ON COUNTING CERTAIN PRINCIPALLY POLARIZED
SUPERSPECIAL ABELIAN SURFACES OVER F,

JIANGWEI XUE AND CHIA-FU YU

ABsTRACT. This is the survey paper [25] of the joint work in progress. We
study the principally polarized superspecial abelian surfaces over the prime
finite field IF, with Frobenius endomorphism  satisfying 72 = p. The set of
isomorphism classes of such objects is described by a disjoint union of double
coset spaces, and the cardinality of each such space is calculated using the
Selberg trace formula.

1. INTRODUCTION

Throughout this paper, p € N denotes a prime number, and ¢ € N a power of p.
An algebraic integer m € Q C C is called a Weil g-number if |o(7)| = /g for every
embedding o : Q(m) — C. By the Honda-Tate Theorem [18, Theorem 1], there
is a bijection between the isogeny classes of simple abelian varieties over F, and
the Gal(Q/Q)-conjugacy classes of Weil g-numbers. Let X, be a simple abelian
variety over [F, in the isogeny class corresponding to (the conjugacy class of) a Weil
g-number 7. Both the dimension g(7) := dim(X,) and the endomorphism algebra
Endg«q (X7) := Endp, (X;) ®z Q are invariants of the isogeny class and can be
determined explicitly from 7 (ibid.). Recall that Endgq (Xr) is a finite-dimensional
central division Q(m)-algebra.

It is well known [31, 4.1] that for each fixed g > 1, there are only finitely many
g-dimensional abelian varieties over Fy up to Fy-isomorphism. Let Isog(m) be the
finite set of isomorphism classes of simple abelian varieties X/F, in the isogeny
class corresponding to 7. Similarly, let PPAV(7) be the set of isomorphism classes
of principally polarized abelian varieties (X, A)/F, with the F,-isomorphism class
[X] € Isog(m), which is again finite since it corresponds to a subset of Fy-points in
the Siegel moduli scheme @7, [3, Theorem 1.4] (see also [9, Part III] and [12]).
Therefore, it is natural to ask:

Question. How to compute the cardinalities |Isog(m)| and |PPAV (7)|?

In this note, we provide the explicit formulas for [PPAV(7)| in the case m = £,/p.
The computation relies on that of |Isog(,/p )|, which was previously calculated in
[23]. For simplicity, h(d) denotes the class number of the quadratic field Q(v/d ) for
every square-free integer d € Z.

Theorem 1.1. (1) |PPAV(\/p)| =1,1,2 for p = 2,3,5, respectively.
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(2) Forp>13 and p=1 (mod 4), we have
_ 2\\ ¢r(=1)  3h(=p) 2\ ~(=3p)
(1.1) |PPAV(/p)| = (9 2 (p)) 5 T—g T 3+ p -

(8) Forp>T and p =3 (mod 4), we have
(1.2) | PPAV(\/p)| = @ i (11 _ 36)) h(=p)  h(=3p)

8 6

Here (5) denotes the Legendre symbol, and the special value (p(—1) of the Dedekind
zeta function (r(s) can be calculated by the Siegel’s formula [30, Table 2, p. 70].

The Weil p-numbers +,/p are exceptional in several ways. Given a Weil g¢-
number 7, the number field Q(r) is a CM-field (i.e. a totally imaginary quadratic
extension of a totally real field) unless ™ = =4,/g. First, suppose that 7 # +,/7.
From [26, Proposition 2.2], one has

(1.3) |Isog(m)| = Nx - h(Q()),

where N is a positive integer, and h(Q(w)) is the class number of Q(7). It should
be mentioned that N, is highly dependent on 7 and can be challenging to calculate
explicitly in general. See the discussions in [12, §3.2] and [24, §2.4]. The proof of
(1.3) relies on a strong approximation argument, which fails for the Weil g-numbers
+,/q. The distinction is further amplified in the case ¢ = p. If 7 is a Weil p-number
distinct from +,/p, then by [22, Theorem 6.1],

(14) End), (Xx) = Q(r)

for every abelian variety X, in the isogeny class corresponding to 7, while (1.4)
does not hold for the Weil p-numbers +,/p. Consequently, many theories for abelian
varieties over I, have to make an exception for the isogeny class corresponding to
+,/p. See [2, §1.3] and [12, Theorem 0.3].

