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1 Introduction

This is an announcement of [2].

It is well known as the Hardy-Littlewood-Sobolev theorem that the fractional
integral operators I, on the Euclidean space R" is bounded from L, to L, for
l<p<gqg<oo0<a<mnand —n/p+a = —n/q. For any BMO func-
tion b, Chanillo [4] proved the same boundedness of the commutator [b,I,].
Paluszyniski [19] proved that, for any /-Lipschitz function b, 0 < g < 1, the
commutator [b, I,] is bounded from L, to L, for —n/p+a+ = —n/q and from
L, to the Triebel-Lizorkin space F;foo-

In martingale theory, based on the result by Watari [23, Theorem 1.1], Chao
and Ombe [5] proved the boundedness of the fractional integrals for H,, L,, BMO
and Lipschitz spaces of the dyadic martingales. These fractional integrals were
defined for more general martingales in [14, 20] and studied in [6, 15, 16]. In this
paper we investigate the fractional integrals on martingale Orlicz spaces.

Let (Q,F,P) be a probability space and let {F,},>0 be a nondecreasing
sequence of sub-o-algebras of F such that F = o(J, F,). We suppose that
every o-algebra JF,, is generated by countable atoms, where B € F, is called
an atom (more precisely a (F,, P)-atom), if any A C B with A € F, satisfies
P(A) = P(B) or P(A) = 0. Denote by A(F,) the set of all atoms in F,,. The



expectation operator and the conditional expectation operators relative to JF, are
denoted by E and E,, respectively.

We say a sequence (f,,),>0 in Ly is a martingale relative to {F,},>o if it is
adapted to {F,}n>0 and satisfies E,[fn] = fn for every n < m. It is known as
the Doob theorem that, if p € (1, 00), then any L,-bounded martingale converges
in L,. Moreover, if p € [1,00), then, for any f € L,, its corresponding martingale
(fa)n>o with f, = E, f is an L,-bounded martingale and converges to f in L,
(see for example [17]). For this reason a function f € L; and the corresponding
martingale (f,,)n>0 will be denoted by the same symbol f.

We first recall the definition of generalized fractional integrals of martingales.

Definition 1.1 ([16]). Let (7,),>0 be a non-increasing sequence of non-negative
bounded functions adapted to {F;, },>0. For a martingale (f,,)n>0, its generalized
fractional integral I,f = ((1yf)n)n>0 is defined as a martingale by

(P =D Wa(fe = frn)

k=0

with convention v_; =7 and f_; = 0.

Our definition of I, is based on the notion of martingale transform in the
sense of Burkholder [3]. For quasi-normed spaces M; and M, of functions, we
denote by B(Mj, M) the set of all bounded martingale transforms from M; to
M, that is, I, € B(M,, M,) means that

sup [|(Ly nllae, < Csup || fullar,,
n>0 n>0

for all M;-bounded martingales f = (fn)n>o0-
Let
Bo= > PB)xs, n=012---. (1.1)
BeA(Fyn)
For a > 0, let , = 8%, n > 0. Then I, f is the fractional integral of f introduced
in [14].

In this paper we prove I, € B(Lg, Ly) for the Orlicz spaces Lg and Ly under
suitable conditions. Moreover, we consider the commutator [b, I,] generated by
a function b. For f € L., which is regarded as an L..-bounded martingale
[ = (fa)nso with f, = E,f, ((I,f)n)n>0 is also an L.,-bounded martingale.
We denote by I, f the limit function, that is, I,f = ((Iyf)n)n>0- In this case
the commutator [b, I,]f = bL,f — I,(bf) is well-defined for all b € L. In this
paper we prove that, for functions b in Campanato spaces and f € Lq, [b, I,]f is
well-defined and bounded from Lg to Ly under suitable conditions.

