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ABSTRACT. This is a summary of results on our papers [2, 3], where we proved the equidis-
tribution theorem for a family of holomorphic Siegel cusp forms for GSps. We deal with only
the vertical Sato-Tate theorem and low-lying zeros for degree 4 spinor and degree 5 standard

L-functions of holomorphic Siegel cusp forms.

1. VERTICAL SATO-TATE THEOREM

Let Sk be the space of elliptic cusp forms of weight & with the trivial central character. For
a Hecke eigenform f € Sj, let my be the associated cuspidal representation of G La. Denote by
{afp, a;})} be the Satake parameter at p. Let ay), = afy + a;;) = 2cosbyf,. Then 6y, € [0, 7].

Sato-Tate distribution is that for a continuous function h on [—2, 2],

1 1 [?
lim ——> " h(as,) = —/ h(t)V/4 — t2 dt.
z—oo () ’ 2w J_o
p<x
i.e., {0p} is uniformly distributed with respect to the measure 2 sin? 6 on [0, 7]. Or more familiar
formulation is, for 0 < a < b < T,
1 2 [°
L2
—#{p <z, a0, < b} = —/ sin“ 0 d#f.

im
z—00 T () T Ja

For vertical Sato-Tate distribution, let Fj be the set of orthogonal basis in S. Then for a large

prime p,

k I sin” 0 2
a'f :—(1+—)/ (2cosO)" - do + O(p27).
&) e T
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Since #Fj ~ 1’“—2, {0¢p, f € Fi} is uniformly distributed with respect to the measure

2 1 in? 6 1 2
T 1>Sin+4 ) = — o — Vi
- = = S1n 1
P P (\/}_7—1-%) — 22

Let S(I'(IV)) be the space of classical holomorphic Siegel cusp forms of level I'(N) with the
trivial central character (for simplicity) and weight k = (k1, k2), k1 > ko > 3.

Let HER(T'(N)) be a basis of Si(I'(/V)) consisting of Hecke eigen forms outside N.

For a Hecke eigen form F' € Si(I'(N)), let mp = ®7E), be the associated cuspidal representation
of GSps. (We assume Ramanujan conjecture, i.e., each local component 7g), is tempered.)

Denote by {aip,ﬁED} the Satake parameter of g, at p { N. Then it follows from the

temperedness that if we set
._ -1 b o -1
afp = QFp + Qp,, Opp = Brp + ﬁF,p’

then
afgp, bEP S [—2, 2}.

We introduce a suitable measure

4
fp = @Z:Tl)fp(fc, V) g (2, y)g, (z,y) - pSs
on Q :=[-2,2] x [-2,2], where
— )2 2 2
o=t e
((F+ ) =) ((ve3h) ~22)
g;:)l:(:cvy) =

1
(\/]3+ﬁ>2—2<1+%}:t\/ —%/1—%).

By setting x = 2cos 81, y = 2 cosfy, we can see that
2

_ 206 _ 20602 _ i(91+92) _ i(91—92)
(1—e2")(1—e"2)(1—e )(1—e ) 0,65,

(1 _ p—162i91>(1 _ p—le2i92)(1 _ p—lel(91+92))(1 _ p—lei(91—92)>

(p+1)*
pin?

Hp =

Then we expect

Conjecture 1.1. For h € CY(Q,R), the space of R-valued continuous functions on 2,

1
lim — h(arp,br, :/ h(x,y d,ufoT.
500 W(x)]; ( Yy p) o ( )
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This is out of reach since we need analytic continuation and non-vanishing for Re(s) > 1 for
all L-functions L(s, 7, p) for any irreducible representation p : GSps(C) — GLxN(C).
Instead we look at the vertical Sato-Tate distribution.

Put di,ny = dimSg(I'(N)). Then
dimSg(T(N)) ~ C - N*(ky — 1) (ko — 2) (k1 — ko + 1) (k1 + k2 — 3).
Theorem 1.1. (Vertical Sato-Tate) Let pt N, k1 > ko > 3, and N + k1 + ka—o00. Then the set
{(arp brp) € Q| F € HER(I'(N))}

is pp-equidistributed in Q, namely, for any f € CY(Q,R)

1
— Z flarp, brp) = /ﬂ f(z,y) dpy.

k mi? d
N+kj+ks—o0
L EN penm (rov)

2. LOW-LYING ZEROS AND 7n-LEVEL DENSITY

Next, we consider the distribution of the low-lying zeros of the spinor L-functions for our
family.

