HIGHER HOMOTOPY ASSOCIATIVITY IN THE HARRIS DECOMPOSITION OF LIE GROUPS

DAISUKE KISHIMOTO AND TOSHIYUKI MIYAUCHI

1. Harris decomposition

If we localize a connected Lie group at a prime p, then it decomposes into a product of small spaces, which is called a mod p decomposition of a Lie group. The direct product factors of a mod p decomposition of a Lie group are well understood, and so the p-local homotopy types of Lie groups are well understood. Recently, several attempts were made to understand the group structure of a p-localized Lie group through its mod p decomposition [1, 4, 5, 6, 7, 9, 10, 11]. In particular, the paper [8] studies how group structures are living in a certain fibration involving Lie groups, and this note is a survey of it.

In [2, 3], Harris showed that the p-localized homotopy groups of a compact connected Lie group admits a direct sum decomposition when a Lie group admits an automorphism of finite order which is prime to p. This result can be easily reinterpret as a mod p decomposition of Lie groups as follows.

Theorem 1.1. Let (G, H) and p be in the following table.

$\overline{(G,H)}$	(SU(2n+1), SO(2n+1))	(SU(2n), Sp(n))	(SO(2n), SO(2n-1))
p	$p \ge 3$	$p \ge 3$	$p \ge 3$
(G,H)	(E_6, F_4)	$(Spin(8), G_2)$	
p	$p \geq 5$	$p \neq 3$	

Then the fibration $H \to G \to G/H$ splits p-locally so that there is a p-local homotopy equivalence

$$(1.1) G \simeq_{(p)} H \times G/H.$$

2. Result

Now we ask how the group structures of G and H are living in the Harris decomposition (1.1). This is nothing but asking how close to a homomorphism a projection $G_{(p)} \to H_{(p)}$ is. Groups up to homotopy are loop spaces, and so we are asking how close to a loop map a projection $G_{(p)} \to H_{(p)}$ is. It remains to measure a distance between a map between loop spaces and a loop map, and this is typically done by A_n -maps. Recall that an A_n -space for

 $n \geq 2$ is an H-space with the (n-2)-th higher homotopy associativity. For example, an A_2 -space is an H-space, an A_3 -space is a homotopy associative H-space, and an A_∞ -space is a loop space. A map between A_n -spaces are called an A_n -map if it preserves the A_n -structures. Then one can say that a map between a loop map is close to a loop map when it is an A_n -map as n gets larger. Thus our question is formulated precisely as:

Question 2.1. Let (G, H) be as in Theorem 1.1. For which k and p is a projection $G_{(p)} \to H_{(p)}$ an A_k -map?

Remark 2.2. There are several choices of a projection $G_{(p)} \to H_{(p)}$, but our result holds for any projection whenever it holds for some projection. Then we will not be explicit on a choice of a projection.

Now we state the main theorem of [8].

Theorem 2.3. Let (G, H), a_k and p be as in the following table.

$\overline{(G,H)}$	SU(2n+1),SO(2n+1))	(SU(2n), Sp(n))	(SO(2n), SO(2n-1))
a_k	k(2n+1)	2kn-1	2(k-1)(n-1) + n
p	$p \ge 3$	$p \ge 3$	$p \ge 3$
$\overline{(G,H)}$	(E_6,F_4)	$(Spin(8), G_2)$	
a_k	12k - 5	6k-2	
p	$p \ge 5$	$p \neq 3$	

Then for $k \geq 2$ the following statements hold:

- (1) for $(G, H) \neq (SO(2n), SO(2n-1))$ the projection $G_{(p)} \to H_{(p)}$ is an A_k -map if and only if $p \geq a_k$;
- (2) for(G, H) = (SO(2n), SO(2n 1))
 - (a) if $p \ge a_k$ then the projection $G_{(p)} \to H_{(p)}$ is an A_k -map;
 - (b) if $p < a_k n + 2$ then the projection $G_{(p)} \to H_{(p)}$ is not an A_k -map.

