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1 Introduction

Let Q be a bounded domain in IR™ (n > 3) with smooth boundary 92. We consider
the following doubly nonlinear degenerate and singular parabolic equation

Or(|ul?tu) — div (|VuP72Vu) = AH)[ulT e in Qo := (0,00) x Q
(11) U = Ug on aono
[u()llg+1 =1, t=0

where 2 < p < n, ¢ = & — 1, and v = u(t, x) is a real-valued function defined for

(t, z) € Qoo, Vo = 0/020, . =1,...,n, Vu = (V,u) is the spatial gradient of a function
u, |[Vul?> = 30 (Vau)? and dyu is the derivative on time ¢t. The initial and boundary
data ug = ug(z) is in the Sobolev space Wy (Q) and satisfies ug > 0 in Q and ||ug |41 = 1.

By multiplying the equation by u and integration by parts on space,
1 1
— ——u@)l551 + [Vu@)[h = A [u@®) 75 = A®) = [[Vu@)]5,
q

where || f]|, is the p—th powered integral norm on € of a measurable function f, E(u) :=
[Vullb/p is the p—energy of a function u. The corresponding stationary elliptic type
equation is concerned with a nonlinear eigenvalue problem and but, has only trivial zero
solution, by the so-called Pohozaev identity and Hopf’s maximum principle, provided that
the domain €2 is star-shaped with the origin, and thus, a solution of the evolution equation
may have any concentration point of volume, local (¢ + 1)—th powered integral, at infinite
time, by the volume conservation ||u(t)|q+1 = 1. Our main purpose is to study such
asymptotic behavior of a solution to the evolution equation above.

We report the following main theorem in this paper. The definition of a weak solution
of the p-Sobolev flow (1.1) is given in Definition 1 in Section 2.3.

Theorem 1 Let Q) be a bounded domain with smooth boundary. Suppose that the initial
data ug 1is positive in Q, belongs to Wol’p(Q) N L>(Q), and satisfies the volume constraint
|uollLa+1() = 1. Let u be a weak solution of (1.1) in Qs = QX (0,00) with the initial and
boundary data ug. Then, u is positive and bounded in Qs and, together with its spatial
gradient, are locally Hélder continuous in Q. Moreover, for t € [0, 00),

(1.2) ) = IVult) Dy Alt) < AO).

The global existence of the p-Sobolev flow and its asymptotic behavior, that is the
volume concentration at infinite time, will be treated in our forthcoming paper, based
on the a-priori regularity estimates for the p-Sobolev flow, obtained in the main theorem
above.

We show the boundedness and non-negativity of a solution by a comparison type argu-
ment, and derive an expansion of positivity of a solution by some local energy estimates.

() This report is based on the joint work with Kenta Nakamura, a doctor student in Kyushu University
and Tuomo Kuusi in University of Helsinki, Finland. The work is partially supported by the Grant-in-Aid
for Scientific Research (C) No.18K03375 at Japan Society for the Promotion of Science



2 Preliminaries

We prepare some notations and technical analysis tools, which are used later.

2.1 Notation

Let © be a bounded domain in IR™ (n > 3) with smooth boundary 02 and for a
positive T' < oo let Qp := Q x (0,T) be the cylindrical domain. Let us define the parabolic

boundary of Qp by
OpQp := (002 x [0,T)) U (Q x {t =0}).

We recall some function spaces, defined on space-time region. For 1 < p,q < oo,
Li(t1,ta; LP(Q)) is a function space of measurable real-valued functions on a space-time
region ) x (t1,ty) with a finite norm

([ 1Olma) " 1 <q<o

vl La(ty b ; Lo(0)) =

Sup [|v(t )HLP(Q) (g = o0)
t1<t<
where
1/p
/ lo(a, )P d:c) (1<p< o)
o)l e) =
sup lv(z,t)] (p = 00)

z€eQ

When p = ¢, we write LP(Q2 x (t1,t2)) = LP(t1,t2; LP(Q2)) for brevity. For 1 < p < o0
the Sobolev space W1P(Q) is consists of measurable real-valued functions that are weakly
differentiable and their weak derivatives are p-th integrable on €2, with the norm

: 1/p
Iollwroy i= ([ 1o + V0P dz)

where Vv = (vg,, ..., vs,) denotes the gradient of v in a distribution sense, and let I/V0 P(Q)
be the closure of C’O (Q) with resptect to the norm || - ||yy1.0. Also let LI(tq,to; Wo1 P(Q)))
denote a function space of measurable real-valued functions on space-time region with a

finite norm
1/q
sty = ([ 1Oy dt)

Let B = By(xo) := {z € R" : |x — 29| < p} denote the open ball with radius p > 0
centered at some point xyp € IR". Let £ C IR" be a bounded domain. For a real number
k and a function v in L'(E), we define the truncation of v by

(2.1) (v —k)4 :=max{(v—k),0}; (k—v); :=max{(k—v),0}.
For a measurable function v in L'(E) and a pair of real numbers k < I, we set

En{v>i}:={xecE :v(x)>1}, En{v<k}:={zeFE:v(z) <k},
(2.2) En{k<v<l}:={zeE:k<v(z)<l}.