For F € Si(I'(N)), let L(s, wp, Spin) be the degree 4 spinor L-function; it satisfies the func-
tional equation; Let I'r(s) = w_%F(g) and I'c(s) = 2(2m) *I'(s).

ki+ky—3
2

ki —ko+1

A(s, 7, Spin) = q(F)2Tc(s+ 5

e (s+ )L(s, wp, Spin) = e(np)A(1—s, 7F, Spin),

where ¢(nr) € {#1}, and N < ¢(F) < N*. The analytic conductor is c¢(F) = (k1 + ko)?(k1 —
ko + 1)%q(F).

Consider the distribution of the zeros of L(s, mp, Spin) around s = % Let op = % +V—=1vr
be a non-trivial zero of L(s, 7w, Spin). We do not assume GRH, and hence vz can be a complex

number. Define D(7p, Spin, ¢) for an even Schwartz class function ¢,

D(rp, Spin, ¢) = Z ¢ (;—7}; log %N) ,
F

1
where log cp, v = —— Z logc(F).
N AN |,
€HEL(T(N))
Since ¢ decays rapidly as |z| — oo, D(7F, Spin, ¢) measures the density of zeros of L(s, g, Spin)
1
logecg, N

which are in the radius O( ) at s = 1. We call them the low-lying zeros.
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Katz-Sarnak philosophy is that even though each individual L-functions behave randomly, as
a family, low-lying zeros behave according to one of 5 symmetry types: U, SO(even), SO(odd),
O, Sp.

In our case, we prove

Theorem 2.1. Let the notations be as above. Let ¢ be an even Schwartz function for which its
Fourier transform has a support sufficiently smaller than (—1,1). Then
1 . A 1
7= X DlEnSpin) = 6(0) + 500 = [ o)W (G)(w) e

lim 7
Ntk +F
1R QBN pe B (1(V))

where G = SO(even), SO(odd), or O type, and the corresponding density functions W (G) are

W (SO(even))(z) = 1+ % W(SO(odd))(z) = 1 — Si;ff + 6o(2),
W(0)(z) =1+ %50(33), and W (Sp)(z) = 1 — Sigz;x

Remark 2.2. Kowalski-Saha-Tsimerman (in level one case) and M. Dickson considered weighted
equidistribution and one-level density of spinor L-functions of scalar-valued Siegel cusp forms,
namely, let Fr(N) be a basis of the space of Siegel eigen cusp forms of weight k with respect to
Io(N). Then

1
1- ’b :/ , d /;
N0 S V) = T diy
li ! > D(p, §) = $(0) — ~(0) / o(z)W (Sp)(z) d
1m wr N (TF, = - = = x p)(x)dx.
Nk—o0 ZFGfk(N) WENk FeF(N) 2 R

where d,u; is some Plancherel measure, and

VAT D (k= $D(k — 2)|A(F; L)
wollTo(IV) \E2)4(F, F) ’

WFE,N,k =

and F(Z) = Y oo A(F, T)e2m T (T2) - So the symmetry type is Sp. Notice that the symmetry
type is changed due to the weighted sum.

L = A
Let —f(s,ﬂ'}?‘, Spin) = g M, where A(n) is the von Mangoldt function: A(n) =
n
n=1

logp, if n = p* for some prime p and k > 0

0, otherwise
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Then the standard calculation shows that

—— > Dl Spin.d) = 50

FEHE(N)

2 ap(p logp ( logp >
(log ek, N)di, N Z Z log i v

FEHER(N) P

2 S ZaF ?)logp 5 (210gp)+0( 1 )

(logcg,N)dg, N FelBUN) 7 log ¢, N log ¢, N

By exchanging sums, we need to study the sums:

> ar(p) > ar().

