ON THE HEAT KERNEL ON FORMS ON THE
HEISENBERG GROUP

W. BAUER, K. FURUTANI, C. IWASAKI

ABSTRACT. In this note we give an expression of the heat kernel on forms on the Heisenberg
group. This expression is obtained by using the fundamental solutions of a series of systems
of ordinary differential equations of second order. This study generalizes previous results in
the case of one-forms on the Heisenberg group.

1. INTRODUCTION

There are many studies about both, the Laplacian Ag and sub-Laplacian Ay, acting on
functions on the Heisenberg group Hy, 1. In this note we study the heat kernel of the Hodge
Laplacian acting on forms on Hl,, 1 (see also [1, 2]). Our aim is to obtain an exact expression
of this heat kernel. We expect that this result will enable us to study the Laplacian on the
Heisenberg group under an adiabatic type limit similar to the analysis performed by M.
Rumin in [3] and [4].

It is natural to consider a one-form as a (2n + 1)-vector as in the paper [2] by D. Miiller,
M.M. Peloso, and F. Ricci. In Section 4 we show that the problem of finding the heat kernel
on one-forms is reduced to the solution of a system of ordinary differential equations of size
(2n+1) x (2n + 1). We give an expression of the heat kernel by using operators defined in
terms of the Laplacian Ag. More precisely, we use the fundamental solution of an ordinary
differential equation of second order with Ay as a parameter (see Theorem 4.1). We show
that this mechanism can be applied to calculate the heat kernel on forms. That is, the
heat kernel on forms is obtained inductively by using the fundamental solutions of ordinary
differential equations of second order. This observation is the main result of the present work
(see Theorem 7.1).

The structure of the paper is as follows: we introduce some notations in Section 2. In Sec-
tion 3 we give an expression of the Heisenberg Laplacian on p-forms of any degree (Theorem
3.3). We provide an exact formula of the heat kernel on one-forms with a rough sketch of a
proof in Section 4. In Section 5 some properties of the operators are given which appear in
Theorem 3.3 and are necessary to obtain a system of equations in Theorem 6.1. In Section 6
we make an Ansatz for the solution of the heat equation in the form given in Section 3. By
using results from Section 5 we derive a system of operator-valued ODEs for the coefficients
in this Ansatz. After introducing new variables {w;(t), z;(t)} Theorem 7.1 then states that
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the problem is reduced to solving certain systems of operator-valued first order ordinary dif-
ferential equations inductively. In Section 8 we give an expression of e~*"i (see Definition 7.2)
which is an essential part of Theorem 7.1. In the last section we obtain an exact expression
of X;(t), the starting term of the series of the inductive equations in Theorem 7.1. From the
solutions of the equations in this theorem we can in principle derive an exact form of the
heat kernel of the Laplacian on p-forms. This generalizes the expression in Theorem 4.1 in
the case p = 1.

2. HEISENBERG LAPLACIAN ON p-FORMS
Let Hy,+1 denote the (2n + 1)-dimensional Heisenberg group with coordinates
(T1, Ty Y1, 3 Un, 2) € R X R" X R = Hy,yq
and a frame of left-invariant vector fields
X=Xy, , X, Y1, Y, 7]
defined by

. 0 yia . 0 a:l(? _2 .
Xi_8m1_2827 Yl_c‘?yi+282’ Z_c%7 (F=1,---,m).

The dual basis is given by © := [0x,,- -+ ,0x,,0y,, - ,0y,,07] where
1 n
HXi = d.@i, le = dyi, QZ =dz+ 5 ; <yldac1 — avldyl)
Therefore we have
1 n
Let k € {0, -+ ,2n+ 1} and consider the star-operator:
1 QF (Hapsr) = Q¥ F (Hapin).