Let z = (z,t) € R™ x IR be a space-time variable and dz = dzdt be the space-time
volume element.



2.2 Technical tools
The following is called De Giorgi’s inequality (see [5]).

Proposition 2 (De Giorgi’s inequality) Let v € WY(B) for a ball B C R" and let
k <l be real numbers. Then there exists a positive constant C' depending only on p,n such
that

n+1

(2.3) (-K)BN{v>1}<C—2L

_ Voldz.
|BN{v <k} JBn{k<v<i} Vol

Since v € WHY(B), of course, —v € WHL(B). Let k > 1 be any pair of real numbers.
Applying (2.3) above for —v and —1 > —k, we have

pn—l—l

E-DBN{v<l}| <Comr—+
( )l fo<i}f < |BN{v >k} JBn{i<v<k}

|Vl dz.

Let ¢ = np/(n — p) — 1 as before. Following [5], we define the auxiliary function

q

Zq (gl/q — k>+ d&; A (kyu) = /k (k‘ —fl/q)+ d¢

ud

24)  At(ku) = /

k

for w > 0 and k > 0. Changing a variable n = £1/9, we have

N u 1 (u—k)+ o1
A (k,U)ZQ/k(n—/f)w dn=q/0 (n— k)T "ndn;
B k 4 (k—u)+ 1
A (k‘,u)ZQ/ (k —mn)4n? dnzq/O (k —n)*"""ndn.
Then we formally get
o . oul 0 . _ oul
(2.5) i (kw)=—-(u=k)y, A7 (ku)=——-(k—u)s.

If £ = 0, we abbreviate as
At (u) = AT (0,u), A~ (u) =A"(0,u).

Let 0 < t; < t9 < T and let K be any domain in 2. We denote a parabolic cylinder by
Ky, ¢, = K x (t1,t2). We recall the Sobolev embedding of parabolic type.

Proposition 3 ([5]) There exists a constant C' depending only on n,p,r such that for
every v € L>(tq,to; L"(K)) N LP(tq, to; Wol’p(K))

P
(2.6) / \v]pnTM dz<C (/ |Vol? dz) ( sup / \v\’klac)
K Ktl:t2 t1<t<ta JQ

The so-called fast geometric convergence is crucially used later. See [5] for details.

t1,to

o0

Lemma 4 (Fast geometric convergence, [5]) Let {Y,}o5_,

numbers, satisfying the recursive inequlities

be a sequence of positive

(2.7) Y1 < CH™Y MY p=01,...,

where C,b > 1 and o > 0 are given constants independent of m. If the initial value Yy
satisfies
(2.8) Yo < CVepl/e?,

then lim Y,, =0.
m—0o00



The following fundamental algebraic inequality, associated with the p -Laplace operator
is well-known(see [4]).

Lemma 5 For every p € (1,00) there exist positive constants Cy and Cy depending only
on p and n such that for any &, n € R™*

E[P~2¢ — [n|P~ 2] < CL(€| + [n)P~2I€ =],
(2.9) (1€[P726 = [n|P~2n) - (€ = n) = Cal¢ — 7,

where dot - denotes the inner product in IR™.

2.3 A weak solution

We state the definition of weak solutions of the p-Sobolev flow (1.1) here. We will study
a weak solution of the p-Sobolev flow (1.1).

Definition 1 A measurable function u defined on Qo is called a weak solution to (1.1)
if the following conditions (i)-(iv) are satisfied.

(D1) we L0, 005 WEP(9); u(lult~"u) € I2(9ac) ;
(D2) There exists a function A(t) € L'(0,00) such that, for every p € C§° (),
—/ || ugpy dz+/ ]Vu\p_QVu-chdz:/ A1) || tupdz,
Qoo Qoo Qoo
where dz = dzdt ;

(D3) ”U(t)HLqH(Q) =1forallt>0;

(D4) [lu(t) — uollLa+1() — 0 as t — 0.

3 Fundamental properties of the p-Sobolev flow

In what follows, we consider some fundamental properties of the p-Sobolev flow (1.1).

3.1 Nonnegativity and boundedness

Firstly, we claim that any weak solution to (1.1) must be nonnegative under nonnega-
tivity of the initial value wuyg.

Lemma 6 (Nonnegativity) Suppose ug > 0 in Q. Then, a weak solution u of (1.1)
satisfies
(3.1) u>0 in Q.

Proof. Let 0 < t; <t < oo be arbitrarily taken and fixed. Put €, ; = € x (¢1,t). Let 6
be any positive number such that 6 < (¢ — ¢1)/3. We define a Lipschitz cut-off function
on time, oy, ; such that

0< Oyt <1, Oyt = 1 in (tl +6,t — (5) and (Utl,t) C (tl,t).

