+t
n—oo  lOg T,

For the proof of Theorem 2, we first expand the partial sums

in continued fractions in the generic case ¥y > 3, 22 | 7,41, and 22 # z,.1 (n > 1) (see
Theorem 2 in Section 3), which were given by Hone [4] when €, = 1 for all n > 1. The
continued fractions obtained in Theorem 1 have certain symmetric patterns; namely, if
the continued fraction expansion of the nth partial sum is written using the standard
notation as

Sn - [1;alaa2a s 7a’ln]



with a;, # 1, then

Sn+1 = [1;a17a27"’7a‘ln+1]

) 2
= [Lyay,as,...,a,,, ns1/x; — 1,1, a, — 1,4, 1, ...,a01]

if £,41 = 1, and otherwise,
Sn+l = [1, Clln+1, ..., a9, al]
(see the formula (11) in Theorem 1). By means of this recursive construction of the

continued fraction expansions of S, we can compute the irrationality exponent of the sum
S = lim,_, S, using the following formula (cf., eg., [5, Theorem 1]): The irrationality

exponent of the simple continued fraction « = [ag;aq,as,...] with the nth convergent
Pu/n = [a0; ar, az, ..., a,] is given by
log a,,
() =2+ limsup 08 dntl (1)

nooo  logq,

The assumption x; > 3 in Theorem 1 is indispensable, since the minimal partial de-
nominator in the continued fraction expansions of the sums 5, is x; — 2, which vanishes
if x; = 2. In this degenerate case, we remove these zeros using the formula (6) below and
obtain the simple continued fraction expansions, which will be exhibited in Theorem 3 in

the final section 4.

2 Continued fraction expansion of the sums

We employ the standard notion for continued fractions:

[ag; ai, ag,...] = lim |ag; aq, ..., a,],
n—oo
where
1
[@0§a1>a2>---]:@0+a 1
1 ast 1
-'+ﬁ

The numerators p,, and denominators g, of the nth convergent p, /q, satisfy the following

relations:
P-1= 17 Po = Qo, Pn = @pPn—1 + Pn_1, (2)
qg-1 = 0, do = 1> Gn = AnGn-1 + Gn-1,
. = [an;an—lv-"ua%al]v (3)
dn—1
Pndn—1 — Pn—14n = (_1>n+1' (4)



We also use the formulas:

1—1[0;a1,a9,...,a,] =[0;1,a1 — 1,009, ...,a,], (5)

[...,a,0,b,...]=1]..,a+0,...]. (6)

A continued fraction [ag; a1, az, . ..] is said to be simple, if aq is an integer and ay, as, . ..

are positive integers. We define the length of a finite continued fraction [ag; a1, as, . . ., a,)
by n.

Theorem 1. Let {x,} be a sequence of positive integers such that

T,
x; >2  (n>0), (7)

2
=1 = =>3, | Tn+1, Rn+l =

and let €, € {—1,1}. Then the sums
S, =1+ i Sk 8)
k=1 TF

have the following simple continued fraction expansions:
Case 1. Let ey = 1. Then

S — [1;21_171722_1721] Zf 52:17
? [1;21,20 — 1, 1,20 — 1] if ey =—1.

Forn > 2, if the expansion
Sn = [1;a1,az,...,a4,,] (10)
with a, # 1 and l,, = 3-2""1 —2 (n > 2) is given, then
Sy = { 1,a1,...,a1,, 2000 — L, Lay, — Lyag,—1,...,a1] if €p01 =1, (1)

ay,...,a, 1,0, — 1,1, 2001 — Lay,,...;a1] if ep01 = —1

with length 1,1 = 2, + 2.
Case 2. Let e, = —1. Then

Sn = [O,I,bl —1,b2,...,bln] (12)

with by, # 1, where the expansion

n

[1;b1,b2,...,bln] :1—22

x
k=1 'k

s giwen by Case 1.



Corollary 1. Make the same notations as in Theorem 1. Then

1+i€_n: Jinc}o[l;al,am---,aln] if e1=1,
=1 Ln lim [07 1>b1 - ]-a b2> o abln] Zf e = —1.
n= n—o0

Theorem 1 follows immediately from the following formulas.

