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Abstract. We review an approach to the index theory of operator algebras as-
sociated with Lie groups of quantized canonical transformations. Main points are
an ellipticity condition ensuring the Fredholm property, the definition of localized
algebraic and analytic indices and the proof of their equality. This framework en-
compasses many well-known index problems, such as the classical theory on closed
manifold, the Atiyah-Weinstein problem and the index theory for operators with
shifts.
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1 Introduction

Given a closed manifold M and a discrete group G of quantized canonical transformations
®,, g € G, we are developing an index theory for the algebra of operators of the form

D=) Dy®,+K

9

on L?(M). Here, the D, are zero order pseudodifferential operators on M, only finitely
many different from zero, and K is in the ideal ¢ (L?*(M)) of compact operators.

We present suitable notions of symbols and ellipticity and show the Fredholm property
of elliptic elements. As a first step towards an index formula, we then focus on the case
where G is a finite extension of Z%, d € Ny. We introduce the localized algebraic index of
the complete symbol of an elliptic operator. With the help of a calculus of semiclassical
quantized canonical transformations, a version of Egorov’s theorem and a theorem on
trace asymptotics for semiclassical Fourier integral operators we show that the localized
analytic index and the localized algebraic index coincide. As a corollary, we express the
Fredholm index in terms of the algebraic index.
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2 Quantized Canonical Transformations

Let M be a closed manifold of dimension n. Its cotangent bundle T*M carries a natural
symplectic structure, given in local coordinates by the form

w=> da) NdE.
j=1

We let Ty M = T*M \ 0 be the cotangent bundle with the zero section removed. Recall
that a symplectomorphism is a diffeomorphism

C:T4M = T5M
preserving the symplectic form: w(C(z,€),C(y,n)) = w((x,€), (y,n)).

Definition 2.1. A canonical transformation is a symplectomorphism which in addition is
positively homogeneous of degree 1 in the fiber: C(y,n) = (z,£) implies that C(y, An) =
(x, ) for all A > 0.

Example 2.1. (a) Let « : M — M be a diffeomorphism of M. Then a canonical
transformation C, is defined by

Caly.n) = (e (), (9a(y)) 'n).

Symplectomorphisms of this type extend to the full cotangent bundle.

(b) Let H = H(z,£) be a smooth function on 7§ M which is positively homogeneous
of degree 1 in the fiber. We denote by t — F;, t € R, the flow on T M generated by
the Hamiltonian vector field Vg induced by H (recall that Vy is defined by the relation
lygwW = dH )

Then the map (y,n) — Fi(y,n) defines a canonical transformation for every t € R.

In this note, which is based on the articles [15] and [19], we will study quantized
canonical transformations, i.e., bounded operators on L?(M) associated with a canonical
transformation in a sense we shall explain next. We start with the following simple fact:

Lemma 2.1. The (twisted) graph of a canonical relation defines a Lagrangian submanifold
of T4M x Ty M. More precisely: The set

A=A{((z,8), (y,—n)) € TGM X TgM : (,8) = Cly,m)}
is a Lagrangian submanifold of Ty M x Ti M, endowed with the symplectic form w @ w.

The word ‘twisted’ refers to the sign change in the second variable. The next obser-
vation is that, locally, a Lagrangian submanifold A of Ty M x TjM can be described by
a phase function, see [9, Theorem 21.2.16] for a proof

Theorem 2.2. Let ((z9,%), (Yo, m0)) € A. Then there exist neighborhoods U of xo, V' of
Yo, an open cone I' in R? (for suitable d) and a function ¢ : UxV xI' — R, homogeneous of
degree 1 in 0 and non-degenerate in the sense that the differentials d(0p,)), 7 =1,...,d,
are linearly independent, such that locally near ((xo,&o), (Yo, n0)) the set A is given as

{((xa ax(p(x» Y, 0))? (yv _8%0(177 Y, ‘9))) : aé(p(x» Y, 9) = 0}
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In other words, the map « : crit, — graph C, given by

Oé(I, Y, 6) = (($, ax(p(xv Y, 0))? (yv _aygo(xv Y, 6))) (21)

is a diffeomorphism from the critical set

Critgo = {(Jj,y,0> : 89<x7y76) = 0}7

onto a conical neighborhood of ((xo, &), (Y0, 70))-

A canonical transformation therefore locally is given by a non-degenerate phase func-
tion and conversely, a non-degenerate phase function determines (locally) a Lagrangian
submanifold in T M x Ti5M.

