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ABSTRACT. I will report my joint work with Ming-Lun Hsieh on a (con-
jectural) description of cyclotomic derivatives of p-adic triple product
L-functions in terms of Nekovar’s p-adic height of diagonal cycles.

1. THE TRIPLE PRODUCT L-SERIES OF THREE ELLIPTIC CURVES

Let E4q, Ey, E5 be rational elliptic curves of conductor N,. Fix an odd
prime number p prime to N1 NoN3. The triple tensor product
Pf = Tp(E1) @ Tp(E2) @ Ty (E3)(—3)
is a geometric p-adic Galois representation realized in the middle cohomology
of the abelian variety E = E; x Ey x E3, where T,(E;) = <h_m E;[p"] is the
n

Tate module of E;. Let Gq D Gq, D I; be the absolute Galois group, its
decomposition group at ¢ and its inertia subgroup at £. We consider the
central critical twist

V. =pl(2): Gq — GLs(Zy).

Observe that (VF)*(1) ~ V.F.

Fix an embedding to : Q — C. Let Qs be the Z,-extension of Q.
Define a character (-) : Gq — Gq, — 1+ pZ, by (z) = z/w(x), where we
identify Gq, with Z; and denote the p-adic Teichmiiller character by w.
The twisted triple product L-series is defined by the Euler product

LE®x,s+2) = [[L{V,F @ x.5)
4

for p-adic characters x of Gal(Qeo/Q) of finite order, where x is the Dirichlet
character associated to 1o 0 x. If £ # p, then

Le(V,F & x,5) = det(Lg — £ 5100 (x(£) " Froby| (V%)) .
The complete triple product L-series
A(E,s) =T¢c(s)I'c(s — 1)°L(E, s)
proved to be an entire function which satisfies a simple functional equation

ANE,s)=¢(E,s)A(E,4—5s)
1



by the integral representation discovered by Garrett [Gar87] and studied
extensively in the literatures [PSR87, Tke89, Tke92, GK92, RamO00]. The
global sign is given by the product of local signs ¢ = e(E,2) = —[[,e¢(E

Let D be the unique quaternion algebra over Q such that Dg o M\Q(Q@) 1f

and only if e,(E) = —1. Here we put Dy = D ® Qg and D=Dw Q.
If E1, E», E5 are semistable, then Ni, No, N3 are square-free,

3
e(E,s) =eN* SN, €= H Heg(E

(N_ i=1

where N_ and N4 are the greatest common divisor and the least common
multiple of Ni, Ny, N3. Note that ey(F;) = —1 if and only if ¢ divides N;
and FE; has split multiplicative reduction at £.

2. ICHINO’S FORMULA

The theorem of Wiles gives a primitive form
[ee]
fi=>Y_a(n, fi)g" € Sa(To(Ny))

n=1
such that all the Fourier coefficients a(n, f;) are rational integers and such
that E; is isogeneous to the elliptic curve obtained from f; via the Eichler—
Shimura construction, i.e., the Dirichlet series Y 7 a(n, f;)n™® coincides
with the Hasse-Weil L-series L(s, E;). Then ¢4(E;) = —al(q, fi) for each
prime factor ¢ of N;. Let m; be the automorphic representation of PGLy(A)
generated by fi- The eigenform f; determines an automorphic representa-
tion 7P ~ ®v7rl » of (D ® A)* via the global correspondence of Jacquet,

Langlands and Shimizu. Though 77 is self-dual, we write 7PV for its dual
with future generalizations in view. Let X = {Xy}y denote the projec-
tive system of rational curves associated to D indexed by open compact
subgroups U of DX.

For every place v of Q we define the local trilinear form

3
I : ®7T ®7T —C
i=1

by

(2.1) I,(h, ®hl)

— H?:l L(17 T, ad)
C G(22L(L T X o X T,

/ Bo((01,0802803.0) (9)ho@h') dg.
) Jax\p;

The global trilinear form I : @_, (1P ®7PV)— Cis defined to be the tensor
product of the local trilinear forms I,,. This definition depends on the choice



of the local invariant pairings B, : ®?:1 (ﬂ'gv & Wﬂv)% C. Normalize the
local pairings by the compatibility

®?:1< ) >z = ®pBy.