Lemma 1 (cf. [6]). Let A, a1, aq, ..., ax be positive real numbers and let py/qx = [0; aq, as, ..., ax).
Assume that ap, > 1 and A > 1. Then

0;a1,a9,...,a5, A—1,1,ar — 1 ap_1,...,a9,a1] = Pl + (_12k, (13)
qk Aqk
pe (=1)F
[0;a1,a2,...,&k_1,&k — ]_,]_,A— 1,ak,...,a2,a1] = q—: — <Aq% . (14)

Proof of Theorem 1. The expansions (9) can be obtained by direct calculation. Noting
that zy | zx4+1, we have by (8) and (10) z,, = ¢, (n > 1).

Case 1. Let e; = 1. Assume first that €,,1 = 1. Applying the formula (13) with k& = [,,,
A= z,41, and q, = x,, we get

—1)t 1
a1, ... a0, 2001 — L Lay, — Liap,—1,...,a1] = Pl ( )2 =5, + = Spit1-
ai, Zn+14], Tn+1
Similarly, we can prove (11) with €,,,1 = —1 using (14).

Case 2. Let ey = —1. The expansion (12) follows from Case 1 and the formula (5), and
the proof is completed. O

3 Irrationality exponent of the sum
Theorem 2. Let {x,} be a sequence of positive integers such that
Ty | Tng1, T # Tp (15)

for all sufficiently large n and let €, € {—1,1}. Then the irrationality exponent of the

sum .
£
S=1 = 16
+ ; . (16)
15 given by
. g Tn+1
S) =1 . 17
M) = e S "
Corollary 2. The sum S as in (16) is transcendental, if
log z,,
wu(S) = limsupw > 2. (18)

nooo  lOg T,



Corollary 3. Let {z,} and {,} be as in Theorem 2. Then

2 En ) log xp11
1 <1+Zx_l> :hglj;iplog—; (1=1,2,...).
n=1" " n

For the proof of Theorem 2, we need the following lemma (cf., eg., [3, Lemma 1]):

Lemma 2. If a is an irrational number, then

i) — (aa+b>

ca+d

for any integers a, b, ¢, and d with ad — bc # 0.

Proof of Theorem 2. We may assume in view of Lemma 2 that {z,} fulfills (7). So we
can apply Theorem 1 to the sum S = lim,,_, S,.
Case 1. Let ¢; = 1. Then by (10) and (11), we have

max

max
1<k<ln41 log qr_1

logay loga, log(znt1 —1)
- max 1<k<ln log g1’ log qi,,

if ,.1 = 1. Otherwise, namely, if ,,; = —1, the last formula holds with the equality
replaced by the inequality <. Hence, we obtain

, log ay, , log(zps1 —1) . log 41
lim sup = limsup ——— = limsup
k—o00 0g dr—1 n— 00 IOg L, n— 00 IOg Ly,

and the formula (1) yields (17).
Case 2. Let ey = —1. Then

1 - log ,,
1) =u@ -8y =p |1+ —+3 —F ) = limsup 2t
k—o Tk

T n—00 1Og Tn

_2’

by Lemma 2 and Case 1, and the proof is completed. O

4 Continued fraction expansions in the degenerate case

In this section we give the continued fraction expansions of the sums S,, in the case
x1 = 2. We focus on the case €; = 1, since the other case can be dealt with by using
the formula (5). By the formulas (10) and (11) in Theorem 1, partial denominators
ar (1 < k < l,11) in the expansion of S,.; consist of those in the expansion of S,
namely, a, (1 <k <I,), plus 1, z,.1 — 1(# 0), and a;, — 1. We start with the expansions
of S3 with length I3 = 10.



Example 1. The continued fraction expansions of Sz with e; = 1.

[1 Z1 — ]-a 21, %3 — 1a 1a Z1 — ]-722 - 1a ]-azl - 1] Zf (62953) - (]-> 1)a

[17 21— 1 1 22 — 1 21— 17 17 3 — 1721722 - 17 1721 - 1] Zf (52783) = (17 _1)7

[1 Z1,R2 — 1 1 1,2’3—1,1,21 —2,1,22— ]_,Zl] Zf (62,53) = (—1,1),

[1 21,22 — 17 17 Z — 27 1723 - 17 21— 17 17 Ry — 1721] Zf (52783) = (_17 _1>
Example 1 implies that, if e = —1, there is only one zero z; — 2 in the expansions of

Ss and a; = a;, = 2 for all n > 3. Hence, since a;, — 1 = 2; — 1 # 0, all zeros appearing
in the expansion of S are generated from the zero z; — 2 in S3 by the recursive procedure
from (10) to (11). On the other hand, if 5 = 1, there is no zero in the expansions of S;.
To study this case more precisely, we observe:

Example 2. The continued fraction expansions of Sy with (e1,e5) = (1,1).