Next, suppose that 7 = 4,/q. Write ¢ = p® with a € N. There are two
cases to consider. If a is even, then X, is a supersingular elliptic curve with
End]?;q (Xr) =~ Dp, o, the unique quaternion Q-algebra ramified exactly at p and oco.
It is known [22, Theorem 4.2] that the endomorphism ring Endg, (X ) is a maximal
order in End%q (Xr) for every X, in this case. Fix a maximal order Op in D, o
and write a = 2m. It is a classical result of Deuring and later re-interpreted by
Waterhouse [22, Theorem 4.5] that

[PPAV (£p™)| = [Isog(+p™)| = h(Oo)

W () ()

where h(Op) is the class number of Op; see [20, p. 26].

If a is odd, then X, is a supersingular abelian surface, and it is even super-
special [10, §1.7] if @ = 1 (i.e. ¢ = p). Similar to the previous case, we have
Endgq (X#) ~ Do, 00,5 the unique quaternion Q(/p )-algebra ramified exactly at
the two infinite places of Q(,/p) and splits at all finite places. Therefore, Theo-
rem 1.1 may be regarded as a generalization of (1.5) in the prime field case. Com-
pared with the elliptic curve case, Endp, (Xr) is no longer necessarily a maximal
order in End]?;q (Xx) even in the case a = 1 [22, Theorem 6.2], which causes new
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difficulties. The formula for |Isog(y/p®)| with a odd is given in [23, Theorem 1.2]
for a =1 and in [26, Theorem 4.4] for a general odd a.

2. METHOD OF CALCULATION

Given an arbitrary Weil g-number 7, there are several ways to calculate |Isog(7)]
and |PPAV(7)|. Kottwitz expresses |[PPAV(7)| in terms of orbital integrals in [9,
§12]. The method for calculating |Isog(m)| is covered by Lipnowski and Tsimerman
in [12, §3], where they also give nice bounds for the size of Isog(w). For the purpose
of this note, we follow the method in [26], which is previously developed by the
second named author in [29]. While the idea is similar to that of [12, §3], the
present method treats both the unpolarized case and the principally polaried case
uniformly and expresses the cardinalities as sums of class numbers of linear algebraic
groups over Q. The key part of this method works not only over finite fields, but
also over any finitely generated ground field k (that is, finitely generated over its
prime subfield).

Given an abelian variety X over k and a prime number ¢ (not necessarily distinct
from the char(k)), we write X (¢) for the ¢-divisible group limg X [¢"] associated to
X. A Q-isogeny ¢ : X1 — Xo between two abelian varieties over k is an element
¢ € Homy (X7, X5) ® Q such that Ny is an isogeny for some N € N. Similarly,
one defines the notion of Qg-isogenies between ¢-divisible groups. It is clear that ¢
induces a Qg-isogeny ¢y : X1(¢) — X2(¢) for each ¢, and ¢y is an isomorphism for
almost all /.

Fix an abelian variety Xy over k. Two Q-isogenies 1 : X7 — Xo and @9 : Xo —
Xo are said to be equivalent if there exists an isomorphism 6 : X; — X5 such that
w200 = 1. Let Qisog(Xp) be the set of equivalence classes of Q-isogenies (X, ¢)
to Xo. By an abuse of notation, we still write (X, ¢) for its equivalence class. Note
that Qisog(Xo) contains a distinguished element (X, idg), where idg is the identity
map of Xy. For any member (X1, 1) € Qisog(Xy), we have a bijection

(2.1) Qisog(Xp) — Qisog(X1), (X, 0) = (X, <P1_1‘P)-

Therefore, we may change the base abelian variety X to suit our purpose. Similarly,
one defines Qisog(X(¢)) for every prime /.
Let G be the algebraic group over Q that represents the functor

R+ G(R) == (Endj,(X,) ®g R)*

for every commutative Q-algebra R. It is clear that G depends only on the isogeny
class of Xy. We have G(Qy) = (Endg(Xo(¢)) ®z, Q¢)* by Tate’s theorem (due to

Tate, Zarhin, Faltings and de Jong). Let Ay := Z ®z Q be the ring of finite adeles.
There is an action of G(Ay) on Qisog(Xo) given by the following lemma.

Lemma 2.1 ( [26, Lemma 5.2]). For any (X, ¢) € Qisog(Xo) and any o = (ay) €
G(Ay), there is a unique member (X', ¢') € Qisog(Xo) such that

(X(0), 1) = (X(0), aupr)
in Qisog(Xo(£)) for every prime L.

We equip Qisog(Xy) with the discrete topology. Then the action of G(Ay)
on Qisog(Xyp) is continuous and proper. Indeed, the stabilizer of any (X, p) €
Qisog(Xo) is an open compact subgroup of G(Ay).
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Definition 2.2. Let H C G be an algebraic subgroup of G over Q. Two members
(X4, i) € Qisog(Xp) for i = 1,2 are said to be in the same H-genus if there exists
a € H(Ay) such that (X2, p2) = a(X1,¢1). They are said to be H-isomorphic if
there exists o € H(Q) such that (X2, ¢2) = (X1, agpr).