More precisely, with a permutation o = (i1, -+ ,i2,11) of (1,-+- ,2n + 1) we find:
(2.2) #(0 Ao NO;,) =sgn(o)b,, A A0

We denote the de Rham complex as follows:

ik+1 i2n+1 N

dO dl d2n
0 —— QO(Hgn+1) —— Q! (H2n+1) > e > Q2n+1(H2n+1) — 0.
With £ =0,---,2n and in a standard way we define
5k . Qk—H (H2n+1) — Qk<H2n+1)

through the relation
(5’%01,&)2) = (wl, deQ).
Then it is well-known that
5k _ (_1>(2n+1—k)(k+1) % d2n—k .
Recall that the Hodge Laplacian Ay : Q¥ (Hgpy 1) — QF(Hy,y 1) is defined by
Ay, = FdF + dF 1okt
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In the following we use the notation
W;=X;, Wy, =Y, Wony1 =2 (j=1,---,n),
Qj:9Xj, «9”+j:9yj, 6l =g, (j=1,---,n).
The Riemannian metric g on THy, 1 and T*Hs, ., is defined by assuming that X and ©

form an orthonormal basis, respectively. Let V be the Riemannian connection, that is V is
the unique connection which satifies

Vg=0, T(X,)Y)=VyxY -VyX—-[X,Y]=0.
Definition 2.1. Let cﬁj fori, g, k=1,---,2n+ 1 denote the coefficients of V defined by
2n+1

Vw W= ;Wi

k=1

Lemma 2.1. The coefficients cﬁj are constant with the values:

2n+1 __ i i _ 1
Ciitn = Citn2n+1 = Contli+n = 9
C2n+1 _ i+tn i+n _ 1

itng — Ciontl = Cont1i — — 5
All other coefficients cfj are zero.
By the previous lemma we have the following formula for the connection:

Corollary 2.2.

1 1
v‘/V]' W7+’n — §W2n+17 ij+n Wj — _§W2n+17
1 1
VW]‘ W2n+1 = vW2n+1 W] = - 5 Jj+ns ij+n W2TL+1 = VW2n+1 I/I/]-l—n = §W] .

3. REPRESENTATION OF A
We use the following notations:
arw =e(0)w = 0% Aw,
(@) (Y, Yp1) =((Wa)o) (Vi Y1) = w(Wa Vi, Vi),

Then we can write

2n+1 2n+1
d=>e(0)Vw,, 0=—> 1(Wa)Vu,.
a=1 a=1

The following proposition collects some fundamental equations for aq, aj.
Proposition 3.1. The operators {aa, a3} 1<ap<2n+1 satisfy the relations:
aqag + agaq =0,
anas + aga, =0,
Ua@f + a5aq = dup.
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According to Corollary 2.2 we have the formula below for V., :

(31) VWa:Wa_Gav (a:1727"'72n+1)’
where for j=1,--- n:
1, *
Gj = 2 (07 1n2ns1 = Q3 41054n)
1, ]
Gjtn = —3 (650211 = G011

1 n
_— * . —_— * .
Gont1 = ) E : (ajaHn aj+nay) :
Jj=1

Definition 3.1. Throughout the paper the operators below will play a role:

2n 2n
dn :Z (@;W;), o =- Z (a;W;), Ay =dudy + opdy,
j=1 j=1

2n
(arren), Q= ahaa.
a=1

For example, a;W; acts on a p-form ¢ = f0% A2 A --- 6% in the following way:
(@W)(0) = (Wy )by A6 A9 A0,
By (3.1) we have:
Proposition 3.2.

d=dyg + aZ,H_lZ + Lagnq1,
0 =0 — a2n+1Z —+ a§n+1A.

Finally, we represent the Hodge Laplacian Ay for any k in a closed form. Put
P:=Ay— 7% A:=[0g, L], B:=][Adyl
Theorem 3.3. For all k € {0,---,2n+ 1}:
A=Ay =P+a5, B+ Aayi1 + (n — Q)as, 1 a2n1 + LA.

We uniquely can decompose any p-form ¢ as ¢ = u + 0z A v where u is a p-form and v is
a (p — 1)-form both not containing 67. According this resolution we have:

Corollary 3.4.
Au+0z ANv)={(P+ LANu+ Av} +0; AN{(P+ LA +n—Q)v+ Bu}.