Here the Petersson pairing (, ); : 77 @ 7PV — C is defined by

(hay 1) = / ha(g)hl(g) dg.
A% DX \(DRA)X

Define the period integral 227 : ?:1 7TiD — C by
P a0 he) = | 1 (9)ha(g)hs(9) dg.
AXDX\(D2A)*
For a local reason 2" vanishes on ®§’:1 7TiDl unless D ~ D’. Ichino proved
the following formula for the central critical value in [Ich08]:
A(E,2)
H?:l A(l, T, ad)

where A(s,m;,ad) is the complete adjoint L-series of ;.

2P (h) 2P (1) =27(q(2)° I(hoh),

3. THE COMPLEX DERIVATIVE

Let ¢ = —1. Then Ichino’s formula is trivial as L(E,2) is automatically
0 and 2P vanishes. The main object of study in this case is the central
derivative L'(E,2) of L(E,s). Now D is indefinite and X is the (compact-
ified) Shimura curve. We regard Xy as the codimensioin 2 cycle embedded
diagonally in the threefold X f} One can modify it to obtain a homologically
trivial cycle, following [GS95]. Gross and Kudla conjectured an analogous
expression for L'(E,2) in terms of a height pairing of the (f1, fa, f3)-isotypic
component of the modified diagonal cycle.

Let D be the definite quaternion algebra over A whose finite part is iso-
morphic to D. Since D is not the base change of any quaternion algebra over
Q, it is incoherent in the sense of Kudla. The projective limit X of { Xy} is
endowed with the action of DX. The curve Xy has a Hodge class Ly, which
is the line bundle whose global sections are holomorphic modular forms of

weight two. Normalize the Hodge class by &y := %@X/Ng(lfﬂ, where

dzdy
1(Xy) := .
vol(Xy) = [ .-

It is known that deg Ly = vol(Xy) and that the induced action of D* on the
set of geometrically connected components of Xy factors through the norm
map Ng . DX — QX. Hence the restriction of £y to each geometrically
connected component of Xy has degree 1.

For any abelian variety A over Q the space HomgU (X, A) consists of
morphisms in Homqg (X, A) ® Q which map the Hodge class { to zero in
A. Since any morphism from Xy to an abelian variety factors through the




Jacobian variety Jy of Xy, we also have HomgU (Xy,A) = Hom%(JU,A).
We consider the Q-vector spaces

o; = l_i%HomgU(XU,Ei), o) = l_i%HomgU(XU,Eiv).

The space o; admits a natural action by D*. Actually, 0;,0qQC ~ ®;7T,£1 from
which Wfq gains the structure of a Q-vector space. Here the archimedean
part DX acts trivially on o;.

Let hi,U :Jy — E; and hé’,U : Ju = E; be Q-morphisms. The morphism
hQ/U . E; — Jy represents the homomorphism hf:U . B ~ Pic"(E;) —
Pic?(Jy) composed with the canonical isomorphism Pic®(Jy) ~ Jy given
by the Abel-Jacobi theorem. By Lemma 3.11 of [YZZ13]

Bi(hi @ h}) = vol(Xv) "'hy iy o b, € Endg(E;) = Q

is a perfect D*-invariant pairing o; ® 0 — Q. Let B" := ®§’:1BE and define
the trilinear form I% € Homgp, |, 5« (®,‘?:1 (0;®0)),Q) as in (2.1).

For each U we let A;; be the diagonal cycle of X?] as an element in the
Chow group CHQ(X?]) of codimension 2 cycles. We obtain a homologically
trivial cycle Aye, on X (3] by some modification with respect to & as con-

structed in [GS95]. The classes A;J,éu = % form a projective system
and define a class Al € lim CH?(X3)°.
[ U

Given h; € o; for i = 1,2, 3, we get a homologically trivial class
h.Al € CHY(E)", h=hy x hy X hs.

One can consider the Beilinson-Bloch height pairing ( , )gp between homo-
logically trivial cycles on E and EY.

The following formula was first conjectured by Gross-Kudla [GK92] and
later refined by Yuan, S. W. Zhang and W. Zhang [YZZ]:

Conjecture 3.1 (Gross-Kudla, Yuan-Zhang-Zhang).

N(E,?2)

(h.AL WA B = 2°(q(2)? I'(h e ).

This formula is a higher dimensional analogue of the Gross—Zagier for-
mula. A significant progress was given in [YZZ] .