Proposition 2.3. Let 95 (Xo) C Qisog(Xo) be the H-genus containing (Xo,ido),
and Ay (Xo) be the set of H-isomorphism classes within 9y (Xo). Put Uy (X)) ==
Stabgr(a ;) (Xo,ido), the stabilizer of (Xo,ido) in H(Ay). Then there is a bijection

Au(Xo) «— HQ\H(Af)/Un(Xo),
sending the H-isomorphic class [(Xo,ido)] to the identity class on the right.

From [16, Theorem 8.1], Ay (Xy) is a finite set. Proposition 2.3 turns out to be
quite versatile. By varying H, it can be used to count abelian varieties with various
additional structures. We give two examples below.

First, let us look at the case H = G. Two members (X;, p;) € Qisog(Xy) for
i = 1,2 are said to be in the same genus if X;(¢) is isomorphic to X3 (¢) for every
prime £. It is clear that (X, ;) for i = 1,2 are in the same genus if and only if
there exists o € G(Ay) such that (X, p2) = (X1, ¢1). Similarly, X; and X, are
isomorphic if and only if there exists a € G(Q) such that (Xs,p2) = (X1, ap1).
Therefore, Proposition 2.3 recovers [26, Proposition 5.4] in the case H = G.

Next, we study polarized abelian varieties. Let XV be the dual abelian variety of
X. A Q-isogeny X\ : X — XV is said to be a Q-polarization if N\ is a polarization
for some N € N. For each ¢, the Q-polarization A induces a Q-quasipolarization
of X(¢) (see [14, §1] and [10, §5.9]). An isomorphism (resp. Q-isogeny) from a Q-
polarized abelian variety (X7,A1) to another (X, A2) is an isomorphism (resp. Q-
isogeny) ¢ : X1 — X» such that

(2.2) A =" A=Y o0,
Fix a Q-polarized abelian variety (X, A\g). Once again two Q-isogenies ¢; : (X;, \;) —
(Xo,A0) for ¢ = 1,2 are said to be equivalent if there exists an isomorphism

0 : (X1,M1) = (X2,A2) such that p; = 2 0 0. We define Qisog(Xo,Ag) to be
the set of equivalence classes of all Q-isogenies (X, A, ¢) to (Xo, Ag). The forgetful
map (X, A, ¢) — (X, ) induces a bijection:

(2.3) F(Xo) : Qisog(Xo, Ao) — Qisog(Xo),

whose inverse is given by (X, ¢) + (X,9*Xo, ). Let G! C G be the algebraic
subgroup over QQ that represents the functor

(2.4) R~ G'(R) :={g € (Endi(Xo) ®g R)* | g¥ 0o Moo g = Ao}

for every commutative Q-algebra R.

Two members (X;, \;, p;) € Qisog(Xo, o) for i« = 1,2 are said to be in the
same genus if (X1(€), A1) is isomorphic to (Xz(£), A2) for every prime ¢. As
before, one shows that (X;, A;, ;) are in the same genus if and only if (X;, ¢;)
are in the same G'-genus, and (X;,\;) are isomorphic if and only if (X;, ;) are
G'-isomorphic. Therefore, when H = G*, Proposition 2.3 recovers a partial case
of [26, Theorem 5.8].

Lemma 2.4 ([26, Remark 5.7]). Let ¥ (X0, Ao) C Qisog(Xo, Ao) be the genus con-
taining (Xo, Ao,ido). Assume that Ao is an integral polarization on X, i.e. not
just a Q-polarization. Then X is a integral polarization on X for every member
(X, A\, ) € 9(Xo, Mo)- If moreover Ao is principal, then so is \.
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Let us return to the finite field case. Assume that £ = Iy, and 7 is a Weil
g-number. It is possible that PPAV(x) = ) (see [8, Theorem 1]). Suppose that this
is not the case so that there is something to count. Combining Lemma 2.4 and
Proposition 2.3, we may compute |PPAV(7)| in the following steps:

(1) Separate PPAV () into Q-isogeny classes.

(2) For each Q-isogeny class in PPAV (), separate it further into genera (Note
that the notation of genus need not depend on the Q-isogeny ¢). This
amounts to classifying principal quasi-polarized ¢-divisible groups of certain
kind for each prime /.