The heat equation on p-forms

(% + A) (u(t)+ 60z Av(t)) =0, u(0)=Us, v(0)=1V,
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is equivalent to a system of equations:

(% + P+ LA) u(t) + Av(t) = 0, u(0) = U,

d
<£+P+LA+n—p+1>v(t)+Bu(t):0, v(0) = V.

In the following it will be convenient to use complex vector fields Z;, 7j instead of X, Y;:

Definition 3.2. For j =1,--- ,n put
1

. —= 1 ,
Zj = E(Xj —iYj),  Zj= E(Xj +1Y;), Wops1 =2
1 P |
C] = E(QXJ- +@9Y]), C] = E(exj — ’Lgyj)7 C = 827

* p— — J—

b i=e(G), bj=uZy), byi=el(y), by=uZ)).
According to our previous notations we obtain for the Laplacian on forms:
A=Ay — 2%+ Aagyyr + by 1 B+ (n— Q)ab, 1asny1 + LA
with

AH:—Z(ijj +7ij)—|—MZ, M:iZ(B;Ej_bj*bj)’
j=1 J=1
A=i) (bjZ;—b/Z;), B= ZZ (0;Z; = b;Z;)
j=1 J=1
Q=D (@b +b;), L=i) Kb A=i) bb;
j=1 Jj=1 J=1

Remark 3.1. The identity P = Ag + M Z holds, where
Bo==D (XF+Y7) -2

j=1

denotes the Laplacian on 0-forms.

4. THE HEAT KERNEL ON ONE-FORMS

Consider the fundamental solution h = h(t) of the following differential operator:

d? d d

We will see that the heat kernel of the Laplacian on one-forms can be expressed in form of
an operator-valued matrix. The function h appears in the definition of the matrix entries.
In the present section we give a rough sketch of this fact.



6 W. BAUER, K. FURUTANI, C. IWASAKI

Set

Zy Z
Z=| |, zZ=| :
Zn Zn
Especially for 1-forms and with respect to the basis

[ngjagn+ij792n+1< pj=1,--,nwhere 955 Gn+j> Gant1 € COO<H2n+1)

the Laplacian Ay can be written in a (2n + 1) X (2n + 1) matrix form:

Ao —iZ 0 _iZ
B Aotn _i'Z it Ag+n

Definition 4.1. (1)

n
n2

C=\[Dot+ 70 A== (X]+Y7).

J=1

(2)
h(t) = e ™2C " sinh(Ct), ®(t) = /lt h(s)ds.

Characterization of h and ®: Consider the second order differential operator:

2 d
L= p7el + ne Ay.
Then h(t) and ®(t) satisfy the following equations:
Lh(t) =0, h(0)=0, he(0)=1,
LO(H) =1, ®0)=0, &(0)=0.

Theorem 4.1. The heat kernel E(t) on one-forms is given by:

o H(Bo—iZ) 0 0 Zat)'Z ZB()'Z Za(t)
B(t) = 0 et o | 4| Z)Z Za()Z Za(t) |,
0 0 0 at)Z  a)'Z  clt)

where

aft) = e‘mo{@(t) —2h(t) e-“z}, B(t) = e top(h),

a(t) = e Ao (i% + Z) d(t), cft)=e Ao (% + Z) d(t).

Here and in some of the formulas below we denote by x the convolution product, i.e.
t
(h(t) * e—itz) (t) = h(t) x e 2 .— / h(t _ S)B_iszds,
0

Note that there are various ways to define e t20%2) which all lead to the same operator.
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Outline of proof: Assume that the heat kernel E(t) is of the form

My My by
E(t)=| My My by
ta]_ taQ C

Then the components of this matrix satisfy the following equations:

d
(41) (a + A() - ’LZ) M11 — iZtal = O, Mll(o) = I,
(42) (% + Ag —+ ZZ) Moy + iztal =0, M21<0) =0,
d _
(4.3) (% + Ao + n> (‘ar) —i ("ZMyy =" ZMy) =0, a;(0) = 0.