The function —(—u);0y, 4 is an admissible test function in (D2), since 9(|ul?tu) €
L?*(Q0) by (D1) and, —(—u) ot ¢ is in LITH(Q x (t1,t)). Thus, we have

[ our ) cwioneds + [ DUV () V(0o dz

Qiq 0t Qg ¢

= [ MO ()i g d
Qi 1t



and thus,

quLl/Q(_“(t))i“ dr < /Ot/\(r)/g(—u(T))ina:dT.

From the Gronwall lemma it follows that

g+1
[ (—utnt o <o,

since by (D4), (—u(t))+ — 0 in LI7Y(Q) as t \, 0. Therefore we have —u(x,t) < 0 for
(z,t) € Qo and the claim is actually verified. ]

Here, we recall that \(¢) is explicitly computed as follows:

Proposition 7 Let u be a nonnegative weak solution to (1.1). Then
A(t) = Hvu(t)”zl)/p(ﬂy t € [0700)

The proof is done as in Introduction, where we note that 9;(Ju|?"1u) € L?(Q4) by (D1)
and u € L>(0,00; L771(Q)) by (D1) and the Sobolev embedding of W, () into LI ().

We next derive the boundedness of the p-Sobolev flow (1.1).

Proposition 8 (Boundedness) Let u be a nonnegative weak solution of the p-Sobolev
flow (1.1). Then u is bounded from above in Qs

()| sy < e/ ?luol| Loe(e),

with ¢ :== sup ||Vu(t)‘|§p(ﬂ)‘
0<t<oo

Proof. Let u be a nonnegative weak solution of (1.1). Since u € L*°(0, o0; Wol’p(Q)),
IVu(t)[7(q) € L>(0,00) and thus, by Proposition 7, A(t) = [[Vu(t)[},q) € L>(0, 00).
Thus, the weak solution u to (1.1) is the weak subsolution, satisfying in the weak sense

Opu? — div (]Vu\p_QVu> <cul, c:= sup A(t).

0<t<oo

We will follow the similar argument as in [1]. Set M := |ug|| () and, for a small 6 > 0,
let us define the Lipschitz truncated function ¢s(u) by

(e~ 9ul — M)+}

¢s(u) == min{l, 3

where the support of ¢s is {|u| > e®/IM}, ¢5(u) € L®(Qr) and ¢5(0) = 0 and, ¢s(u) €
LOO(O,T;WOl’p(Q)) since ¢5(u) is Lipschitz on u. Let 0 < ¢; < ¢ < T and oy, + be the
same time cut-off function as in the proof of Lemma 6. The function e oy, ¢5(u) is an
admissible test function in (D2). Thus, we have

(3.3) /Q B,(e=Mul?)o, b5 () dz + / VP 2Vu -V (o 5(w)) dz < 0.
t1,t

t1,t

The first term of (3.3) is computed as

—ct/q|q| —
(3.4) / Or(e”|u|?) min { 1, (e ful = M)+ oy ¢ dz.
Qtlﬁt 5




Since, on the support of ¢z, {|u| > e®/IM},

1
Vu-Vs(u) = gX{ect/qM<\u|gect/q(M+5)}|VU|2a

the integrand in second term of (3.3) is estimated from below as

[Vul? _
(3'5) TX{ect/qM<‘u|§ect/q(M+6)}Ut17te et Z 0.

From (3.3), (3.4) and (3.5), we obtain

—ct/q - M
(3.6) /Q Or(e ' |u|?) min {1, (e [ul )+ } oy tdz <0.
£t

0

Since by (D1) 0;(Ju|?tu) = &|ul|? € L*(Q) it holds that d;(e~“|u|?) € L*(Qr). Taking
the limit as § \, 0 in (3.6), by the Lebesgue dominant convergence theorem, we have that

/ A (e ul) X (ju|sectransy 47 < 0;
Qo

/ By(e=!ul? — M7),dedt < 0.
Qi 0t

By (D3)
(e (e = M1)da < [ (uft)]? = M)4da 0
Q Q

as t1 \, 0. Hence, pass to the limit as ¢; N\, 0 in (3.7) to have
/ (e u(t)|” — M) 4dz < 0
Q

if and only if |u(t)] < e/9M in Q x [0,T], and we arrive at the assertion. o

3.2 Energy equality

Here, we derive the energy equality for a weak solution to (1.1). Firstly, we need the
existence of dyu in L?(Qy).

Lemma 9 Let u be a nonnegative solution to (1.1). Then there exists Oyu in a weak sense,
such that dyu € L?(Ny).

The proof of this lemma is by a Lipschitz approximation with the non-negativity of a
solution and integrability that d;u? in (D1).
By using the lemma above and Proposition 8 we have the following energy equality:

Proposition 10 (Energy equality) Let u be a nonnegative solution to (1.1). Then the
following estimates hold true:

ATy TR
Qo,¢ p p

In particular,
(3.8) At) < A(0), te]0,00).



