On orientations of real algebraic curves determined by spin structures

Seiji Nagami Academic Support Center, Setsunan University

1 Introduction

It is a classical problem to decide possible arrangements of ovals of real algebraic curves in the real projective plane $\mathbb{R}P^2$, which is known as the Hilbert's 16'th problem([2]). Harnack was the first to show that the number of components of ovals of a given non-singlar real algebraic curve of degree m is less than or equal to g(m) = (m-1)(m-2)/2 ([1]), which is known as Harnack's inequality.

In [4], Rokhlin introduced 'complex orientations' on the algebraic curves of even type, which turned out to be useful for this problem. So searching canonical orientations on a given algebraic curve seems interesting problem.

2 Orientation by Wang

In [5], by using spin structures, Wang gave orientations of fixed point set $E_{\mathbf{R}}$ of a complex conjugate involution $\sigma_E: E \to E$ on a complex vector bundle $\pi: E \to X$ that covers an involution $\sigma: X \to X$ on a closed smooth manifold X. Note that, in case $X = \mathbf{C}A = \{[z_0; z_1; z_2] \in \mathbf{C}P^2 | A(z_0, z_1, z_2) = 0\}, E = T\mathbf{C}A$, and σ_E is the differential of the involution $\sigma: X \to X$ given by $\sigma([z_0; z_1; z_2]) = [\overline{z_0}; \overline{z_1}; \overline{z_2}], E_{\mathbf{R}}$ is the total space of real vector bundle of the real algebraic curve $\mathbf{R}A = \{[z_0; z_1; z_2] \in \mathbf{R}P^2 | A(z_0, z_1, z_2) = 0\}$, where A is a real non-singular homogenius polynomial of three variables.

In this section, we see the construction given in [5]. Let $\mathbf{U}(E)$ denote the $\mathbf{U}(r)$ -frame bundle for E and $\sigma': \mathbf{U}(E) \to \mathbf{U}(E)$ its induced involution. Set $P = \mathbf{U}(E) \times_i$

$$\mathbf{SO}(2r)$$
, where $i: \mathbf{U}(r) \to \mathbf{SO}(2r)$ is given by $i(X + \sqrt{-1}Y) = \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix}$. Note that $i(\overline{Y + \sqrt{-1}Y}) = \begin{pmatrix} X & Y \\ Y & X \end{pmatrix}$.

$$i(\overline{X + \sqrt{-1}Y}) = \begin{pmatrix} X & Y \\ -Y & X \end{pmatrix} = T \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix} T^{-1}, \text{ where } T = \begin{pmatrix} E & O \\ O & -E \end{pmatrix}.$$

Definition 2.1 We define the involution $\sigma_P : P \to P$ by $\sigma_P([V, M]) = [\sigma_E(V), TMT^{-1}]$ for $V \in U(r)$ and $M \in SO(2r)$.

Suppose that the principal $\mathbf{SO}(2r)$ bundle $P \to X$ admits a spin structure $\xi \in H^1(P; \mathbf{Z}_2)$, i.e., a double cover $\widetilde{P} \to P$ such that the composite $\widetilde{P} \to P \to X$ is a principal $\mathbf{Spin}(2r)$ bundle whose restriction to a point $* \in X$ is the non-trivial one.

Definition 2.2 The involution $\sigma_E : E \to E$ is compatible with $\xi \in H^1(P; \mathbf{Z}_2)$ if and only if there exists a bundle automorphism $\tilde{\sigma}_P : \widetilde{P} \to \widetilde{P}$ such that $\tilde{\sigma}_P(xg) = \tilde{\sigma}_P(x)\overline{g}$ holds for any $g \in \mathbf{Spin}(2r) \subset \mathbf{Cl}(\mathbf{R}^{2r}) = \mathbf{Cl}(\mathbf{C}^r)$, and that the following diagram commutes;

$$\widetilde{P} \xrightarrow{\widetilde{\sigma}_P} \widetilde{P} \\
\downarrow \qquad \qquad \downarrow \\
P \xrightarrow{\sigma_P} P.$$

We say that σ_P is compatible with a spin structure ξ , and that $\tilde{\sigma}_P$ a conjugate lift of σ_P .

With this notation, Wang showed in [5];

Theorem 2.1 Suppose that $\sigma_E : E \to E$ is compatible with a spin structure $\xi \in H^1(P; \mathbb{Z}_2)$. Then for each conjugate lift $\tilde{\sigma}_E : P_{\xi} \to P_{\xi}$ there is a canonical orientation of real vector bundle $E_R \to X_R$, where X_R denotes the fixed point set of the involution $\sigma : X \to X$.

(Case 1) First suppose that $E \to X$ is a complex line bundle. Then $P \to X$ is a principal $\mathbf{U}(1)$ bundle. Let P^{σ} denote the fixed point set of σ_P . Then $P^{\sigma} \to X_{\mathbf{R}}$ is a principal \mathbf{Z}_2 bundle associated with $E_{\mathbf{R}} \to X_{\mathbf{R}}$. By our assumption, we have a spin structure $P_{\xi} \to P$ and a conjugate morphism $\sigma_{\xi} : P_{\xi} \to P_{\xi}$ such that the following diagram commutes;

$$P_{\xi} \xrightarrow{\sigma_{\xi}} P_{\xi}$$

$$\downarrow \qquad \qquad \downarrow$$

$$P \xrightarrow{\sigma_{P}} P$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{\sigma} X$$

Since σ_{ξ} is conjugate, $P_{\xi}^{\sigma} \to X_{\mathbf{R}}$ also is principal \mathbf{Z}_2 bundle. Let $x \in X_{\mathbf{R}}$, and set $\pi^{-1}(x) = \{a, b\}$. Then we have that b = -a. Therefore any fiber of $P_{\xi}^{\sigma} \to X_{\mathbf{R}}$ is sent to one point. This implies that P_{ξ}^{σ} determines a section of $P^{\sigma} \to X_{\mathbf{R}}$. Thus we obtain an orientation of $E_{\mathbf{R}} = P^{\sigma} \times_{\mathbf{Z}_2} \mathbf{R} \to X_{\mathbf{R}}$.