The definition of the Campanato space is the following:

2



Definition 1.2. For p € [1,00) and ¢ : (0,1] — (0, 00), let

E;,w ={f€Ly: ||f||£;¢ < 0o},

where

= ! ! E Pdp .
Wiz, =g s ey (i J, - it ar)

We say that a function 6 : (0, 1] — (0,00) satisfies the doubling condition if
there exists a positive constant C' such that, for all r, s € (0, 1],

1 6(r) .1 7
<271 L — < =<2 .
) C, if 5 2 (1.2)

We say that 6 is almost increasing (resp. almost decreasing) if there exists a

V)

positive constant C' such that, for all r, s € (0, 1],
O(r) < CO(s) (resp. O(s) < CH(r)), ifr <s. (1.3)

The stochastic basis {F, },>0 is said to be regular, if there exists a constant
R > 2 such that
fn S an—l (14)

holds for all n > 1 and all nonnegative martingales (f,,)n>o0-
It is known by [12, Theorem 2.9] that, if {F, },>0 is regular and ¢ is almost
increasing, then

1les, < Iflle, < Collf ey, (15)

2 Orlicz spaces

First we define a set @ of increasing functions @ : [0, 0o] — [0, o] and give some
properties of functions in @.
For an increasing function ® : [0, co] — [0, 00}, let

a(®) =sup{t >0:®(t) =0}, b(P)=inf{t >0:D(t) = o0},

with convention sup() = 0 and inf() = co. Then 0 < a(®) < b(P) < co. Let ¢
be the set of all increasing functions @ : [0, oo] — [0, oo] such that

0<a(P)<oo, 0<b(P)< oo,
Jim @(t) = B(0) =0,

(2.1)
(2.2)
® is left continuous on [0, b(P)), (2.3)
if b(P) = oo, then tliglo O(t) = P(00) = o0, (2.4)

(2.5)

if b(®) < oo, then . %i(g%_oq)(t) = d(b(D)) (< 00).



In what follows, if an increasing and left continuous function ® : [0, 00) —
[0, 00) satisfies (2.2) and tlim ®(t) = oo, then we always regard that ®(oo0) = oo
—00
and that ® € 9.

Definition 2.1. A function ® € @ is called a Young function (or sometimes also
called an Orlicz function) if @ is convex on [0, b(P)).

By the convexity, any Young function @ is continuous on [0, b(®)) and strictly
increasing on [a(®), b(®)]. Hence ® is bijective from [a(P), b(P)] to [0, P(b(D))].
Moreover, ® is absolutely continuous on any closed subinterval in [0, b(®)). That
is, its derivative @’ exists a.e. and

t
O(t) = / P'(s)ds, te€0,b(D)). (2.6)
0
For ®, U € @, we write ® ~ U if there exists a positive constant C such that
O(C™H) < U(t) < ®(Ct) forall t €0, 00].
Definition 2.2. (i) Let @y be the set of all Young functions.
(ii) Let @y be the set of all ® € ¢ such that ® ~ ¥ for some U € Py.

(iii) Let Y be the set of all ® € @y such that a(®) =0 and b(P) = occ.

For ® € @, we recall the generalized inverse of ® in the sense of O’Neil [18,
Definition 1.2].

Definition 2.3. For ® € ¢ and u € [0, 00}, let

(2.7)

0, U = 00.

o) = {inf{t >0:3(t) >ul, uel0,o0),

Let ® € ¢. Then ®~! is finite, increasing and right continuous on [0, c0) and
positive on (0,00). If @ is bijective from [0, 00] to itself, then ®~! is the usual
inverse function of ®. Moreover, we have the following proposition, which is a
generalization of Property 1.3 in [18].

Proposition 2.1 ([22]). Let ® € &. Then
OO (u) <u< d N (P(u)) for allu e [0, ). (2.8)

For functions P, @ : [0, 00] — [0, o], we write P ~ @ if there exists a positive
constant C' such that

C'P(t) < Q(t) < CP(t) forallte 0,00l
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Then, for ®, ¥ € &,
PV & P~ TU (2.9)

For a Young function @, its complementary function is defined by

B(t) = {sup{tu — ®(u) :u€0,00)}, te€]0,00),

00, t = 0.