[1;CL1,...,CL9,21—1,Z4—1,1,21-2,@9,...,&1] ’Lf 84:1,
1;a1,...,a9,21 —2, 1,24 — 1,21 — L ag,...,a1] if e4=—1
with length 1y = 22, where the expansions S3 = [1;aq, ..., ay] are given in Example 1 with

52:1.

Example 1 and 2 with (11) imply that, if e = 1, there is only one zero z; — 2 in the
expansions of Sy and a; = a;, = z; — 1 for all n > 3. Hence each of the expansions of S,
(n > 4) contains zeros which come from that of S,, plus one new zero a;, — 1 = z; — 2.

In this way, we can locate all zeros, namely, z; — 2, in the expansions of S and remove
them using the formula (6). Rewriting the continued fractions of the form [..., 1,2 — 1]
as [...,2], we obtain:

Theorem 3. Let {x,} be a sequence of positive integers such that

T
Ty = 27 x121|xn+17 Zn4+1 = ntl > 2 (n 2 1)7

In

and let €, € {—1,1}. Then the sums

n

Tn:1+2i—’;

k=1

have the following simple continued fraction expansions:
Case 1.1. Let (e1,e9) = (1,1). Then

, 11,1, — 1,2, — 1,1, 1,20 — 1,2] if e3=1,
Tl L1 - 1,112 — 1,2, — 1,2



with length 9. Formn > 3, if the expansion T,, = [1;1,1, ag,

s given, then

o ap, 1, 2] witht, =52r2— 1

I { [1:1,1,a3, . ap, -1, 1,1, 2ns1 — 1,2 a4, 0, .. 03,2 if €psr =1,
1,1, 1,a3, ... a,-2,2,2p01 — 1,1, 1,04, —1,...,03,2] if e,41=—1
with length t, 1 = 2t, + 1.
Case 1.2. Let (e1,e9) = (1,—1). Then
E:{Uﬂ@rJJA@—Lz@—Lﬂzf@:L
(152,20 — 1,2,23 — 1, 1,1, 20— 1,2] if e3=—1

with length 8. For n > 3, if the expansion T,, = [1;2, ag,
gien, then

Tn+l = {

with length t, 1 — 1.
Case 2. Let e, = —1. Then

[1, 2, as, . .
[1;2,as,..

<y Gty —1, 27 Zn4l — 17 17 17 Qt,,—2,

. aatn—Qa ]-7 1a Zn+l - 1a 27 atn—la

{

[0;2,ba,...,b,]
[07 ]_, ]_, bg, Ce >btn—l]

if

T, .
if

where the expansion
n

ooy ay, 1, 2] with length t, — 1 is

...,CLQ,Q] Zf €n+1:1,
...,&2,2] Zf En_;’_l - _1
€2 = _17

gy = 1,

g
1—Zx—z:[1,bl,b2,,bun]

k=1

with u, =t, ifeo = —1, =t, 1 if g9 =1 is given by Case 1.1 or 1.2.

After the conference Amou kindly sent the last named author his joint paper [1] with

Bugeaud, in which our Theorem 2 was already generalized (see [1, Lemma 3]). Recently,

the authors proved the following theorems which improves the result in [1].

Theorem ([2, Theorem 1]). Let {x,} be a sequence of rational numbers greater than one
and let €, € {1,1} withe; = 1. Put 2y = 1, 2p41 = Tpy17,,> (n > 1) and define

01 = denz, Ony1 = 02denz,
Assume that the following two conditions hold:
(i) 2z, > 1 for all sufficiently large n,

(ii) log d,y1 = o(logx,,).

(n>1). (19)



Then the irrationality exponent of the number
00 e,
S = —

18 equal to

. log Ty 41
7 = limsup ———.
n—oo  10g Ty

Theorem ([2, Theorem 2|). Make the same notations as in Theorem 2. Put x, = t, /s,
with t,, S, € Zso. Assume that the following two conditions hold:

(1) 82|Snr1, t2|tnsr for all sufficiently large n,
(11), lOg Sn+1 = O<10g tn)
Then the irrationality exponent of the number S is equal to

. logt, 11
7 = lim sup .
n—o0 log tn
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