A bounded linear operator ® : L?(M) — L*(M) is a quantized canonical transforma-
tion, if it is microlocally given by oscillatory integral kernels determined by an amplitude
function a in a suitable Hérmander class ST(R™ x R™ x R?) and a phase function ¢
associated with a canonical transformation C. In particular, the quantized canonical
transformations form a subclass of the Fourier Integral Operators on M

In order to be more precise, let ((xo,&), (Yo,m0)) € TgM x TyM with (x¢,&) =
C(yo,mo) and let, with the notation of Theorem 2.2, ¢ : U x V' x I' — R be a phase
function locally describing the twisted graph of C.

Definition 2.2. We call ® a quantized canonical transformation, if, in a conic neighbor-
hood of ((zo, %), (Yo, m0)), the Schwartz kernel K® of ® can be written

K(I)($, y) _ /eicp(:xr,y,(?)b(x’ Y, 9) do+ K (22)

where b in Sc(f_dw vanishes near 0 = 0 and outside U x V x I' and K is a O kernel
function.

The full Schwartz kernel is then obtained with the help of a partition of unity. The
choice of the order (n — d)/2 makes the induced operator continuous on L?(M).

Example 2.2. Let o : M — M be a diffeomorphism. Then the ‘shift operator’ T, €
ZL(L*(M)) given by T,u(z) = u(a *(z)) is a quantized canonical transformation associ-

ated with the canonical transformation C', in Example 2.1.
Indeed, for u € . (R"™) we have

ula Hz)) = (©2m)™ / e @0 q(0) do = (2m) " / M@=y () dydb

Hence, the Schwartz kernel has the (even globally defined) phase ¢(z,y,0) = (o !(z) —
y,0). Applying the local formula for the associated Lagrangian submanifold in Theorem
2.2 yields the graph of C,,:

{((z,"0:07(2)0), (y,0)) 1y = o (2)}
= {((a(y),"0a " (a(y)0), (y.0)} = {((a(y), “Da(y)"'0), (y.0))}.



Example 2.3. Consider the operator e”\/K, for simplicity on L?(R™). Here,
e“‘/zu(:c) = (2#)_”/ei<x_y’9>e“|9u(y) dydf, uwe S (R").

The phase function is ¢(z,y,0) = (x —y, §) +t|0|, parametrizing (in the sense of Theorem
2.2) the set

{((z,0)),(y,0)) - & —y +10/10] = 0} = {((y — 10/16],0), (y,0))}.

This is the graph of the canonical transformation induced by the flow of the Hamiltonian
vector field associated to the function H(#) = |0] on T*M in the sense of Example 2.1(b).

3 Operator Algebras

Operators

Let G be a discrete group with unit element e and let ®4, g € G, be quantized canonical
transformations in Z(L*(M)) satisfying

®. =1 and ¢,0;, = @, modulo H# (L*(M)). (3.1)

Write Cj for the canonical transformation associated with ®,.
We shall consider operators of the form

D=3 Dy, +K, (3.2)

geG

where the D, are classical pseudodifferential operators of order zero, only finitely many
are different from zero, and K € ¢ (L*(M)).
The following lemma collects a few basic properties of these operators.

Lemma 3.1. (a) The operators ®, are all Fredholm operators, and ®,-1 furnishes a
Fredholm inverse to ®,.
(b) The operators of the form (3.2) form an algebra.

Proof. (a) is an immediate consequence of Condition (3.1).
In order to establish (b), it suffices to consider a product (D,®,)(D,®;) for g, h € G.
We recall Egorov’s Theorem: Given a pseudodifferential operator A of order zero we have

D AD, 1 = A,

where A also is pseudodifferential of order zero and the principal symbols satisfy the
relation

0i(1,8) = 04(Cyg-1(x,8)).
Hence, modulo ¢ (L*(M)),

D,®,D,®), = Dy®,D,®,1®,®), = D, D;,®,,

is of the required form. O



Lemma 3.2. We may assume that the operators ®, are unitary modulo # (L*(M)), i.e.
we may assume that, in addition to the properties (3.1),

(@,)*®, = I = D, (D,)* modulo K (L*(M)).