Then ® is also a Young function, and (P, ;13) is called a complementary pair. For
example, ®(t) = ¢, then

Definition 2.4. For a function ® € @y, let

Lo = {f € L°: E[®(e|f])] < oo for some e > 0},
[fllze = inf{A >0 E[®([f]/N)] <1},

wLe = {f € L’: sup ®(t)P(ef,t) < oo for some € > 0}7

te(0,00)

[ fllwes = inf {A >0: sup D()P(f/A 1) < 1}7

te(0,00)

where P(f,t) = P({w € Q:|f(w)| > t}).
Remark 2.1. Tt is known that

sup ®(t)P(f.t) = sup t P(®(|f]),1), (2.10)

t€(0,00) te(0,00)
see [7, Proposition 4.2] for example.

Let (P, <I)) be a complementary pair of functions in @y. Then it is known
that

t< o NP H(t) < 2t, tel0,00]. (2.11)

It is also known that
Ellfgll <2(fllzellgllzg- (2.12)

Lemma 2.2. Let ® € &y. Then, for all A € F, its characteristic function x 4

18 in wlLg and .

Ixallze = lIxallwes = (/P

Definition 2.5. (i) A function ® € @ is said to satisfy the Ay-condition, de-
note ® € A, if there exists a constant C' > 0 such that

(2.13)

O(2t) < CP(t) forallt>D0. (2.14)
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(ii) A function ® € @ is said to satisfy the V,-condition, denote ® € Vi, if
there exists a constant £ > 1 such that

1
O(t) < Q—kq)(kt) for all t > 0. (2.15)

(iii) Let Ay = &y N Ay and Vy = &y N Vs,
Remark 2.2. (i) Ay C Y and Vy C @y ([10, Lemma 1.2.3]).

(ii) Let ® € &y. Then ® € A, if and only if & ~ ¥ for some ¥ € A,, and,
® € V, if and only if & ~ ¥ for some ¥ € V,.

(iii) Let @ € @y. Then & € A, if and only if the set of simple functions is dense
in Lq;..

(iv) Let ® € &y. Then ®! satisfies the doubling condition by its concavity,
that is,
O u) < D71 (2u) <207 (u) for all u € [0, 00].

(v) If ® € V,, then there exists § € (0,1) such that ®((-)) € V,y ([22,
Lemma 4.5]).

3 Main results

We denote by M, the set of all Ly bounded martingales f = (f,,)n>o0-

Theorem 3.1. Let &, ¥ € ®y. Assume that u — ¥~ (u)/® (u) is almost
decreasing and that there exists a positive constant C such that, for alln > 0,

;(%—1 — ) @71 (é) + 7, &1 (é) < OUt (5_1) _ (3.1)

Then, for any positive constant Cs, there ezists a positive constant Cy such that,

forall f € My, with f #0,

ML) ) ( Mf )
‘I’<0&>supnzo||fn||% <\ Cosupme Thilla ) (3:2)

Consequently, I, € B(Ly,wLy). Moreover, if ® € Vy, then I, € B(Lg, Ly).

Next, for a function p : (0, 1] — (0, c0) such that

/l 0] dt < oo, (3.3)

t



let
Bn t
’“/n :/ &dt, ﬁn = E P(B>XBv 71/207172,"‘ : (34)
0

t
BEA(]'—n)
In this case we denote I, by I,, namely, for a martingale f = (f5)n>o0,

n

Br—1
L= (e G =3 ([ 2 a) (- sed. 69

k=0

If p(t) = at® and a > 0, then foﬁ’“‘l @dt = (Br—1)* and I, is the fractional
integrals introduced by [14] as a generalization of I, on dyadic martingales inves-
tigated in [5].