According to (4.1) we have:

t
My :e—t(AO—iZ)_i_i/ e~ (t=9(B0=iZ)7ta (5)ds
0

t
_ eft(AofiZ) +iZ (/ e(ts)(Ao-i-iZ)(tal(S))dS)

0
— ¢ 180D 4 Zhm, (1)

with
t

(4.4) my (1) = z/ e‘(t—s)(Ao-ﬁ-iZ)al(S)dS.
0

Similarly, by (4.2):

t
My = —7;/ e~ =) (BotiD) 7t (5)ds
0

t
= —iZ (/ e_(t_s)(AO_iZ)(tal(5))d$>
0

with
(4.5) my(t) = —i /Ot e~ t=9)(B0=iZ) g, (5)ds.
According to (4.4) one obtains:

(% + A + iZ) m;, (t) =ias(t), my(0) =0.
Similarly, by (4.5)

(% + Ay — iZ) my(t) = —iay(t), mz(0)=0.
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Hence (4.1)~(4.3) are reduced to

d
(46) a + Ao + ZZ) m,; — zal = 0 ml(()) O,

(4.7) (dt +AO—ZZ> my +ia; =0, my(0) =0,

(4.8) ( ot Al n> (ar) —ie "B DZ i (‘ZZm; ~' ZZmy) =0, a;(0) =0,

where we use
YZMy, !t ZMyy =" Z(e "B 1P ZZ0m, (t) —' ZZ'my(t)
= (e "ATINZ Lt 77 my (t) — ZZimy(t).
By (4.6)~(4.8) we may put
my(t) = e A(NZ, my(t) = e B Z, ay(t) = e Ma(t)Z.

Then we obtain
(% ; iZ) G(t) —ia(t) =0, a(0) =0,
(% - Zz> B(t) +ia(t) =0, pB(0) =0,

(i 7) 0 e+ G(a 50 -

Here we have applied the relation:

_ 1 _ 1
1727 = -5 (Agwp +inZ), 'ZZ = -3 (Agup —inZ) .

We obtain a part of the assertion of Theorem 4.1 via the next lemma.
Lemma 4.2. The above system of equations is solved by:

a(t) = ®(t) — 2 h(t) x e,

B(t) = (1),

a(t) = Zo(t) +ih(t).
Proof. Set

21(t) = =(a—F), ()=

(& +pB).

DO | —

1
2
Then we have

d e
aazl —i(a—Zy) =0, x1(0)=0,

d
ayl + ZZCEl 07 yl(o) = 07

d .
dta _ltZI + iAsubxl + n(d B Zyl) - 07 d(0> =0
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These equations lead the following equation for xq(¢);

d2 d —itZ d
(49) — +tNn— — Ag Il(t) +e I = 0, 1'1(0) = O, E.fl((]) =0.

Then we have

and

B(t) = yi(t) — () = (1),
a(t) = —i%xl(t) + Zy,(t) =i (% + iZ) (h(t) * e 7)) + ZD(t)

= iho(t) + ZD(t).

It is easy to see that:
My = My, Mz = Mz, az=a;.

Now for by, bs, ¢ we have the following system:

(4.10) <% + A — iZ) by —iZc =0, by(0) =0,
(4.12) (% + A+ n) c—i(*Zby —t Zby) =0, ¢(0) = 1.

Using a similar argument for M;;, My; and a; we find:
by = Ze t20by (1), by = ZeR0by(t), ct) = e R0(t)
with

bi(t) = a(t), bo(t)=alt), &)= (— - ZQ) d(t).