Proof. By Egorov’s theorem (I)Q((Dg)* is a nonnegative pseudodifferential operator. Some-
what informally we denote by ®, = (®,(®,)*)~/2®, the unitary part in the polar decom-
position of ®,. A computation as in the proof of Lemma 3.1 shows the assertion. O

In the sequel we shall therefore assume that the ®, form an almost unitary represen-
tation as in Lemma 3.2.

Alternative: Finite-dimensional Lie groups

Given a finite-dimensional Lie group G and a unitary representation
p:G— Z(LX(M), g,

of G by quantized canonical transformations ®,, we may also consider (under certain
technical assumptions) operators of the form

D= [ Dy, duly): L2(00) L),
G

where g — D, is a smooth, compactly supported family of pseudodifferential operators
of order zero and du(g) denotes an invariant measure on G. As operators of this form are
rarely Fredholm, one then studies the index theory of operators of the form I + D. We
shall not consider these operators in this note; details can be found in [19].

Special cases

1. If the group is {e}, then D is just a classical pseudodifferential operator, and we obtain
the well-known index problem of Atiyah and Singer.

2. It D = @, for a single quantized canonical transformation, then determining the
index is known as the Atiyah-Weinstein index problem. It has been solved independently
and by different methods by Epstein and Melrose [5] for the case of canonical transfor-
mations on Ty M and, more generally, for canonical transformations between possibly
different manifolds, by Leichtnam, Nest and Tsygan [12].

3. If the &, are associated with the special canonical transformations in Example
2.1(a), then the @, are shift operators as pointed out in Example 2.2. The corresponding
algebra of operators has been studied by Antonevich and Lebedev e.g. in [1], Connes and
Moscovici [4], Perrot [14] as well as by Savin, Schrohe and Sternin [16], [17], [20].

4. The index problem considered by Bér and Strohmaier in [2] is closely related as it
reduces to a Toeplitz variant of the problems considered here.

5. If G is a Lie group acting on M locally-freely, then the G-operators coincide with
the transverse pseudodifferential operators with respect to the foliation on M defined by
the orbits of the group action which were studied by Kordyukov in [11].

More examples can be found in [19].



Symbols and ellipticity

Recall that a C*-dynamical system is a triple (A, G, ), consisting of a C*- algebra A, a
locally compact group G and a strongly continuous homomorphism 3 : G — Aut A (i.e.,
g — Byh is continuous for all h € A).

A covariant representation of a dynamical system (A, G, ) is a pair (m, U), consisting
of a representation 7 : A — Z(H) and a unitary representation U : G — % (H) on the
same Hilbert space such that 7(8,(a)) = Uym(a)U;.

A pair (7, U) induces a representation 7 x U : C.(G, A) — Z(H) by

(% U)(f) = / (@)U, dpu(g).

G

We can define a norm on C.(G, A) by letting
| fIl = sup{||(w x U)f|| : (w,U) covariant representation}.

The sup is finite, since ||(m x U) f|| < ||f]|z:-

Definition 3.1. The (mazimal) crossed product A x5 G is the closure of C.(G, A) in this
norm.

In the case at hand, we have (possibly after the modification in Lemma 3.2) an almost
unitary representation ®, : G — Z(L*(M)), i.e., a unitary representation with values
in the Calkin algebra Z(L*(M))/# (L*(M)). Since the latter is a C*-algebra, it is a
subalgebra of £ (H) for some Hilbert space H. Denote by ¢« : Z(L*(M))/# (L*(M)) —
Z(H) the embedding and by ¢ : Z(L*(M)) — ZL(L*(M))/# (L*(M)) the canonical
projection. Note that we have a strongly continuous action 8 of G on the C*-algebra
A = C(S*M) via the canonical transformations:

This yields a covariant representation (7, U) of the C*-dynamical system (C'(S*M), G, 3)
via

m(a) = (q(A)) € Z(H)
Ug = L(@Q)E%<H)7

where A is any operator in the closure W of the algebra of zero order pseudodifferential
operators in .Z(L*(M)) with symbol a. Indeed, this is a consequence of Egorov’s theorem,
since

Uye(a)U; ' = o(Cy ™ a).

g

Definition 3.2. The symbol associated to an operator D as in (3.2) is the collection

a(D) = {U(Dg)}gec

of the principal symbols of the pseudodifferential operators D,. We consider o(D) as an
element of the crossed product algebra C(S*M) x G.
We call D elliptic, if o(D) is invertible in C(S*M) x G.
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Note that we fix here the representation of D with the particular choice of D,’s and
D,’s.
The considerations before Definition 3.2 show that the quantization map

Ce(G, C(S"M)) 2 {a(Dy)}geq = Y (o (Dy))u(y) € L(H)

geG

naturally extends to a map
Q:C(S*M)xG— Z(H).
Theorem 3.3. If D is elliptic, then D : L*(M) — L*(M) is a Fredholm operator.

Proof. Given an elliptic operator D, the inverse o(D)™! exists in C(S*M) x G. Then
E = Q(o(D)™") furnishes an element of «(.Z(L*(M))/# (L*(M)). Any representative in
ZL(L*(M)) is a Fredholm inverse to D. O

4 Analytic and Algebraic Indices

The next task is to determine the Fredholm index of elliptic elements. Our long term goal
is to do this using algebraic index theory in the spirit of Fedosov [7] and Nest and Tsygan
[13]. In a first step we outline here how to establish the equality of analytic and algebraic
indices. In fact, we define localized versions of these indices and show their equality. To
this end we specialize further and assume that G is a finite extension of Z¢. We denote
by e the unit element and by (g) the conjugacy class of g € G. We furthermore suppose
that the operators ®,, g € G, are unitary and satisfy

O, =1, DDy, = Dy

We shall study an elliptic operator
D= D,®,
geCG

as in (3.2). We make the additional assumption that the inverse to the symbol o(D) is
an element of the algebraic crossed product

o(D)™ = {ry}gec € C°(S*M) xa, G (4.1)

The localized analytic index

Definition 4.1. We introduce the algebraic crossed product W= (M) X, G where U=
N € Ny, is the algebra of classical pseudodifferential operators of order —N and G acts
on W~ by conjugation: A $yAD .

Lemma 4.1. For each N > 1 there exists an operator E € W°(M) Xag G such that

I—-DE,I—-EDc VU Y (M)xG. (4.2)



Proof. Let Ey = Zg R,®,, where the o(R,) =r,. Then S; = — FEyD and S, = I — DE
are elements of U™1(M) x G. We obtain the assertion by setting F = (I + S; + ...+
SNNE,. O

The elements of U=~ (M) are of trace class whenever N > dim M. This motivates the
following definition.

Definition 4.2. Given g € G and an element ), K;®; € N Xag G, N > dim M, we
introduce the trace functional

Tr, (Z chbl) =3 e (K®), (4.3)
l I€lg)

with the operator trace tr on L*(M) and define the analytic index of D localized at the
conjugacy class (g) by

ind, D = Tr,(1 — ED) — Tr,(1 — DE) = Tr,[D, E] € C,
where E is an inverse modulo W—N Xalg G.
The following is Proposition 19 in [15]:

Lemma 4.2. (a) The localized index ind, D is independent of the choice of the almost-
inverse operator and therefore a well-defined invariant of the complete symbol of D.

(b) The Fredholm index of D is given by

indD = ) ind, D,
(9)cG

where the sum is over all conjugacy classes in G;

Semiclassical calculus

In order to define the algebraic index of the operator D, we introduce a semiclassical
calculus for operators of this type. In fact, given h > 0, > 0 and N € Ny we define from
the operator ®, operators @, . v as follows.