(3) By the above discussion, the cardinality of genus in PPAV () represented
by a member (X, Ag) is equal to the class number

(2.5) IGHQ\G" (Af)/Ugr (Xo)|-
(4) Varying (Xo, Ag) genus by genus, we obtain [PPAV(7)| by summing up all
such class numbers.

In subsequent sections, we apply these steps to the Weil p-number 7 =,/p.

3. CLASSIFICATION OF Q—ISOGENY CLASSES AND GENERA

From now on, we fix the Weil p-number 7 =,/p and work over the prime finite
field IF,. In particular, all isogenies, polarizations ect. are defined over F,. As
mentioned in the Introduction, every X/F, in the isogeny class corresponding to
7 =,/ is a superspecial abelian surface with

(3.1) Endg (X) = Dac, 000

the unique quaternion Q(/p )-algebra ramified exactly at the two infinite places of
Q(,/p) and unramified at all finite places. For simplicity, we set

(3.2) F=Q(/p) and D = Du, co,-
The ring of integers of F' is denoted by Op.

3.1. The uniqueness of Q-isogeny class and nonemptiness of PPAV(,/p).
Since D is totally definite over F', there is a unique positive involution on D,
namely, the canonical involution z — Z := Tr(z) — = (see [13, Theorem 2, §21]).
It follows that the Rosati involution induced by any polarization A on X coincides
with the canonical involution. Let (Xg, o) be a member in PPAV(,/p), whose
nonemptiness is guaranteed by Lemma 3.2 below. The group G! in (2.4) is just the
group of reduced norm one, that is, for any commutative Q-algebra R,

(33) G'(R) = {g € (Dwg R)* | Nr(g) = gg = 1}.
In particular, we have
(34) Ugi(Xo) = O :={x € O := O®zZ | Nr(z) =1}, where O = Endg, (Xo).

Lemma 3.1. For any two Q-polarized abelian surfaces (X;, A;)/Fp with X; in the
isogeny class corresponding to m = ./p, there erists a Q-isogeny ¢ : X1 — X» such
that ©*Ag = A1.

This lemma can be reduced to [28, Corollary 10.3]. It shows that there is a unique
Q-isogeny class of Q-polarized abelian varieties for the Weil number 7 = ,/p.

Lemma 3.2. PPAV(,/p) # 0.
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Proof. Let E/F,> be a supersingular elliptic curve with Frobenius endomorphism
7 = p, and Ag be the canonical principal polarization on E. We define

(3.5) (Y:\y) = Resz /s, (E, Ag).

Then [(Y, Ay)] € PPAV(,/p). Alternatively, one may apply [8, Theorem 5. O
In fact, more can be said about (Y, Ay) in (3.5). By functoriality, we have

(3.6) Endy , (E) ®2 Z[y/p] € Endg, (Y).

These two rings differ only at the prime p by [7, Remark 4, §2.1]:

(3.7) Endp , (E) @z Z[\/p][1/p] ~ Endg, (Y) @z Z[1/p).

Recall that Endg ,(E) is always a maximal Z-order in End} _(E) ~ Dy, the
unique quaternion Q-algebra ramified exactly at {p,co}. On thepother hand, ifp # 1
(mod 4), then O = Z[,/p], and Endp, (Y") is a maximal Op-order in Endgp Y)~D
by [22, Theorem 6.2]. It follows that (3.6) is a strict inclusion in this case. Nev-
ertheless, Endp, (Y') is uniquely determined by Endr , (E) thanks to the following
lemma (see [11, Lemma 2.11]):

Lemma 3.3. Let p € N be an arbitrary prime number. For every mazimal Z-order
Oy in Dy o, there exists a unique mazimal Op-order M(Og) in D = Dy oo Qg F'
containing Oy @z OF.

In general, given a quaternion algebra B over a number field L, we write Tp(B)
for the finite set of B*-conjugacy classes of maximal Op-orders in B. The B*-
conjugacy class of a maximal Oy -order O C B is denoted by [O]. From Lemma 3.3,
there is a well-defined map:

(3.8) M :Tp(Dp,oo) = Tp(D), [Oo] — [M(O0)].
On the other hand, if p # 1 (mod 4), we have a canonical map
(3.9) U : PPAV(,5) — Tp(D), (X, ))— [Endr, (X)].

From (22, Theorem 3.14], every maximal Z-order in Dy is realizable as Endy , (E)
for some elliptic curve E/F,> with 7 = p. It follows that

(3.10) img(M) C img() if p#£1 (mod4).
Example 3.4. For p = 3, we have |Tp(D)| =2 by [11, Theorem 1.6], so
Tp(D) = {[01],[02]}, with O /Of ~ D1z, OF/Of ~Sj.