(Case 2) When the complex dimension of the complex vector bundle $E \to X$ is greater than 1, we apply the meathod of Case 1 to the complex line bundle $\det_{\mathbf{C}} E \to X$.

3 Construction of orientations by using pin structures

Let $L \to X$ be a complex line bundle and $\sigma_L : L \to L$ a complex congugate involution such that the following diagram commutes;

$$\begin{array}{ccc}
L & \xrightarrow{\sigma_L} & L \\
\downarrow & & \downarrow \\
X & \xrightarrow{\sigma} & X.
\end{array}$$

Let $\mathbf{U}(1) \to \mathbf{U}(L) \to X$, $\mathbf{SO}(2) \to \mathbf{SO}(L) \to X$, and $\mathbf{O}(2) \to \mathbf{O}(L) \to X$ denote the principal bundles associated with $L \to X$.

Then for each $e \in \mathbf{U}(L)$, set $\sigma(e) = \alpha e$, where $\alpha = a + \sqrt{-1}b \in \mathbf{U}(1)$. Then we have that $\sigma(\sqrt{-1}e) = -\sqrt{-1}\sigma(e) = (b - \sqrt{-1}a)e$. Thus we obtain that, by setting $M_{\alpha} = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$, $\sigma(e, \sqrt{-1}e) = (e, \sqrt{-1}e)M_{\alpha} = (e, \sqrt{-1}e)R_{\alpha}T$, where $R_{\alpha} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Define $i_P : P = \mathbf{U}(L) \times_{\rho} \mathbf{SO}(2) \to \mathbf{SO}(L)$ by $i_P([e, A]) = (e, \sqrt{-1}e)A$. Then we have the following commutative diagram, where R_T denotes the right multiplication by T;

$$P \xrightarrow{i_P} P$$

$$i_P \downarrow \qquad \qquad i_P \downarrow$$

$$\mathbf{SO}(L) \xrightarrow{R_T \circ \sigma_U} \mathbf{SO}(L).$$

Therefore the following diagram commutes between the induced homomorphisms of cohomology;

$$H^{1}(P; \mathbf{Z}_{2}) \leftarrow \stackrel{\sigma_{U}^{*}}{\longleftarrow} H^{1}(P; \mathbf{Z}_{2})$$

$$\downarrow^{i_{P}^{*}} \uparrow \qquad \qquad \downarrow^{i_{P}^{*}} \uparrow$$

$$H^{1}(\mathbf{SO}(L); \mathbf{Z}_{2}) \leftarrow \stackrel{\sigma_{L}^{*} \circ R_{T}^{*}}{\longleftarrow} H^{1}(\mathbf{SO}(L); \mathbf{Z}_{2})$$

Definition 3.1 For a spin structure $\xi \in H^1(SO(L); \mathbf{Z}_2)$, set $\tilde{\xi} = \xi \oplus R_T^*(\xi) \in H^1(SO(L); \mathbf{Z}_2) \oplus H^1(SO(L)T; \mathbf{Z}_2) = H^1(O(L); \mathbf{Z}_2)$.

With this definition, we have the following;

Proposition 3.1 $i_P^*(\xi) \in H^1(P; \mathbb{Z}_2)$ is compatible with σ_U if and only if $\tilde{\xi} \in H^1(\mathbb{O}(L); \mathbb{Z}_2)$ is a pin sturucture that is preserved by σ .

By a similar method in [3], we obtain a section $d\tilde{\sigma} \in \Gamma(Ad(\mathbf{Pin}(L)|_{X_{\mathbf{R}}})) \subset \Gamma(\mathbf{Pin})(X)|_{X_{\mathbf{R}}} \times_{Ad}$ $\mathbf{Cl}(2) \cong \Gamma(\overset{*}{\wedge}L|_F) \text{ via } \tilde{\xi}.$

Fix a point $x \in X_{\mathbf{R}}$. Then we my assume that $L_x = \mathbf{R}\langle u, w \rangle$ and that $\sigma_L|_x$ is the reflection determined by v. Thus we have that $d\tilde{\sigma}|_x = \pm v$.

Whether this section coinsides with the section given in Section 2 or not should be investigated.

References

- [1] Harnack. Uber vieltheiligkeit der ebenen algebraischen curven. *Math. Ann.*, 10:189–99, 1876.
- [2] David Hilbert. Mathematische probleme. Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, 1900.

- [3] Kaoru Ono et al. On a theorem of edmonds. In *Progress in differential geometry*, pages 243–245. Mathematical Society of Japan, 1993.
- [4] Vladimir Abramovich Rokhlin. Complex orientations of real algebraic curves. Functional Analysis and its Applications, 8(4):331–334, 1974.
- [5] Shuguang Wang. Orientability of real parts and spin structures. JP J. Geom. Topol, 7(1):159–174, 2007.