If {F,.}n>o is regular, that is, there exists R > 2 such that

Enf < RE, +f (3.6)

for all non-negative integrable function f, then the inequality 5, < 8,-1 < RS,
holds, see [14, Lemma 3.1]. Hence,

n Br—1
Z(’Yk—l — )P H(1/Br) = Z‘I) (1/Bx) @dzﬁ

k=0 B ¢

et @ (1/1)p(t)
~3 [

) t

) /_50 >/t

t

That is, (3.1) is equivalent to

/Bn @ dt &~ (1/6,) + /bo w dt <V (1/6,) forall n>0.
" (3.7)

Corollary 3.2. Let {F, }n>0 be reqular, and let ®,9 € &y. Assume that u —
Ut (u) /@ (u) is almost decreasing and that there exists a positive constant A
such that, for all r € (0,1],

/r@dt @—1<1/T>+/1/)(t)q)+1(1/t>dtSA\I/_I(l/T’>. (3.8)

Then, for any positive constant Cg, there exists a positive constant Cy such that,

forall f € My, with f #0,

M(Lf) ) ( My )
\\/J D . 3.9
<0:p swpoole) = ¥\ Cosupnoy 7l (3.9

Consequently, I, € B(Lg,wLy). Moreover, if ® € Vs, then 1, € B(Lg, Ly).
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For a sequence 7 = (7, )n>0 of positive measurable functions, let

M, f = sg}g%lEnfl, fe Ll (3.10)

Theorem 3.3. Let ®, ¥ € &y. Assume that u — U~ (u)/® 1 (u) is almost
decreasing and that there exists a positive constant A such that, for all n > 0,

Y @71/ By) < AUTH(L/By). (3.11)

Then, for any positive constant Cs, there ezists a positive constant Cy such that,
for all f € Le with f # 0,

i) =t e
v —21L b —— ). 3.12
<C&>||f||Lq> ST (3.12)

Consequently, M, is bounded from Ly to wLy. Moreover, if ® € Vo, then M, is
bounded from Lg to Ly.

For the commutator [b, I,]f = bl,f — I,(bf), we have the following theorem.
Theorem 3.4. Let v : (0,1] — (0,00), and let &,V € Py

(i) Assume that v is almost increasing and that there exists a positive constant
A and a function © € V4 such that, for all n > 0,

i:(%_l — )@ (é) + 7@ (ﬁ—ln) < A0 (é) , (3.13)

- »(Ba)O7" (i) < AU~ (ﬁ—ln) : (3.14)
b (Bn) 1@ (ﬂ—ln) < AU (%) : (3.15)

If &, ¥ € Ay N Vs, then there exist constants v € (1,00) and C' € (0, 00)
such that, for allb € L, and all f € Lo,

116, L1 f o < CllBl ez 1N - (3.16)
Moreover, if {F, }n>o be reqular, then, for all b € Ly, and all f € La,

116, Ll < Cliblle; 11 2a (3.17)

without the assumption (3.15).



(ii) Conversely, let {F,}n>0 be regular and o > 0. Assume that 1 satisfies the
doubling condition and that there exists a positive constant A such that, for
all n >0,

0 (ﬁi) < AR ()0 (i) . (3.15)

n

Assume also that

1
b|| - = su —/ bldP < . 3.19
|| ||E1‘¢(]-'0) BEA(I.)FO) I/J(B)P(B) 5 | | ( )

If [b, 1] is bounded from L to Ly with operator norm ||[b, Io]||Le—1Ly, then
bis in Ly, and there exists a positive constant C', independently b, such
that

s, < € (U0 Tallbare + Ibllc;ry)

For an almost increasing function ¢ : (0,1] — (0,00), we define the sharp
maximal function ]\/15) by

M f = SUp () Eulf = Euafl, € L, (3.20)

with the convention E_;f = 0. If ¢) = 1 we denote be by M*, that is,

Mf =sup E,|f — En_1f|. (3.21)

n>0
Then we define the Triebel-Lizorkin-Orlicz space as follows.

Definition 3.1. For ® € ¢ and 1 : (0,1] — (0, 00), let
Fy = {f € Lu: lyp. < oo}

where

171y, = 1Ml

We can extend Theorem 3.4 to Triebel-Lizorkin-Orlicz spaces
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