Then we get the assertion of theorem.
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5. PROPERTIES OF OPERATORS
We list some properties of the operators which were introduced in the previous sections:

Proposition 5.1. The operators defined above fulfill the following relations:

(5.1) Adg +dgA=0, Bdy+0yB=0,

(5.2) (dy)?=A*=—LZ, (0y)*=B*=AZ

(5.3) [B,L] = —dg, [A Al =—dy

(5.4) [dy, L] = [65,A] =0, [AL]=[B,A]=0, [Ap L]=[Ayg,A]=0

(5.5) AB+ BA= Ay, Ady+ogA=(n—-Q)Z, Bdy+duB=—(n—-Q)Z,
(5.6) [P.dy] = [Ay,du] = —AZ, [P A=Ay, Al=dyZ,

(5.7) [P,0n] = [An,0u) = —BZ, |[P,B]=|[Ay,B)=duZ.

6. THE HEAT KERNEL ON p-FORMS

For the rest of the paper we study the Laplacian acting on p-forms on the Heisenberg group
and we assume that 0 < p < n. We make a suitable Ansatz and assume that the functions
u(t) and v(t) in Section 3 are of the following form:

u(t) = e Pag(t) + Z u;(t)
v(t) = e Py Z v;(t

where

U2k t

) = Lk ( (1) — A dHe-tP@k(t)),
)= LF(A ( P rosr(t) + dge P Fap (t)) ,
) =L~ ( P yor(t) + dHe_tPch(t))a

Vopp (t) = LM (Le_tpy2k+1(t) —A dHe_tP§2k+1(t)>7 k>1,
and {z;,Z;,y;,9,} for 0 < j < pare (p— j)-form valued functions on the real line. Moreover,
we note that {z;,%;,y;,9;} vanish for all j > p+ 1. We may set
;=0 (j<-1), ;=0 (j<0), y;,=0 (j<0), ;=0 (j<1).
The initial conditions are
z0(0) =Uo, 4:(0) = Vo,
z;(0) =0, ;(0)=0 (1<j<p), w;(0)=0, 7(0)=0 (2<j<p).

t

VoL t

(
U2k+1 (
(
(
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If p=1, then
u(t) =e " Pag(t) + Ae P ay(t) + dye i (1),
v(t) =e Py ().
If p=2, then
u(t) =e Pag(t) + Ae Pay(t) + dge TE1(t) + Le P aq(t) — Adpe P iq(t),
v(t) =e Ty (t) + Ae™Tya(t) + dge (1)
Definition 6.1. For j =0,1,2,--- we put
a;=jn—=p+j), bj=jn—p+j+1)
Definition 6.2. (1)

1
a :%(A +idy), @ 5(.4 —idy),

5:53+@m 15 %w—wm.
(2)
Tg(t) :ﬁe—itZ7 T[}(t) — BeitZ7
Tp(t) =Ts(t) + Tp(t), T, (t) = —i (T(t) — Tp(t)) -

11

Using Proposition 5.1 we obtain the following theorem on a relation between the coefficients

of u(t) and v(t):
Theorem 6.1. (I)

d N -
<£ + bk) $2k+1(t) — Zl‘gk+1 (t) + y2k+1(t) — TB(t)l’Qk(t) + Al‘gk_l(t) =0,

-1
and  @9,41(0) =0, 0<Ek< []?T}j

d . . - -
(a " bk> Bt (8) 4 Z (a1 () & Gaes (1)) — To (D + Ay 1(8) = O,

-1
and i’Q]H,l(O) = 0, 0 S k S [])T:|v

d - -
(E + ak+1) Yorr1(t) + Ag (vor41(t) + Gorra(t) — (n —p +k + 1) 222141 (2)

= Tsy () y2x(t) + Tp(t) (v2x(t) + Gox(t)) + Ayar—1(t) =0,

-1
and  yop11(0) = 9oV, 0< Kk < [pT}j

d 5 5 s
<% + ak) Gokt1(t) — ko1 (t) + Tp(t)Tok(t) + Afiak—1(t) =0,

-1
and  fo41(0) =0, 1<k< [JDT}
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(1)

((Zﬁ + bk) mgk(t) + AHfgk(t) - Zygk(t) + TB(t)fgk_l(t)