Proof. The function oy, ;Opu is an admissible test function in (D2) by a usual regularization,
Proposition 8 and Lemma 9. By a test function oy, ;0;u in (D2), we have

/ O(u?)oy, 1Opudz —I—/ |VulP~2Vu - V (04, 10u) dz
Qi ¢ Qiq 1t
(39) = / )\(t)uqotht(‘)tu dz.

iyt

Note that the integral on the right hand side in (3.9) is finite by Proposition 8 and Lemma
9. Using the Lebesgue dominated convergence theorem with Proposition 8 and Lemma 9,
the first term on the left hand side of (3.9) is computed as

/ Owuloy, 1Orudz = q/ u?™ 1 (Opu)? oy, 1dz

Qiq Qiq ¢

(3.10) — q/ u?HOu)*dz as 5N\, 0.
Qiq 8

The second term on the left hand side of (3.9) is treated as

/ \VulP~2Vu -V (04, 10pu) dz = / \VulP~2Vu - 9, Vuoy, 4 dz
tq,t t1,t

Qtq,

1
= [ a(Svar)ouds
Qi ¢ p

t
1 1
= /—|Vu|p0t1,tdx —/ —|VulPoioy, + dz
Qp tq,t

t1 Q 1

Qtq,

1 1
— / —|Vu(t)|P de — / —|Vu(ty)|Pde as 0\,0
Qp Qp
(3.11) - Lo - e
. D D 1)s
where the manipulation in the second and third lines is justified by a usual regularization.

By the volume conservation [, u(t)?*! =1, ¢ > 0, the right hand side of (3.9) is calculated
as

' q 'l d * uq+l
At duds — / N / dz | dt
./th (t)uloy, (Opudz A ( )Utl,tdt Jogr1®

(3.12) = 0.

From (3.10), (3.11) and (3.12), it follows that

1 1
q / W (Bu)? dz + —A(f) — —A(t) = 0.
iyt p p

Passing to the limit as ¢; \ 0, we have the desired result. |

According to Proposition 7 and (3.8), Proposition 8 concerning the boundedness is
quantitatively written as follows:

Proposition 11 Let u be a nonnegative weak solution to (1.1) and put Ao := A(0). Then

lu(®)| ) < € luoll L=y, ¢ € [0, 00).



4 Expansion of positivity

In this section, we will establish the expansion of positivity of a nonnegative solution of
the p-Sobolev flow (1.1). A nonnegative solution of the p—Sobolev flow is a supersolution,
satisfying in the weak sense

(4.1) Opu? — div <|Vu|p_2Vu> > 0,

since u > 0 by Lemma 6 and A\(¢) > 0 for any ¢t € [0, 00) by Proposition 7

We make local estimates to show the expansion on space-time of positivity of a weak super
solution in (4.1). For any positive numbers p, 7 and any point zy = (xq,t9) € Qr, a local
parabolic cylinder of radius p and height 7 with vertex at zy is denoted by

Q(T7 p)(ZO) = BP($0) X (tO - T, tO)'

For brevity, we write Q(r, p) as Q(7, p)(0). Following the argument in [6] (also see [5] and
[24]), we proceed our local estimates.

4.1 Local energy estimates

We present the local energy estimates, called Caccioppoli type estimates, which have a
crucial role in De Giorgi’s method (see Section 4).

Let K be a subset compactly contained in €2, and 0 < t; < to < T. Here we use
the notation Ky, 1, = K X (t1,t2). Let { be a smooth function such that 0 < ¢ < 1 and
¢ = 0 outside Ky, 4,. By use of AT (k,u) and A~ (k, u), the local energy inequality can be
derived.

Lemma 12 Let k > 0. Let u be a nonnegative weak supersolution in (4.1). Then there
exists a positive constant C' depending only on p,n such that

sup / A (k,u)CP dx + / |V (k —u)+C|Pdz
Kx{t} K

11 <t<tg t1,to

<cC A~ (k, u)C? da + c/ (k — ) [VC[P dz
Kx{t1} Kty 1o

(4.2) +C A™ (k,u)CP ¢ dz.
Kiyty

Proof. Since dyud € L*(Qr) by (D1) and the nonnegativity of u in {27, we choose a test
function ¢ as —(k — u)+(? in (D2) to have

43) - /K D (k — u) 4 P dz — / VulP 2V - V((k — u)4¢P)dz < 0.

Kyt

By the formula (2.5), the first term of (4.3) is computed as
- / otk —u);CPdz = / WA (k,u)(P dz
Kyt Kyt

(4.4) = /K A (k,u)CP dx

t
—p [ ATk u)¢ G dz.
t1 Kiq ot

By use of Young’s inequality, the second term of (4.3) is estimated from below by

1

(4.5) =
2 Kyt

V=) '6Pdz = C [ (k= VCP e
tq,t



Gathering (4.3), (4.4) and (4.5), we obtain, for any ¢ € (t1,t2),

A~ (k,u)¢P dx + / |V(k —u)4|P¢P dz

KX{t} Ktl,t
<C A (k,u)Pdr+C A (k)P G d2
KX{tl} Ktlat
+C (k —u)4+| V([P dz.
Kyt
Thus, we arrive at the conclusion. ]

The so-called Caccioppoli type estimate follows from Lemma 12.