On the other hand, |Tp(Ds,)| = 1, and we can show that img(M) = {[O1]}. It
will be shown in Lemma 4.1 that img(¥) is a proper subset of Tp(D), so we have

img(¥) — {[O1]}.
3.2. The genera. For simplicity, let A =Z[,/p]. Note that

2 ifp=1 (mod 4);

1 otherwise.

(3.11) [OF : A] = {

For each prime ¢, we use a subscript £ to indicate ¢-adic completion. For example,
Ay denotes the f-adic completion of A, i.e. Ay = A ®y Zy.

In general, let k be a perfect field of characteristic p > 0, and X be an abelian
variety over k. For each prime ¢ # p, the Tate module T;(X) = @X{ﬁ"] is a
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free Zg-module of rank 2dim(X) with a continuous action by Gal(ks/k), where ki
is a separable closure of k. The ¢-divisible group X (¢) is uniquely determined by
T,(X), and vice versa. Similarly, the p-divisible group X (p) is uniquely determined
by its (covariant) Dieudonné module M(X). A polarization A on X induces a Weil
pairing at each prime:

(3.12) exe: Tg(X) X Tg(X) — Zg(l), YVl # p,
(3.13) exp: M(X)x M(X) =W,

where Zy(1) = l‘&luen(ks), and W = W (k) denotes the ring of Witt vectors over
k. The Weil pairings are alternating, nondegenerate, and satisfy the following
conditions:

(1) e is Gal(ks/k)-equivariant;

(ii) exp(Fz,y) = expl(x, Vy)? for all z,y € M(X).
Here F and V denote respectively the Frobenious and Verschiebung map on M (X),
and o the Frobenious automorphism of W. The polarization A is principal if and
only if the Weil pairings are perfect at every prime.

Now we return to the case that k& = F,, and X is an abelian surface in the
isogeny class corresponding to m = ,/p. At every prime £ # p, the Galois action
equips Ty(X) with an Ay := Z[\/p]-module structure. Similarly, at the prime p,
we have W(F,) = Z,, and the Dieudonné module M (X) is nothing but a torsion-
free Zy|/p]-module with rankz, M(X) = 4. Without lose of generality, we set
T,(X) = M(X) and ¢ is no longer necessarily distinct from p.

Recall that two members X; for 7 = 1,2 in Isog(,/p) are in the same genus if
X1(£) ~ Xo(¢) for every prime ¢, or equivalently, Ty(X1) ~ T;(X2) as As-modules
for every prime ¢. From (3.11), A; = Op, holds in all cases except when p = 1
(mod 4) and ¢ = 2. When ¢ # 2, we have
(3.14) Ty(X) ~ OF,
for every member X € Isog(,/p).

First suppose that p # 1 (mod 4). Then (3.14) holds for ¢ = 2 as well. It follows
that Isog(,/p) forms a single genus in this case, which we denote! by A}". Since
Endr, (X) ®z Z¢ ~ End,(T¢(X)) ~ Maty(Op,) for every ¢, we see that End(X) is
a maximal order in End’(X) ~ D.

Next, suppose that p = 1 (mod 4). By the above discussion, two members of
Isog(\/p) belong to the same genus if and only if their Tate modules at ¢ = 2
are isomorphic as As-modules. Since [Op, : As] = 2, we have three different
isomorphism classes of T5(X) as listed in Table 3.1, and hence three different genera
AYE, AY™ and AY™. Here the subscript ¢ in A™ for ¢ > 1 measures the index of
Endr, (X) ® Zy in a maximal Op,-order containing it.

Next, we classify the genera in PPAV(,/p), consider the forgetful map
(3.15) PPAV(\/p) — Isog(y/p), (X,\) — X.

Recall that two members (X, Ai)i=12 of PPAV(,/p) are in the same genus if
(X1(£), A1,¢) is isomorphic to (X2(£), Az,¢) for every prime £. Clearly, if (X;, A;)i=12
lie in the same genus in PPAV(,/p ), then the X;’s lie in the same genus in Isog(,/p ).
If p = 1 (mod 4), we define? AP® C PPAV(/p) to be the pre-image of A"

Here the superscript “un” means “unpolarized”.
2Here the superscript “pp” means “principally polarized”.
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TABLE 3.1. Three genera in the case p =1 (mod 4)

Ty(X) A3 Ay ® OF, (Or,)*

un un un
genera AYE A AY

Ay 20
Endg, (X) @ Zy | Maty(As) E 2] | Maty(Op,)
Or, Or,

under (3.15) for ¢ € {1,8,16}. As before, if p # 1 (mod 4), then we define
APP — PPAV(,/p).