— T(;H (t)ng_l(t) + Al‘gk_2<t) =0,
and mgk(O) = (Sk,oUg 0 S k S [g:|,

d . N -
(dt + bp— 1) Top(t) — Gor(t) + AZop—o(t) =0,

and To(0) =0 1<k< [g}

(55 + 00) 1al0) = Z0tal0) = (0= p-+ 1) Ziw 1)
— Tp(t) (o1 (1) +

and y9,(0) =0, 1<k< [g},

+ Top—1(t)) + Ayar—a(t) =0,

(51 00) 30) + Zalt) = Koa(t) = Ba(t) = Ty (0as 1)

— Tp(t)ZTor—1(t) + Afor—2(t) = 0,
and  §ox(0) =0, 1<k< [g}

7. REDUCTION TO A SYSTEM OF THE EQUATIONS
We note that

i) (t) = Uo.
Indeed z is characterized by the equation:

d

%.ro(t) = 0, wo(O) = Uo

Definition 7.1. Define w;(t) and z;(t) for (0 < j < p) as
wi(t) = ;(t) +4;(t),  z(t) = y;(t) — 2,(t)
We note that
zo(t) = wo(t) = Uy, wi(t) =a1(t), 20(t) =0, 2(0)="Vp
Definition 7.2. (1) Define vectors X;(t) for 0 < j < p as follows:

Wa41(t) Tor (1)
Xoenl) = | 200 gz 0 xa= | 20 ] w20
Top1(t) 2ok (1)
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(2) Define 2 x 2 matrices N; (1 < j <p) and 4 x 4 matrices Nj (1<j5<p) by:

bi_ 1 1
N2k=< ’le bk)’ N%HZ(% ak+1>’

by 1 =1 0 ap 1 0 0
> o P bk 0 —Z > . P Af+1 0 0
N2k — 0 0 ap 0 ) N2k+1 - 7 0 bk 0 7(k Z 0)
0 0 0 ag 0 1 0 b
Remark 7.1. We have:
0 l’l(t)
U() 1 (t)
X t — X t = -
0( ) Us ) 1( ) Il(t)
0 ml(t)
The following statement follows from Theorem 6.1:
Theorem 7.1. (1) X (t) solves the initial value problem:
0 0
d ~ Ts(t)U . 1%
<£ + Nl) Xl(t) + B(O) 0 =0 with Xl(O) = OO
0 0

(2) Using the above notations we obtain the following equations for 2 < j < p:

0
(% + Nj) Xj(t) + S()X;1(t) + AX;»(t) =0 with  X;(0) = 8
0
and
0 0 0 0
0 0 TB(t) _TH<t)
SO\ “mm 0 00
~Ts(t) 0 0 0

We present an exact form of X;(¢). Then X;(¢) for 2 < j < p is given in the form:

Xj(t) = —e_th * (S(t)X]_l(t) + AXJ_Q(t)>
Moreover, we obtain y,(t),9,(t) (1 < j < p) as follows:

yi(t) = 2 (t) + Z;(t),  §;(t) = w;(t) — z;(¢).

13
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8. THE FORMULA FOR e Vi

In this section we give the exact form of et (1<j5<p).

Definition 8.1. (1) Define a system of p second order ordinary differential operators L;

where 1 < 7 < p:
d d P
- = — — <Ek< |=
Lo (dt+bk_1> (dt+bk) P, 1_/<;_[2},

d d —1
L2k+1:<a+ak> <E+ak+1> —P, 0<k< [p_}

(2) Let h;(t) for 1 < j < p be operator-valued functions such that

L;hi(t) =0, h;(0)=0, (%Iy) (0) = 1.