Given a point ((xo, &), (Yo, 70)) in the graph of Cy in T M x Ty M suppose that the
integral kernel K9 of @,, is locally given, modulo smooth kernels, by an oscillatory integral
as in (2.2). Let

b(z,z',0) ~ ij(x,x',é) as 0] — oo,
j=0
with b;(z, 2’, §) homogeneous of degree (n — d)/2 — j in 6 be the asymptotic expansion of
b.

We define the semiclassical Fourier integral operator ®, . x associated with ® as the

operator with the integral kernel

Ky y(x,y) = h™92 /2 / ewe B0 N hib (2, y, 0)x (2, y, 0)d6, (4.4)

0<j<N



where the smooth function y is chosen such that, with « defined in (2.1),
1 in an open neighborhood of a™ Ty M x {|n| > €}),
x(z,y,0) = which is conic at infinity,
0 in a small neighborhood of the zero section.
Here, |n] is defined via a choice of a Riemannian metric on M, and a subset U of M x M xR?
is called conic at infinity, if there exists an R > 0 such that (z,y, A\0) € U whenever

0] > R, A >1 and (z,y,0) € U.
We introduce the semiclassical Sobolev spaces:

Definition 4.3. (a) The space H;(M) is the set of all distributions uw on M such that

ull s = [|(R*A + 1)*ul| 2 < o0,

where A stands for the nonnegative Laplacian on M.
(b) An O(hN)-operator family is a family of operators of order —N whose norm in
L(H (M), HN(M)) is of the order O(h™) as h — 0 for every s.

A semiclassical symbol a = a(z, &, h) of order m in a chart in 7*M with coordinates
(x,€) is a smooth family of symbols with parameter h > 0 and an asymptotic expansion

a(x, &, h) ~ Zha]xé as h — 0,

7>0

where a;(z, &) € S™ 7, ie., for all N >0

h~ ((th ZhajL§)>—>O in S™ N as h — 0.

0<j<N

We call ag € S™ the leading symbol of a.
A semiclassical symbol a defines a pseudodifferential operator op,(a). In local coordi-
nates

o (au(e) = s [ [ e ¥at, & myutudyde

We then obtain the following result whose proof occupies a large part of [15]:

Proposition 4.3. (a) (Correctness of the definition) The operator family @, . n with
integral kernel (4.4) is independent of the choice of the representation (2.2) and
the function x modulo sums of O(h™)-families and families, which become O(h™)-
families when composed to the right by op,(a) where a(y,n) vanishes for |n| < 2e.

(b) (Composition formula) Given quantized canonical transformations @', ®" associated
with C" and C" and a semiclassical symbol a, we find that for & = ' "

(I)h,a,N Oph(a) = ¢;L,E,N¢;:,E,N Oph(a) mod O(hN)>

provided that € > 0 is chosen such that a vanishes on the subsets {|&| < €}, C" ' {|¢] <
e} CTyM. A similar statement holds, if we take the product with op,(a) on the left
and choose € appropriately.



(¢) (Semiclassical Egorov theorem) Given a semiclassical symbol a, which vanishes on
the sets {|¢] < e}, C™YH|¢| < e} C T*M, the composition

Dy o N Oph(b)@ﬁé,m

where CD,:,;N is associated with ®~, is a semiclassical pseudodifferential operator
with symbol equal to

c@nevopi@®ily) = (14 > RuasDiDl)(C ) a

1<k<N,0<|a|+|B|<2k

modulo symbols inducing O(hN)-families. The coefficients piy .5z, &) are homoge-
neous functions in & of degree || — k, and are expressed in terms of the amplitudes
and phase functions of ® and ®~*. They do not depend on the choice of the cut-off
functions or €.

The localized algebraic index

We denote by A the algebra of all zero order semiclassical pseudodifferential operators
whose symbols vanish in a neighborhood of the zero section. According to Proposition
4.3(c) the mapping
A x G 3 (a,9) = o(Ppenopy(a)®, L )
(for sufficiently small ¢ > 0) defines an action of G on A. We can therefore define the
algebraic crossed product A X, G. We denote the product in this algebra by *.
Let B = (A x,, G)T be the algebra A x,, G with a unit adjoined. Its elements are

given as collections
(Y Wao} (4.5)
: IeG
j=0
where a; (2. &) € A for | # e while a.o(x,&) is allowed to be equal to a nonzero constant
in a neighborhood of the zero section in T*M. Denote by By C B the ideal of elements
(4.5) with coefficients of order < —N.
We call a € B elliptic, if its leading (semiclassical) symbol ag € SY X, G is invertible
modulo symbols of order —1.