Lemma 3.5. Suppose that p =1 (mod 4). Then ALY = 0, while neither ALY nor
AP is empty.

Proof. If X\ : X — XY is a principal polarization, then Endp (X) is stable under
the Rosati involution a + a’ := A™! 0a¥ o A\. Recall that the Rosati involution
coincides with the canonical involution. Meanwhile, it is clear from Table 3.1 that
Endr, (X) ® Z3 is not stable under the canonical involution for any X € Ag». It
follows that AJY = 0.

To show that A}Y # @), note that (Y, \y) defined in (3.5) lies in A}Y because of
(3.7). Then one shows that there is an isogeny ¥ — X € A}™ along which 2y
descends to a principal polarization on X. Thus AY® = ) as well. g

Lemma 3.6. For every prime p, A}® forms a single genus. The same holds for
AV ifp=1 (mod 4).

Proof. For every member X € A and every prime ¢, T;(X) is a free Op,-module

of rank 2. Set Ty := O%Z. One shows that up to isomorphism, there is a unique
alternating Z,-linear perfect pairing

(3.16) e Ty x Ty — 7y such that

(3.17) ee(azx,y) = eo(z, ay) Va € Op,, xz,y € 1.

It follows that AP forms a single genus. The proof for AY§ can be carried out
similarly, except that one replaces Op ¢ by Ay, and makes use of the fact that A is
a Gorenstein order [6, Section 37]. O

In summary, we have

ATP U ALY ifp=1 (mod 4);

AP otherwise,

(3.18) PPAV(\/p) = {

where each APP forms a single genus.

4. THE CALCULATIONS

We keep the notation and assumptions of the previous section. Our goal is to
work out an explicit formula for |[PPAV(,/p)|. Combining Proposition 2.3 with
(3.18), one sees that [PPAV(\/p)| is either a class number or the sum of two class
numbers of the form |G'(Q)\G*(Af)/Ugi(Xy)|, where G! is given in (3.3) and
Ug: (Xo) in (3.4)). One standard method of calculating such class numbers is the
Selberg trace formula [15, §5], and indeed we take this approach in the case p = 3
(mod 4) and p > 7. Meanwhile, some analysis on the endomorphism rings reduces
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the calculation in the case p #Z 3 (mod 4) to that of type numbers. It also sheds
light on the p =3 (mod 4) case from another perspective.

4.1. The group action on A’ and Gauss genera. Let F be the group of
totally positive elements of F'*, and O, , := F* N Op. We write Pic™(Op) for the

narrow class group of F', which is naturally identifiable with Fx /(F¥ 5;) By [4,
Definition 14.29], the Gauss genus group gr is the quotient group Pict(Or)/ Pic™ (Or)?,
where Pic™(Or)? denotes the subgroup of Pic™(Or) consisting of square ideal
classes. It is well known [4, Theorem 14.34] that |gr| = 2!71, where ¢ is the number

of primes that are ramified in F/Q, so in our case

1 ifp#3 (mod4);

(4.1) lgr| = [Pic™ (OF)/ Pic" (OF)?| = {2 ifp=3 (mod 4).

Fix a member (Xo,A9) € A and let @y = Endg, (Xo). Since D = Do, o0,
splits at all finite places of F, the normalizer A/ (@0) of O in D* coincides with
F*QF. Tt follows that there is a natural identification Tp(D) ~ D*\D* /(F*QF).
This leads to a commutative diagram as follows.

AP ¥ Tp(D) —2— Pict(Op)/ Pict (OF)?

D\D'/O) —— D*\D*/(F*0y) —X—s F*/(FXO}F*?)

Here the leftmost vertical arrow is given by Proposition 2.3, and ¥ is defined in
(3.9). We define the map © : Tp(D) — gr as follows. Recall that any two
maximal orders Q7 and O3 in D are linked [20, §1.4], i.e. there exists an Op-lattice
I C D such that Oy = {z € D|zI C I}, and Oy = {& € D|Iz C I}. Given an
element [O] € Tp(D), we choose an Op-lattice I via which @ and O are linked.
Then O([Q]) is defined as the element of gp represented by the fractional Op-ideal
Nr(I). It is easy to check by definition that ©([O]) does not depend on the choice
of O nor I. Since the reduced norm map Nr is surjective, so is ©.