FeHE(T(N)) FeHE(T(N))

Since ZFeHEk(F(N))aF(p) = TrT(p)|s, (), where T(p) is the Hecke operator, Arthur’s
invariant trace formula is tailor-made to provide such sums (invariant under the conjugate of f).
Similarly, ap(p?) can be written as a sum of the trace of Hecke operators.

For simplicity, let k1 > ko > 4. Fix pf N. Let K(N) for N € Z~( be the kernel of the natural
quotient map from G(Z) to G(Z/NZ). Then T'(N) = Sp4(Q) N K(N).

Consider the algebraic representation £ = ¢ for k = (k1, k2), and let D}f}z be the holomorphic
discrete series of G(R) with the Harish-Chandra parameter (I1,12) = (k1 — 1, ko — 2). We choose
the test function f = f¢ fi such that f¢ is a pseudo-coefficient of D}‘I?}Q. Then

—1, if oo = D,
tr(moo(fe)) =

0, otherwise.

Then we have Arthur’s invariant trace formula,

SpeC(f£fN) geOm(fafN)

Then the left hand side is a sum over H Ei(I'(NV)), namely, we pick up only holomorphic Siegel
cusp forms. So we transfer our calculation to the geometric side. The main term is f(l) ﬁgl( )
by Plancherel formula. Since we take f¢ to be a pseudo-coefficient of holomorphic discrete series,
there are contributions from unipotent orbits.

There are seven geometric terms. We can compute them explicitly.
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Proposition 2.3. Assume (N,11!) = 1. Put k = (ki,k2), k1 > k2 > 3 and dj n := dim Si(N).

There exist constants af, aly, by, by, cf, ¢, v1, v}, w1, w) depending only on G such that

(1) (a) (level-aspect) Fix ki, ks. Then as N — oo,

1 S R V1 AT—
— Y, ar() =0 IN )+ 0" N ),
EN penE, ()

(b) (weight-aspect) Fix N. Then as ki + ko — o0,

U

=~

! P
T arp(p) = B1+ B2+ 0O ’
deN FGI-%E:&(N) o) = B B ((’fl — ko + 1) (k1 — 1)(k2—2)>
3 1
2 2
B =0(—1 ), By =0 L )

(k1 —1)(k2 —2) (k1 — ko + 1) (k1 + k2 — 3)

(2) (a) (level-aspect) Fix ki, ko. Then as N — oo,

L 2y _ _ (1 _ 1 l n_—x noLar—2 w1 AT—3
dev Z ap(p”) = (1 p>(1+p2>+0<(a1p 2 +ayp2)N ) + 0 (" N7%).
€HE,(N)
(b) (weight-aspect) Fix N. Then as ki + ko — o0,
Y aF(pQ)z—(l—l)(Hi)+Bl+Bg+0( P )
2 _ _ _ )
WN pe ) p p (k1 = kg + 1) (k1 — 1) (k2 — 2)

b+ pEhy
(k1 —1)(k2—2)

1 1
—= N = I
P 2cC] +p2ey

B =0( CECECELED

)7 BQ:O(

).

Remark 2.4. Here the second main terms A, By come from non-semisimple contributions M =

1010
1 00 , . o c
G, v = Umin = , while By comes from semisimple contributions M = G, §; =
10
1

diag(1,—1,1,—1), since we use a pseudo-coefficient of holomorphic discrete series. We expect
that the second terms A, B1 correspond to mon-holomorphic endoscopic representations whose
global L-packet does not contain holomorphic Siegel cusp forms. However Bs is mysterious and

it seems interesting to figure out what kind of representations contribute to Bs.
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2.1. Comparison with Shin-Templier [5]. Let DlaLrge be the large discrete series of GSp4(R)
so that {D}llﬁ’lg, ;?rlie} makes up an L-packet of [[(G(R)). For * € {hol, large} and each D , .
we choose a pseudo coefficient f¢ € CZ°(G(R)). Put ftOt = hOI + fk“ge7 where we may call
it “stable” pseudo-coefficient. Then ftot is called Euler-Poincaré functlon7 which was considered
by Shin and Templier [5]. The trace tr( ftOt) collects various automorphic forms including those
generating holomorphic and large discrete series representations. On the other hand, all unipotent
orbit contributions are zero. Only elliptic orbital integrals contribute. We have uniform estimates.