Lemma 4.4. Let a € B be an elliptic symbol of order zero. Then for each N > 1 there
exists a symbol ry € B such that

l—CL*T'N,l—’T‘N*CLGBN. (46)

Proof. Since a is elliptic, there exists 7o € S°(T§ M) x G such that 1 — ag * rq is of order
—1. Then, modulo By 1,
a*xry= <a0+ Z hjaj> xTg = ag * o+ Z hjaj*rozl—w,
1<j<N 1<j<N

where w = (1 — ag *19) — >,y W a; x 19 € By. Hence

axrox(1+w+wsw+.. +w)=1-wx(1+wtwsw+..+w)=1—-w",
with wV™ € Byyym and 7 = ro * (1 + w4+ w * w + ... + w”) furnishes the desired right
inverse. A computation shows that also rxa —1 € By, 1. O
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A crucial fact now is the following theorem, shown in [15].

Theorem 4.5. Let a € A be of order < —2dim M and let h € G be associated with the
canonical transformation C. Suppose that C is of finite order, i.e. C*¥ = I for some k,
and denote by T*MC the fived point set of C. Then the operator opy(a)®y, . n is of trace
class for every h and we have an asymptotic expansion

tr(0py, (@)@pe ) ~ h™ B TME2N " g (4.7)

J20

in integer powers of h (the fized point sets T*MC are even-dimensional by [6]). The
coefficients a; in (4.7) do not depend on the choices in the construction of @y n up to
j=N-1.

Definition 4.4. Let a = {a;}1ec € A Xag G be of order < —2dim M. Define the trace
functional 7, y localized at g € G by

Ty (a) = Z tr(Opn (@) ®ppen) € (BT MI2CLR]) RN = Am M, (4.8)
l€(g)

where (h~ 4w MI2C[R]) /AN=4mM stands for the space of Laurent polynomials
> il
~ dim T* M9/2<j < N—dim M

and € in the definition of the @y n is chosen such that the first N components in the
expansion of a; € A in powers of h are equal to zero on the set Ci{|¢| < 2¢} C T*M.

It turns out that the definition is independent of the choices involved in the definition
of the @4, . y. Moreover, 7, y is a trace.

Definition 4.5. Given an elliptic symbol a € B, its algebraic index localized at the con-
Jugacy class (g) C G is defined as

i;lagwa = 1,(1=ryxa)—T1,(1 —axry)=T14a,ry] (4.9)
c (h—dimT*Mg/Qc[h]) /hN—dimM’

where r is an almost-inverse symbol for a such that (4.6) holds.

The algebraic index (4.9) is independent of the choice of the almost-inverse symbol 7y
and the algebraic indices for different N are compatible:

—~ —_

ind, ya = indy yy1a  mod pN—dim M
They define the algebraic index as N — oo
indya € B~ T M 2C[[p]). (4.10)

The main result of [15] is:

11



Theorem 4.6. Given a finite order element g € G, the algebraic index localized at g has
no negative and no positive powers of h, and its constant term is equal to the analytic
index: .

ind, op,(a) = (indgya)|p=o- (4.11)

What if g is not of finite order? The following proposition gives a partial answer:

Proposition 4.7. Suppose that there exists a group homomorphism x : G — Z such that
X(g0) # 0. Given an elliptic operator D and gy € G, we then have

indy, D = 0.

This condition is satisfied for all elements of infinite order, provided the group is a
finite extension of Z?, d € Ny. Hence we obtain:

Corollary 4.8. Suppose that G is a finite extension of Z¢. Given an elliptic symbol
a € B, the Fredholm index of the corresponding operator A is equal to the sum of localized
algebraic indices over the torsion conjugacy classes in G:

indA= > (indya)o. (4.12)

(g)CTor G

Here Tor G is the torsion subgroup of G.
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