Note that the rows of the commutative diagram are ezact, in the sense that
the first horizontal arrow maps surjectively onto the neutral fiber of the second
arrow. The elements of the neutral fiber Tpy(D) = img(¥) of © will be called
the conjugacy classes of maximal orders belonging to the principal Gauss genus.
If p # 3 (mod 4), then Tpy(D) = Tp(D) by (4.1), so this notion is more or less
vacuous in this case. If p = 3 (mod 4), then Tpy(D) is a proper subset of Tp(D).
We obtain the following result:

Lemma 4.1. If p # 3 (mod 4), then every mazimal order is realizable as the endo-
morphism ring Endg, (X) for some (X,\) € Af® C PPAV(/p). If p=3 (mod 4),
then a mawximal order is realizable as Endg,(X) for some (X,\) € PPAV(\/p) if
and only if it belongs to the principal Gauss genus.

If p =3 (mod 4), then Tpy(D) always contains the image of M : Tp(Dp ) —
Tp(D) as shown in (3.10).
There is a natural action of Oy , on A}” as follows:

u-(X,A) = (X M) VueOf,, (X)) e AP,



10 JIANGWEI XUE AND CHIA-FU YU

Since u is invariant under the canonical involution and totally positive, Au is another
principal polarization on X. Let O = Endp,(X) and identify it with a maximal
order in D. For any a € 0%, we have a*\ = a¥Aa = Aaa. Taking a = v € Of, we
see that v*\ = \v?, so the subgroup O3* C Or., acts trivially on AYP. Tt follows
that the action of O , on A}P descends to an action of u := O}, /OF?, and ¥
factors through u\A{P. Moreover, (X, ) is fixed by u if and only if the reduced
norm map Nr: Q* — O}>§7+ is surjective.

Let e € OF be the fundamental unit of . By [1, §11.5] or [5, Corollary 18.4bis],
is totally positive (i.e. Np/g(e) = 1) if and only if p = 3 (mod 4). Hence O, , = (e)
if p=3 (mod 4), and Of,, = (¢?) otherwise. On the other hand, 0f? = (£?) for
all p, so we have

(4.2)

] = 1 ifp#3 (mod 4);
12 ifp=3 (mod4).

The action of u can be realized adelically on Dl\lA)1 / @(1) as follows. Consider the

group

A= {(a,1) € D* x OF | Ne(a) = Ne(u)},
which contains A; := OF (D' x @(1)) as a normal subgroup. Here O} embeds
diagonally into A. The reduced norm map (e, 1) — Nr(a) induces an epimorphism
Nr:A — O; +» and hence an isomorphism
(4.3) AJA; ~u.
The group A acts on D as follows:

(o) -g=agp™",  Y(a,p) €A, ge D

Clearly, we have A;\D' ~ D'\D'/O}, so A\D' may be identified with the orbit
space of the induced action of u on D'\D!/O}. On the other hand, A\D" is just
the image of the canonical map

DY\D'/Q} — D*\D* /(F*0QY).

Lastly, one checks that the action of u on D*\D!/Q} is compatible with that of u
on AP defined earlier. Summarizing, we obtain the following lemma.

Lemma 4.2. The map U induces a bijection (W\ALT) — Tpo(D) for every prime
p. More precisely,
(1) if p# 3 (mod 4), then ¥ : AY® — Tp(D) is bijective;
(2) if p =3 (mod 4), then AT® — (U\AYP) ~ Tpy(D) is a 2:1 cover ramified
over the subset {[O] € Tpy(D) | Nr(0*) = O , }.

Indeed, if p # 3 (mod 4), then u is trivial, and Tpy(D) = Tp(D). In particular,
(4.4) IPPAV(V2)| = [A?| = |[Tp(D)| =1  when p=2.

If p =3 (mod 4), then |u| = 2, and a member (X,\) € A}? is fixed by u if and
only if Nr : Autg, (X) — O§7+ is surjective. Suppose that p = 3 and let Q; be as
in Example 3.4. Since Nr(0y°) = Op, |, we have

(4.5) IPPAV(V3)| = [AP?| = [Tpy(D)| =1  when p=3.
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According to Lemma 4.2, we have |A}P| = |Tp(D)| when p = 1 (mod 4). Note
that D = Do, 00, splits at all finite places of F, and h(F') is odd [5, Corollary 18.4].
From [27, Corollary 3.5], we have

h(Qo)
APP| = |Tp(D)| = .
A similar argument as above also shows that when p =1 (mod 4),
h(O16)
h(A)
where 015 = End, (X) for some (X, \) € AJY, and A = Z[,/p]. In particular,
AP =AYl =1 ifp=5.
Applying the results of [27, §4], we obtain the following proposition.