Proposition 13 (Caccioppoli type estimate) Let k > 0. Let u be a nonnegative weak
supersolution in (4.1). Then, there exists a positive constant C' depending only on p,n such
that

sup / (k — u)(fl(p dx + |V (k —u)C|Pdz
t1<t<to JKx{t} J Kt ,ty
<c B = a3 o C [ (k=) CP dz
Kx{t1} Kyt
(4.6) +C kK — u)3 |G| dz.

Kty ,ty

k
Proof. We estimate A~ (k,u) = q/ (k — n)4n? 1 dn defined as in (2.4). The lower

boundedness is obtained as follows:
Case 1 (u>k/2): Sincen>k—n=>0 for % <wu < n <k, it holds that

k

(4.7 A™ (k,u) > q/u (k—mn)ldn = q—i—Ll(k — )t

Case 2 (u<k/2): Since 0 <k—n<n for % < n <k, it holds that
k)2 k

A™(ku) = q/

JUu

(k—n)n”tdn+q /k/z(k‘ —n)4n?tdn

k q+1
q k
k—n)id :—(—)
q/k/z( 77) " qg+11\2

q 1
(4.8) > mﬁ(kﬁ - u)lH-l’

IV

where, in the last line, k > k —u > 0 since 0 < u < k/2. Also, the upper boundedness
follows from

B (k—u) .
A (k,u) = Q/O (k =m)* ndn
y [Ew)s
(4.9) < gk? / ndn = qk?
0

From Lemma 12, (4.7), (4.8) and (4.9), we obtain the conclusion. ]



4.2 Positivity estimates

Proposition 14 Let u be a nonnegative weak supersolution in (4.1). Let By(zg) C Q
with center xo € Q and radius p > 0, and ty € (0,T]. Suppose that

(4.10) [By(wo) N {ulto) > L}| > o|B,|

holds for some L > 0 and o € (0,1]. Then there exists positive numbers ¢, = € (0,1)
depending only on p,n and o and independent of L such that

a
(.11 Byao) 0 {ul) > <1} > 2153,
for all t € [to, to + OLIT1PpP].

The proof is omitted (refer to [6]).
The following estimate is crucial for the positivity of a solution.

Lemma 15 Let u be a nonnegative weak supersolution in (4.1). Let Q4,(20) := Bap(x0) X
(to,to + OLITI=PpP) C Qp, where § is selected in Proposition 14. Then for any v € (0,1)
there exists a positive number ¢, depending only on p,n,«,d and v such that

|Qap(20) N {u < eu L} < v|Qapl.

Proof. We may assume zy = 0 as before. By Proposition 14, there exist positive numbers
5, £ € (0,1) such that, for all ¢ € [0, JLIH1=PpP],

a _n
(4.12) |Bap N {u(t) > eL}| > 54 | Ba,|

Set § = 6L9T17P and let ¢ = ((z) be a piecewise smooth cutoff function satisfying 0 <
¢ <1, (=0 oustside Bg,, ¢ =1 in By, and [V(| < (4p)~L. Let kj = 55eL (j =0,1,...).
Applying the Caccioppoli type inequality (4.6) for the truncated solution (k; — u)4 over
Q4 with the level k;, we obtain

V(k; —u)4|PCPdz < / kq-_lk-—UQdea?—FC/ ki —uw)b |VC|P dz
/w (ky = u)< | I R [ =g

< C (K Byl + K2|Qsl (49) )

< CEPL™H'7P|Bg,| (1+2770)
(4.13) < C']{:—§.)|Q8 | = le—§?|Q4 |

= T pp P spp OV

where the constant C' depends only on n, p and independent of p, L. By De Giorgi’s
inequality in Proposition 2 to k = k;4+1 and [ = k;, we have, for all ¢, 0 <t < §LIT1"PpP =
0p”,

Cpn—l—l
414 ki — ki) A ()] < —2 Vu(t)| dz,
419 k)0l e [ (9
where let A;(t) := Byy N{u(t) < k;}. By (4.12), it holds that
a —-n

(4.15) |[Bap \ A;(t)] 2 547" Bp|.
Combining (4.15) and (4.14), we have that

kj pn+1

5 Ain®)] < m—=—a—y Vu(t)| de

2 T |Bap \ Aj ()| JBapnihjia<u(t)<ky}

¢ |Vu(t)| d.