Remark 3.2. (1) Let CH?(E)g be the subgroup of elements with trivial
projection onto E; x Ej. Lemma 5.1.2 of [Zhal0a] gives the decom-
position

3
CH?(E)" ~ CH*(E), @ € 2CH'(E;)°
i=1



which is compatible with the Kiinneth decomposition
3
HE(E g, Qp(2)) ~ @¥ HY(E; g, Qp)(2) & @D 2HA (Ei g, Qp)(1).
i=1

Since CH!(E;)° is nothing but the Mordell-Weil group of F;, the
BSD conjecture gives rankCH!(E;)? = ords— L(Hé}t(Ei/Q,Qp),s)
and the Beilinson-Bloch conjecture gives

rankCH*(E)° = ords—z L(H(E jq, Qp); 5),
rankCH?(E)y = ord,—s L(E, 5).

If L'(E,2) # 0, then h*Az is not zero in CH?(E)? for some h €
®?:101' by Conjecture 3.1.

(2) Let By = Ey = F3 = E. Then L(E,s) = L(Sym®FE, s)L(E,s — 1)%.
If it has odd functional equation, then its order at s = 2 is greater
than 1, which is compatible with Proposition 4.5 of [GS95].

(3) Let f1 = fo # f3. Then L(E,s) = L(Sym®f; x f3,8)L(f3,s — 1) and
hence L'(E,2) = L(Sym?f; x f3,2)L'(f3,1) (see §5.3 of [ZhalOb)).

4. CYCLOTOMIC p-ADIC TRIPLE PRODUCT L-SERIES

Fix an odd prime number p which does not divide N* and such that
none of a(p, f;) is divisible by p. Equivalently, E;, Fo, E3 have good ordinary
reduction at p. The Gq,-invariant subspace

Fil'T,(E;) := T,(E;)'* = Ker(T(E;) — Tp(E;/F))

fixed by I, is one-dimensional, where E;/F, denotes the mod p reduction of
the Neron model of E;.
The Galois representation VpE satisfies the Panchishkin condition in [Gre94,

page 217], i.e., we define the rank four G, -invariant subspace of VpE by

Fil* V.7 =Fil’T,(E1) ® Fil'T,(E2) ® T,(E3)(—1)
+ Tp(E1) @ Fil°T,(E) @ Fil'T,(E3)(—1)
+ Fil'T,(Ey) ® Ty(Es) ® FilOT,(F3)(—1).

The Hodge-Tate numbers of Filﬂ/;,E are all positive, while none of the
Hodge-Tate numbers of VpE / Fil*VPE is positive.

The author and Ming-Lun Hsieh have constructed a function L, (E) on the
space of continuous characters x : Gal(Qoo/Q) — 6; having the following
interpolation property

ANE ®x,2)

o —\3 JTVE o
Ly(E,R) = e, A(177%&01)(\/_1) EFIITVF @ x)




for all finite-order characters x of Gal(Qn/Q) in Corollary 7.9 of [HY],
where the modified p-Euler factor is defined by

LFiITVE 2 x,0) 1
e(FIITVE®x) - L(FITVE @)V, 1) Lp(VF @ x,0)°
It satisfies the functional equation

Ly(E,T)=¢(N. )" (N Ly(B,(1+T)"! - 1).

EFIITVE 0 ) =

5. THE p-ADIC DERIVATIVE
Letting e = —1 and T' = 0, we get
L,(E,1)=0.

We consider the cyclotomic derivative
S
L) (E,1) := lim LyB, (),
s—0 S
The conjectural formula for this cyclotomic derivative has the same shape
but the real valued height is replaced by a p-adic valued height.

The theory of the p-adic height pairing was developed by Néron, Zarhin,
Schneider, Mazur-Tate, Perrin-Riou, Nekovar. The p-adic height pairing
depends on a choice of the p-adic logarithm on the idéle class group A*/Q*
and a choice of a splitting as Qp-vector spaces of the Hodge filtration of
the de Rham cohomology of E over Q,. We take the Iwasawa logarithm
lg : A*/Q* = Q. Since V;DE satisfies the Panchishkin condition, we have
a natural choice of the splitting obtained from Fil+VpE . We may therefore
say that there is a canonical p-adic height pairing {, )nex on homologically
trivial cycles on E.

Conjecture 5.1.
(he AL LA Nek - 250 (22 (V=) E,(FITV,E) = Li(B, ) F(h & 1)
for all h € @2, (0, ® 0)), where (q(s) = 2(21)~5T(s) 1.5, n".
Remark 5.2. The p-adic height factors through the Abel-Jacobi map
CHY(E)’ © Q) — H}(Q, Hi(E /q. Qy(2))).

When L,(E, 1) # 0, Conjecture 5.1 gives a nonzero element of the Bloch-
Kato Selmer group of the Galois representation V;,E .
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