(3) Define ®;(t) for 1 < j <p by:
Doj = hap + €,
byt

Dopt1 = hopy1 x e

Proposition 8.1. (1) The functions ®;(t) satisfy the equations:

<% + ak) Lo @ay(t) = 0, oy(0) = 0, <%‘1’2k) (0) =0, <j_t22(1)2k) 0) =1,

d d d?
(E + bk) Loj1Pop1(t) = 0, Popp1(0) = 0, (E(I)Qk-i-l) (0) =0, <_(I)2k+1> (0)=1.

(2) The fundamental solutions e=*Ni (1 < j < p) have the form:

a _ _
€_tN2k+1 = < dt + A+ 1 h2k+1 (t)v 0 S k S |:p 1:|7

-P %—kak 2
d
e (e L V), 1<k <[]
o (g 5, e 1ss[f]

(8) The fundamental solutions et (1 < j <p) have the form:

- —tNaog 41 0 -1
—tNopy1 € p i|
¢ ’ < Gop1(t) e I, ) » Osks [ ’

i _ ( e~tNok Gop(t) )7 1<k< []_7}7

0 e‘“k’tlg
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where G;(t) are 2 x 2 matrices which are defined by

Gorr1(t) = ( _Z(%; ar+1) _(%i ar) )‘I’2k+1(t)

(E e

Gatt) = (G A Y auln = (e

2)

Remark 8.1. By using the operatorP the functions h;(t) for 1 < j < p can be written as
follows:

O =

sinh {t\/}l(bk —by)? P}
¢gm—m4y+P
sinh {t\/%(ak+1 —ag)?+ P}

\/%(akﬂ —ap)?+ P

hai(t) :e—%(bkﬂ-i-bk)t

’

Roki1 (t) :e—%(akﬂ +ag)t

9. AN EXACT FORM OF X;(t)

In the present section we give an exact form of the function X (¢). It satisfies the following
equation:

0 0
<N T (1)U v
<a i Nl) Xale) + B(O) “1=0 Xi(0)= OO
0 0
Therefore, we have
0
X0 = 3, 0) — et | ToOUs
0
Theorem 9.1. The function X1(t) has the form:
_df%kl (t)
L5k (t)
= dt?
Xi(t) oo |
— gk ()

where

Fa(t) = 100V — (B1(2) * T (1)) T
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Proof. We have
0 —h ()W —ﬁ@l(t)w
o L I O &, ()W
0|~ | Ze.w 7D, ()W
0 —43, ()W —40, ()W
and
0 — (5Pu(1) * Tp(t)) Uo 4 (@1(1) + Ty (1)) Uy
s, | Te0U | _ | (5@« To®) Us | _ [ & (@1(0) = T(t) Uy
0 Z(®1(t) * T(t)) Uy Z(0u(t) % Tp(t) Uy |’
0 — (L, (t) % T(t)) Uy — & (®1(t) x Tp(t)) U
where we used
d
®,(0) = aqh(()) =0
O
Corollary 9.2. (1)
0lt) = —Sh(0, 50 = Zhe). (o) = (5 +2) ko)

dt

(2)
dt

vy (t) =e P (d—2 + ZQ> ki ().

uy(t) = — ae”*F <i - iZ) ki(t) — ae™ <% - z’Z) ki (1),

dt?
According to Corollary 9.2 we obtain the exact form of the heat kernel for one-forms which
coincides with the expression in Theorem 4.1 since a; = n for one-forms.

. sinh {t,/ia% —I—P}
hi(t) =e 2! , (ag=n—-p+1),
\/1ai+ P

Remark 9.1.

(5—; + ZQ) k() = (5—; + ZQ) Dy (1) Vo — (% - iZ) D, (1) BU, — (% + iZ) ©1(t)BUs,
(% + ¢Z> ko (t) = <% + iZ) By (t)Vo — B1 (1)U + {@1(t) — 2 (ha(t) * €*2) ()} BUE,
<% - iZ) k(1) = (% - iZ> B (1)Vo — P1(t)BUG + {P1(t) — 2 (ha(t) x ™) () } BUL,

where we use

iZ (P1(t) * e ™7) (t) = D1(t) — (ha(t) x e7"7) (V).
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