(4.16)
« Bapn{kj1<u(t)<k;}

VAN



Integrating (4.16) in ¢ € (0,0pP) yields

(4.17) ﬁ|A-+1| < Qp \Vul dz,
J
2 @ JQapN{kjr1<u<k;}

0pP
where we put |4;] := / |A;(t)|dt = |Qap N{u(t) < k;}|. By use of Hélder’s inequality,

0
(4.13) and (4.17), we have

k; C p p=1
EJ‘AJ-H’ = P V(k; —U)dezl [Aj\ Aja| 7
C -1
< — 5j ‘Q4p"’ (14, = |AJ+1D P
C 1 p=1
(4.18) = kil Quol? (1A — [Aja]) 7
adP
and thus,
p
P C \7 ' 1
(4.19) [Aja]7T < | —3 |Qupl 7T (|A;] = |Ajal) -
adr
Let J € N be determined later. Summing (4.19) over j = 0,1,...,J — 1, we obtain
o\
(4.20) JIA 7T < ( ) [Qupl 7T
adr

Indeed, by use of |Ag| > |A;| > |As| for j € {0,1,...,J}, we find that

J—1 J—1

_p_ _P_
S AT = JIAS T > (JAs] = [Aj]) < Aol < [Qupl.
=0 =0

Therefore, from (4.20), it follows that

1 C
(4.21) Al £ —= <—1> |Qupl-
P adp
Thus, for any v € (0,1), we choose sufficiently large J € N satisfying
e c \7"
-2
(4.22) — (—1)§1/<:>J2< 1) .
J P \adr vaor

Here we note that J depends only on p,n,a,d and v. We finally take ¢, = 2% and then

(4.21) yields that
@unfu<atil
|624p

which is the desired assertion. m]

Remark 16 Noting that the parameters 0 and € in the proof of Proposition 14 are suffi-
ciently small, we can choose € such that

(4.23) = <£> e



for some large positive integer I. In the proof of Lemma 15 and the choice of k;, we also

choose kj as follows:

L
(4.24) kj=——— for j=0,1,...,.J.

2q+1—p

0
oI+J

§La+1=p 5p
(kJ)q+1—ppp
, which is a positive integer. Following a similar argument to [6, p.76], we next divide
Qup(20) into finitely many subcylinders. For any v € (0,1), let J be determined in (4.22).
We divide Q4,(20) along time direction into parabolic cylinders of number sg := 2147 with
each time-length k:?rl_ppp, and set

1
FEs e
Under such choice as above we note that ky = < ) " L and obtain that

2J+I

QU = Bap(wo) x (to + kST 7P pP, to+ (€ + DS 7 pP)
for £ =0,1,...,80 — 1. Then there exists a QY such that
(4.25) QY N {u < ks}| < v|QW].

Under the preparation above, the positivity of a solution in (4.1) is obtained in a small
interval.

Theorem 17 (Expansion of local positivity) Let u be a nonnegative weak supersolu-
tion in (4.1). Let By(zog) C Q with center zo € Q and radius p > 0, and ty € (0,T].
Suppose that (4.10). Under (4.25) there exists a positive number n < 1 such that

(126) uznl ac. Boloo) x (to+ (043 ) K577, tot (65 DT p0).

Proof. Hereafter we fix the parameters p,¢ and k;. By translation we may assume to
shift (zo,t0 + (£ + 1)k3+l_ppp) to the origin and thus, Q) is transformed to By,(zo) X
(—k?“l_pp”, 0). Form =0,1,2,..., let

1 1
Tm = % <1+2_m)’ Pm = 2p <1+2_m> i Bmo= B4pm, Qm = Bp, ¥ (_HTm,O)’

where 0 := kgﬂ_p , and also set

(1 1y,
Ry = 5—‘-% J-

PP =102 Tim \uToo = PP/2,  4p=po = pm i Poc = 2p;
Qo= QY 2 Qm \ Quo = Bay, x (0,0p7/2);

kj=kKo> Km \( Koo = kj/2.

Then, we have

The cutoff function ¢ is taken of the form ((x,t) = (i(x)(a2(t), where ¢; (1 = 1,2) are
Lipschitz functions such that ¢; = 1 in By,41, ¢1 = 0 in R™\ B,,, and |V | < 1/(pm —
pmt1) = 22 /p and, (o = 0 for t < —O07y,, (o = 1 for t > —07,,41 and 0 < (o
< 1/0(Tom — Timt1) < 2P0mF2) /0P, Applying the local energy inequality (4.6) over B,, and



Q@ to the truncated solution (&, — u)+ and above ¢, we obtain

sup / (Fm — u(t))'flgp dx + / IV (km —u)4|PCP dz

—01, <t<0 m Qm

<C [ (km—w V(P dz+C / K (o — w)?[Ge| d2
Q Qm

m

gm+2\ P Ka+1-p
<C 5 nﬁq/ 1+ me X{(rm—u)4 >0} 42

2m+2 p
(4.27) < C( P ) K, /Qm X{(km—u)4 >0} 42,
Kka+1-—p Km q+1l—p
where we used that m@ = (k_) < 1. Combining Proposition 3 and (4.27), we
J
have
L 1 = )¢l dz = [ (o = )P d
m Qm