Let §k(N ) be the set of cuspidal representations with the given infinity type in the local packet

{DPol DIV Let HE,(T(N)) be a basis. Then Shin and Templier showed

l1,l27 Tyl

LS DirrSping) = 6(0) + 2600).

111
N+k1+ky—o00 dk,N _~
T FeHEL(T(N))

Their result is exactly the same as ours. It is because (1) L-functions of cuspidal representations
in the same L-packet are the same; (2) Contribution from endoscopic non-holomorphic forms is

negligible.

2.2. Classification of cuspidal representations of GSp,. By Laumon and Weissauer, non-
CAP, non-endoscopic holomorphic Siegel cusp forms always appear in pairs with non-holomorphic
Siegel cusp forms (evil twin). More precisely, if 7 = 7o, @ 7f, Too = D}IS}Q (m is non-CAP, non-
endoscopic), there exists a cuspidal representation 7' = 7/, ® 7} such that ml, = D}arlg;’ and
! 7~ my. The converse is true.

Now suppose 7 is endoscopic and s =~ D]f101 . Then by Roberts, there exists a cuspidal
representation 7’ = ml, @7 such that 77, ~ D}arlg; and 7} ~ 7. (Here ~ means weak equivalence,
and in fact equivalent outside the ramification of r.)

However, if 7 is endoscopic and 7, ~ D}?rlg; there does not exist a cuspidal representation 7’
such that 7/ ~ D;?flg; and 7} ~ 7. (For example, we cannot construct a holomorphic Siegel
cusp form from a pair of two elliptic cusp forms of level 1, but we can construct a cuspidal
representation with the infinity type D;flg;.)

Let Sgp(N yewlarge he the space generated by Hecke eigen forms F such that Iy is endoscopic

and (ITg)so is isomorphic to the large discrete series D}Trge Then we have

dim Sy (N)°™18 — O((ky — ko + 1) (k1 + ko — 3)N®T), as ky + kg + N — oo.
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Therefore
dim S, (IN)en-larse
dim S (V)
Also if k; > ko > 3, the only CAP forms are CAP forms from Siegel parabolic subgroup and
k1 = ky. If Sp(T(N))AP is the subset of CAP representations of weight (k, k), k > 3, then

= O(((ky — 1)(ky — 2)) 'N72T), as ki + ko + N — 0.

dim Si(D(N))AY = O(NT*+<k).

2.3. n-level density. In Theorem 2.1, since the support is smaller than (—1,1), we cannot
distinguish the symmetry type among SO(even), SO(odd) and O by one-level density. We need

to compute n-level density.

Let ¢(z1,...,xn) = [[;-, ¢i(x;) be an even Schwartz class function in each variables whose
Fourier transform q@(ul, ...y Up) 18 compactly supported. We define
* log ¢, log ¢, log ¢,
D™ - M- SV d - b
(777 ¢) Zj1,~~~,jn¢ (7]1 o y Vi o S Vjn " o

where Z;h.‘.,jn is over j; € Z (if the root number is —1) or Z\{0} with j, # +7j for a # b, and
cr is the analytic conductor of L(s, 7).

Let §(X) be the set of L-functions in § such that X < ¢; < 2X. The n-level density conjecture
says that

im; D™ (7 x
ey 2 P | olawic) ds,

where W(G(F)) is the n-level densfcy functlon.
There are five possible symmetry types of families of L-functions: U, SO(even), SO(odd), O
and Sp. The corresponding density functions W (G) are determined in [?] (cf. [?]). They are
W(U)(x) = det(Ko(zj, zx)) 1<j<n ,

1<k<n

W (SO(even))(z) = det(Ki(xj, xk))

W(SO(odd))(x) = det (K1 (2, w)) 15520 + ) () det(K (2, @) 120z,

Zk<n 1ZkAv<n
W(SD)(r) = det (K1 (a5, ) 15350 W(O)(a) = S (W(SOfeven))(z) + W (SO(odd)) 2),
sinm(z—y)  sinw(z+y)

m(zr —y) m(z +y)
For n-level density, the root numbers play a role. If ¢(F) = —1, L(s,7r, Spin) has a family

zero at s = 3. Let S,f(F(N)) be the subspace of Si(I'(N)) with e(F) = %1, resp.