There are yet more pairs (G, H) satisfying a mod p decomposition (1.1), and in [8], for such (G, H), a range of p in which a projection $G_{(p)} \to H_{(p)}$ is an A_k -map is also determined.

The proof for a projection $G_{(p)} \to H_{(p)}$ being an A_k -map is done by refining the product decomposition of projective spaces proved in [7], and the proof for a projection $G_{(p)} \to H_{(p)}$ not being an A_k -map is done by a cohomological criterion which is a sort of a higher homotopy associativity version of the following simple lemma.

Lemma 2.4. Let (G, H) be a connected pair of Lie groups satisfying a mod p decomposition (1.1). Suppose there are maps $f_1: S^{m_1} \to H_{(p)}$ and $f_2: S^{m_2} \to (G/H)_{(p)}$ such that $q_*(\langle h \circ f_1, h \circ f_2 \rangle) \neq 0$, where $q: G_{(p)} \to H_{(p)}$ is a projection and $h: H_{(p)} \times (G/H)_{(p)} \to G_{(p)}$ is a homotopy equivalence (1.1). Then q is not an H-map.

Proof. By definition, $q \circ h|_{H_{(p)}} = 1_{H_{(p)}}$ and $q \circ h|_{(G/H)_{(p)}} = *$. Then if q is an H-map, $q_*(\langle h \circ f_1, h \circ f_2 \rangle) = \langle q \circ h \circ f_1, q \circ h \circ f_2 \rangle = \langle f_1, * \rangle = 0.$

which contradicts the assumption.

References

- [1] H. Hamanaka and A. Kono, A note on Samelson products and mod p cohomology of classifying spaces of the exceptional Lie groups, *Topol. Appl.* **157** (2010), no. 2, 393-400.
- 2] B. Harris, On the homotopy groups of the classical groups, Ann. of Math. 74 (1961), 407-413.
- [3] B. Harris, Suspensions and characteristic maps for symmetric spaces, Ann. of Math. 76 (1962), 295-305.
- [4] S. Hasui, D. Kishimoto, T. Miyauchi, and A. Ohsita, Samelson products in quasi-p-regular exceptional Lie groups, *Homology Homotopy Appl.* **20** (2018), no. 1, 185-208.
- [5] S. Hasui, D. Kishimoto, and A. Ohsita, Samelson products in p-regular exceptional Lie groups, Topology Appl. 178 (2014), no. 1, 17-29.
- [6] S. Hasui, D. Kishimoto, T.S. So, and S. Theriault, Odd primary homotopy types of the gauge groups of exceptional Lie groups, *Proc. AMS* **147** (2019), no. 4, 1751-1762.
- [7] S. Hasui, D. Kishimoto, and M. Tsutaya, Higher homotopy commutativity in localized Lie groups and gauge groups, *Homology*, *Homotopy Appl.* **21** (2019), no. 1, 107-128.
- [8] D. Kishimoto and T. Miyauchi, Higher homotopy associativity in the Harris decomposition of Lie groups, *Proc. Roy. Soc. Edinburgh: Sect. A*, DOI: https://doi.org/10.1017/prm.2019.57.
- [9] S. Kaji and D. Kishimoto, Homotopy nilpotency in p-regular loop spaces Math. Z. 264 (2010), no. 1, 209-224.
- [10] D. Kishimoto, Homotopy nilpotency in localized SU(n), Homology, Homotopy Appl. 11 (2009), no. 1, 61-79.
- [11] D. Kishimoto and M. Tsutaya, Samelson products in p-regular SO(2n) and its homotopy normality, $Glasgow\ Math.\ J.\ 60\ (2018),\ no.1,\ 165-174.$

Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan

Email address: kishi@math.kyoto-u.ac.jp

DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF SCIENCE, FUKUOKA UNIVERSITY, FUKUOKA, 814-0180, JAPAN

Email address: miyauchi@math.sci.fukuoka-u.ac.jp