3

<cf [ 1910 - w)qIf dz) (WK0 [, 1 = (e i)

p

y4
om+2 p(1+3) 142 1+
(4.28) <C ( ) ki( 2 ( /Q X{ (o —u) 4 >0} dz) ;

p(n+q+1)
n

where g+ 1 = in the second line.
The left hand side of (4.28) is estimates from below as

[ Gn =0t s > [ (= 00 0y 42

JQm Jdm

> km — K| / X{ (i1 —u)4 >0} 42
Qm+1

kjy q+1
(4.29) = (2m+2> / X{(smy1-u) 4 >0} 42-
Qm+1

Hence, by (4.28) and (4.29), we have

Clri+Dratlm ey (gi1) e
/Q » X{(km1—u)4 >0y 42 < pp(l-i-%) ky (/ X{(km—u)+>0} dz) )

(4.30)

where we compute

14+2 2
( kg )7(q+l) 2m+l 7 ”)kp(1+§) _ [2p(1+§)+q+1]m p(1+2)—(g+1)
om+2 P) J - pp(l‘i‘%) J :

Dividing the both side of (4.30) by |Qm+1| > 0, we have

1

|Qm+l| JQm+1
(4.31)

» . 1 . 142
X{(Km41—u)4>0} dz < C[2p(1+n)+Q+1] (m Jo X{(Km—u)4 >0} dz) s

where .
Q|7

< O pP+E) (pati-p\E
|Qm+1| —= pp ( J )



and p(14+2) —(¢+1)+ (¢+1—p)2 =0 are used.
Letting Y,, := / X{(km—u)+ >0} 42/|Qum]|, the above inequality (4.31) is rewritten as

m

P
Yy < O™t " m=0,1,...,

where b := 2P(+)+4+ From Lemma 4, we find that, if the initial value Yy satisfies
(4.32) Yo <0 G G =y

then

(4.33) Yo >0 as m — oo.

Eq.(4.25) is equivalent to (4.32) by taking v = v, and then (4.33) leads to the conclusion
(4.26) by putting n = 2% <1 O

If a solution is positive at an initial time, the positivity of a solution may expand from
the initial time into some positive time-interval, without any ” waiting time”. This follows
from a minor modification of the proof of Theorem 17 above.

Corollary 18 Let u be a nonnegative weak supersolution in (4.1). Suppose that u(ty) > 0
almost everywhere in By,(xg) C Q. Then there exist positive numbers ny and 7o such that

u>1n0 a.e. in ng(xo) X (to,to + o).

The positivity of a solution may also hold true even on a non-convexr domain. Here
we note that the De Giorgi’s inequality is valid only on a conver domain. Let Q' be
a subdomain contained compactly in €. We use Theorem 17 and a method of chain
of finitely many balls as the so-called Harnack chain used in Harnack’s inequality for
harmonic functions, [7, Theorem 11, pp.32-33] and have the following theorem. Here we
use the special choice of parameters, as explained before Theorem 17.

Theorem 19 Let u be a nonnegative weak supersolution in (4.1). Let Q' be a subdomain
contained compactly in Q. Let to € (0,T]. Suppose that

(4.34) 1N {ulto) = L} = o|€Y]

holds for some L > 0 and o € (0,1]. Then, there exist positive integer N = N(§)
and positive real number families {6y} _o, {nm INE1 € (0,1), {Jm}N_o, {Im}N_o € N
depending on p,n,a and independent of L, a time ty > tg such that

1) 5N(nNL—)q+l_ppp tn+ (k+1)

u>nval a.e inQ’x(tN—l—<k‘+— SIn I

5N(77NL)q+1_p )
2

2JIN+IN

for some k € {0, 1,...,2/nFIN _ 1}, where ty is written as

N _
3 (5m71(77m71L)q+1 p
tN - to + Zl (g + Z) 2Jm—1+1m—1 pp
m=

for some £ € {0,1,...,2/m—1+Im-1},

As mentioned in Corollary 18, if a solution in (4.1) is positive almost everywhere in
at some time tg, its positivity expands in space-time without ”waiting time”.



Corollary 20 Let u be a nonnegative weak supersolution in (4.1). Let € be a subdomain
contained compactly in Q. Suppose that u(ty) > 0 almost everywhere in ) for some
to € [0,T). Then there exist positive numbers ng and 19 such that

u>mno ae in Q x (to,to+70).

In general, the solution to the fast diffusion equation of the same type nonlinearity as
the equation of (1.1) may vanish at a finite time. However, under the volume constraint as
in (1.1), the solution may positively expand in all of times. This is actually the assertion
of the following proposition.

Proposition 21 (Interior positivity by the volume constraint) Let Q' be a subdo-
main compactly contained in Q) and very close to ). Let T be any positive number and
Assume that ug > 0 in . Let u be a nonnegative weak solution of (1.1). Then there exists
a positive constant i such that

uw(z,t) >7 in Q' x[0,T].