where §(z) is the Dirac delta function, and K (x,y) = , € € {+1,0}.
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Let vat(N) be the subspace of Si(IN) with the root number e(7p) = £1. Let HE,;t(N) =
SE(N) N HE(N), and denote |HEE(N)| = d . B
_When N =1 (i.e., level one Case)_, we have_e(ﬂ'p) = (=1)*2. (In this case, k; — ko should be
even.) Hence HEE(I) = HEy(1) when k; is even, and HE (1) = HE(1) when k is odd.

However, when N + k1 + ko — 00, we expect

Conjecture 2.1. Put k = (k1, ko), k1 > ko > 3.
(1) (level-aspect) Fix ki, ko. Then there exists a constant 6 > 0 such that diN = ddpn +
O(N979), and for m = prvp(m),

1 -
pra— Z )\F(m> :5|:|m_% H(l —|—p_2_|_ "'+p_vp(m)>+OE(N_2mc>,
EN FenEf(N) plm
1, if m is a square
where 0 = .

0, otherwise
(2) (weight-aspect) Fiz N. Then diN = 2dpn +ON((k1—1) (ko —2))+ O((k1 — ko + 1) (k1 +
ko —3)), and for m = pr“?’(m),

1 _
— > Ay =som [ e )

+
EN peHE]!(N) plm

tow ((kl—lT(ckg—z)> v ((kl—k2+ Sli’fl*’“?_?’)).

Under the conjecture, we can show that {L(s, 7p, Spin) : F € HE}(N)} is SO(even) type,
and {L(s, 7, Spin): F'€ HE, (N)} is SO(odd) type, i.e.,

W(N) ) |

log ek, N

1 .
. > D" (xp,¢.Spin) = /R (@)W (G (@) dx+0<

EN penpt,

where Gt=SO(even), and G~=SO(odd).

We proved Conjecture 2.1 for paramodular forms.

3. STANDARD L-FUNCTIONS OF GENERAL DEGREE; WORK IN PROGRESS

Let F be a Siegel cusp form of weight k = (ki, ..., k) with respect to I' = T'(N), k1 > ko >
- >k, > r, and let mp be a cuspidal representation of Sp(2r)/Q associated to F. Due to
the work of Arthur [1], there exists an automorphic representation II of G La,+1/Q which is the
transfer of mp. We define L(s, mp, St), the degree 2r 4+ 1 standard L-function of 7w, to be L(s, II).



10 HENRY H. KIM, SATOSHI WAKATSUKI AND TAKUYA YAMAUCHI

Let Tp = Too ® ®),mp. For p{ N, m, is the spherical representation of Sp(2n,Q,) with the Satake
parameter {aip, ..., 0p, 1, a;pl, . al_pl}. Then

L(s,7p,St) = [ [ L(s, mp, St),
p

where if p{ N,

r

L(s,mp,8t) = (1—p ) [T(1 = agpp ") (1 — o, 'p ™).
i=1

Theorem 3.1. L(s,mp, St) has a meromorphic continuation to all of C. Let
A(s,mp,St) = q(F)2Tr(s 4+ €)Tc(s + ky — 1) - - -Te(s + ky — ) L(s, 7, St),

0, ifr is even
where € = , and q(F) is the conductor of 1r and it satisfies N < q(F) < N? 1,
1, ifr is odd
Then
A(s,7mp,St) = e(F)A(1 — s, 7, St),

where e(F) € {£1}.

Lapid showed that e(F') = 1 always. Let f¢ be the pseudo-coefficient of D}ll?.l..,lw where [] =
k1—1,...,l, = k. —r. Put a test function f = f¢ fy in Arthur’s invariant trace formula. Then the
unipotent orbital integrals in the geometric side are estimated by Shintani double zeta functions

[4]. We can show that n-level density of the low-lying zeros of L(s, mp, St) is Sp type.
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