A%S) =

Proposition 4.3. Suppose that p =1 (mod 4) and p > 13. Then

-1 h(— h(—3
|A5>P|:CF(2 )+ (8p)+ (Gp);

AV = (4— (%)) Cr(—1) + @ + <2+ (g)) @_

Therefore, we have

[PPAV(yp)| = [AT"] + [AYE

o)) 52 e () 52

4.2. The Selberg trace formula. Assume that p =3 (mod 4) and p > 7. In this
case, Tpy(D) is a proper subset of Tp(D). Pick [O] € Tpy(D) so that there exists
(X,A) € AY? with O ~ End, (X). For example, we may take O in the image of
M : Tp(Dp o) = Tp(D) as in (3.8). Combining Proposition 2.3 with (3.18), we
see that

(4.6) [PPAV(y/p)| = |A]”| = |D"\D'/0'|.

Proposition 4.4. Suppose that p = 3 (mod 4) and p > 7. Let O be a mazimal
order in D = Do, o0,. Then we have

SO0 (1 o(2)) 12 K pop ey

[ID'\D'/0'| = Gy | (3 B 3(g>) hop) | M=3p) L vise.
2 p

8 6

The main tool for such calculations is the Selberg trace formula (of co-compact
type). See [15, §5] for a brief introduction.

For simplicity, write G = D, U = O' and T = D!. Then G is a locally compact
unimodular group, and U is an open compact subgroup of G. We normalize the
Haar measure dz on G such that Vol(U) = fU dr = 1. Let H be a closed subgroup
of G and dh a Haar measure on H. There is a unique right G-invariant measure %

on H\G characterized by the following integration formula:

fdx = f(hg)dhd—x, Ve Cx(G).
g H\G Jn dh
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Here C$°(G) denotes the space of locally constant C-valued functions on G with
compact support.

By [20, §II1.1], T is discrete cocompact in G. Given v € T', we write {7y} for
the conjugacy class of v in T', and T'/~ for the set of all conjugacy classes of T
Let 1y € C2°(G) be the characteristic function of U. Applying the Selberg trace
formula to 1, we obtain

(4.7) nowl= Y veurg,) | \gnm-lw)di

dr.,’
{~}er/~

where I'; (resp. G,) denotes the centralizer of v in I' (resp. G), and dz., is a Haar
measure on G, .

Note that 7 is central if and only if v = +1, in which case the summand in (4.7)
corresponding to {v} reduces to Vol(I'\G). By a result of Vignéras [19, Proposi-
tion 2], we have

(4.8) Vol(I\G) = Vol(D'\ D) = }lgF(—l).

There are two central elements, which explains the term %C r(—1) in the formulas
of Proposition 4.4.

Assume that 7 is non-central for the rest of this section. The centralizer of v in
D coincides with K := F(v). Since D is totally definite, K is a CM-extension of
F. Using Weil restriction of scalars, we define two algebraic tori over Q:

T := Res/q Gm, i T" := Resp/q G, r-

The norm map N, induces a homomorphism TE — TF whose kernel is denoted
by T!. The centralizer of v in the algebraic group G* in (3.3) is isomorphic to T,
so we have

G, =K':=T'(A;) and T,=K":=T" Q).

Normalize the Haar measure on K so that the maximal open compact subgroup
O} has volume 1. By [17, Theorem 3], which is attributed to Takashi Ono, we have

(4.9) Vol(T,\G) = Vol(K'\K") = 2t—1|u(ll(l)(|[22);</ph(F )

where t, u(K) and Qg are as follows:

e ¢ is the number of finite primes ramified in K/F;

o u(K) is the group of roots of unity in K

® Qg F is the Hasse unit index [Oy : Ofp(K)], which takes value either 1
or 2 by [21, Theorem 4.12].

Lastly, note that the integral Jg \G ]lU(x_l'y:z)ij = 0 unless v is a root of unity.
Y Y

Since p > 7 and [K : Q] = 4, the multiplicative order of v € D! is 3,4 or 6. To
apply (4.9), we assemble the relevant data in the following table (see [11, §7]):
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ord () 4 3or6
K=F(y) | FWV-1)| F(V=3)
hK)/W(F) | h(=p) | h(-3p)/2

t 0 | 5+353)
(K| 4 6
Qk/Fr 2 1

This somewhat explains the h(—p) and h(—3p) terms in the fomulas of Proposi-
tion 4.4. However, there is a key subtlety that cannot be ignored. Indeed, for any
two maximal orders @ and Q' belonging to distinct Guass genus (i.e. [O] € Tp,y(D)
and [O'] € Tpy(D)), the groups 0! and 0" are isomorphic. So there is certain
global obstruction that causes the class numbers to be distinct as in Proposition 4.4.
Alas, such arithmetic intricacy goes beyond this simple note, and we refer to our
upcoming paper [25] for details.
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