Proof. By the volume constraint and Proposition 11, letting M := e*7/4|jy|| Loo(Q)> We
have, for a positive number L < M and any t € [0, 7]

1 = /uq+1(t)d$
Q

/ W () da + / W (tyde+ [ wt(t) da
Jornfu)>L} Jornfu(ty<L} Jo\or

MTHQY N {u(t) > L} + LY Q|+ M Q\Q'|;

VAN

and thus,
1 — LI QY| — ML Q\ Q|
Mat1
Choose €' such that [Q\Q'| < /=t and L > 0 satisfying LT |Q'| < }. Under such
choice of " and L, we find that, for any ¢ € (0,77,

<9 n{u(t) > L}|.

(4.35) al] < |1 N {u(t) > L},

1
where a = ST By (3.8), a nonnegatvie weak solution u of (1.1) is a weak
supersolution in (4.1). Thus, from Theorem 19, there exist positive integer N = N (') and
positive number families {0, }¥_o, {7m N1 € (0,1), {Jn}N_o, {Im}N_oy € N depending

on p,n,« and independent of L, a time ¢x > t such that, for any ¢t € [0, 7],
u > L in O x 7V
>nnt1L  ae in Q X< Iy (1),

where I](\I/C)(t) = (tN + (k‘ + %) Mp’”, tnv + (k+ 1)Mpp> for some k €

2 INTIN 2/NHIN
{0, 1,...,2/8+N _ 1}, and ty is written as

N 1—
3 5m—1(nm—lL)q+ p
tN :t+ Zl <£+ Z) 2Jm—1+1m_1 pp

for some ¢ € {0,1,...,2/m-1+Im-1 _ 1} m]



We finally state the positivity near the boundary for p-Sobolev flow (1.1).

Proposition 22 (Positivity near the boundary) Suppose that ug > 0 in Q. Let u be
a nonnegative weak solution of (1.1). Then u is positive near the boundary OS.

Proof. For the doubly nonlinear equation of the same type as p—Sobolev flow (1.1) we
have the comparison principle. Thus, the usual comparison argument near boundary can
be applied (refer to [1]). ]

5 Holder and gradient Holder continuity

Here we will study the Holder and gradient Holder continuity of the solution to p-
Sobolev flow (1.1) with respect to space-time variable.

Suppose ug > 0 in Q. Then by Propositions 21 and 8 (or 11), for any Q' compactly
contained in €2, we can choose positive constants ¢ and M such that

(5.1) O<é<u<M in € x[0,7]

Note that the constant M depends only on T, Ao, ||ug||r=(0) p and v and, ¢ depends only
on M, p and n. Under such positivity of a solution in the domain as in (5.1), we can

rewrite the first equation of (1.1) as follows : Set v := u?, which is equivalent to u = v«
and put g := %ful/ 4=1 and then, we find that the first equation of (1.1) is equivalent to

(5.2) v — div(|Vo[P2gP7IVu) = AM(t)v in @ x [0,T]

and thus, v is a positive and bounded weak solution of the evolutionary p-Laplacian
equation (5.2). By (5.1) g is uniformly elliptic and bounded in Q.. Then we have a local
energy inequality for a local weak solution v to (5.2) (see [5]).

The following Holder continuity is proved via using the local energy inequality and
standard iterative real analysis methods. See [5, Chapter III] or [24, Section 4.4, pp.44—
47] for more details.

Theorem 23 Let v be a positive and bounded weak solution to (5.2). Then v is Hélder
continuous in Yy with a Holder exponent B € (0,1) on a space-time metric |x| + [t|'/P for
any T > 0.

By a positivity and boundedness as in (5.1) and a Holder continuity in Theorem 23,
we see that the coefficient gP~! is Holder continuous and thus, obtain a Holder continuity
of its spacial gradient.

Theorem 24 Let v be a positive and bounded weak solution to (5.2). Then, there exist a
positive exponent o < 1 depending only on n,p, 8 and a positive constant C' depending only
onn,p,& M, A0), B, Vvl sz [9]5.0, and [v]gq;, such that Vv is Hélder continuous in

' with an exponent o on the usual parabolic distance. Furthermore, its Holder constant
is bounded above by C, where [f]g denote the Hélder semi-norm of a Hélder continuous

function f with a Holder exponent 3.

By an elementary algebraic estimate and a interior positivity, boundedness and a Holder
regularity of v and its gradient Vv in Theorems 23 and 24, we also have a Holder regularity
of the solution u and its gradient Vu.



Theorem 25 (Holder and Gradient Holder continuity) Let u be a positive and

bounded weak solution to the p-Sobolev flow (1.1). Then, there exist a positive exponent v <
1 depending only on n,p, B, « and a positive constant C depending only on n,p, ¢, M, A(0),
B, o, [[Vullpoayy [9]s.0, and [v]s ;. such that w and Vu is Holder continuous in Q. with

an exponent vy on a parabolic metric |x|+ ]t\l/p and on the parabolic one, respectively. The
Hélder constants are bounded above by C, where [f]g denote the Hélder semi-norm of a
Hoélder continuous function f with a Hélder exponent .
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