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1. INTRODUCTION

Throughout this paper, we denote a real Hilbert space by H, and its inner
product and norm by (-, -) and || - ||, respectively. Let C' be a nonempty subset
of H. A mapping T : C — H is called nonexpansive if | Tz — Ty| < ||z — y|
for all z,y € C. For a mapping T : C' — H, we denote by F(T') the set of fized
points of T and by A(T) the set of attractive points [21] of T, i.e.,

(i) F(T)={z€C:Tz=z};
(i) A(T) ={z€ H:|Tx—z|| < ||z — 2|, Vz € C}.

In 1975, Baillon [4] proved the following first nonlinear ergodic theorem in
a Hilbert space (see also [19]). Kohsaka and Takahashi [9], and Takahashi [20]
introduced the following nonlinear mappings. A mapping T : C — H is called
nonspreading [9] if

2|Ta - Ty|* < |Tw —yl* + | Ty — |
for all x,y € C. A mapping T : C' — H is called hybrid [20] if
3T — Ty|” < ||z — yl* + | Tz — y)* + | Ty — ||
for all z,y € C. They proved fixed point theorems for such mappings (see also
[6, 10, 23]). In general, nonspreading and hybrid mappings are not continuous
mappings. Kocourek, Takahashi and Yao [7] introduced a more broad class
of nonlinear mappings than the class of A-hybrid mappings in Hilbert spaces

(see also [1]). A mapping T : C' — E is called generalized hybrid [7] if there
are real numbers «, § such that

al|Tz = Ty|? + 1 = a)llz = Tyl* < BTz -yl + 1 = Bz — y?
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for all z,y € C. The nonlinear ergodic theorem by Baillon [4] for nonexpansive
mapping has been extended to generalized hybrid mappings in a Hilbert space
by Kocourek, Takahashi and Yao [7]. Takahashi and Takeuchi [21] proved
a nonlinear ergodic theorem of Baillon’s type without convexity for general-
ized hybrid mappings by using the concept of attractive points. Maruyama,
Takahashi and Yao [14] defined a broad class of nonlinear mapping called
2-generalized hybrid which contains generalized hybrid mappings in Hilbert
spaces. Let C' be a nonempty subset of H. A mapping T : C' — C is said to
be 2-generalized hybrid [14] if there exist real numbers a1, 81, ag, B2 such that

a1[|T%z — Ty|* + aof| Tz — Ty|* + (1 — a1 — ag)|lz — Ty
< BillT?z — ylI” + Bol| Tz — yl* + (1 = B1 — Ba) ||z — ylI? (1.1)

for all z,y € C. Kondo and Takahashi [11] introduced the following class
of nonlinear mapping which covers 2-generalized hybrid mappings in Hilbert
spaces. A mapping T': C' — C is said to be normally 2-generalized hybrid [11]
if there exist real numbers «q. 3o, a1, 31, a2, 32 such that Zi:o(an + Bn) >
0, as + a1 + o > 0 and

az|| Tz = Tyl* + ea||Tx — Ty||* + aolla — Tyl
+ Bl 7?2 — || + Bul| Tz — yl* + Bollz — ylI* < 0 (1.2)

for all z,y € C.

On the other hand, Rouhani [16] introduced the notion of generalized hy-
brid sequences in Hilbert spaces and proved a nonlinear ergodic theorem of
Baillon’s type for the sequences. Djafari Rouhani [17] also introduced the
notion of 2-generalized hybrid sequences in Hilbert spaces. Djafari Rouhani
[17] proved a nonlinear ergodic theorem of Baillon’s type for the sequences.
Furthermore, Djafari Rouhani [15] introduced the concept of absolute fixed
points for nonexpansive mappings. He studied an extension of nonexpansive
mappings and proved the existence of absolute fixed points of nonexpansive
mappings. He [16] proved the existence of absolute fixed points of hybrid map-
pings and some fixed point theorems. He [17] proved the existence of absolute
fixed points of generalized hybrid mappings and some fixed point theorems.

In this paper, motivated by Baillon [4], Hojo [5], Kondo and Takahashi [11]
and Djafari Rouhani[16, 17], we study a broad class of sequences which covers
nonexpansive sequences, generalized hybrid sequences [16] and 2-generalized
hybrid sequences [17]. Then, we obtain nonlinear ergodic theorems for the
sequences by using the idea of attractive points. We also get weak conver-
gence theorems for weakly asymptotically regular sequences. Furthermore, we
obtain the existence of absolute fixed points of normally 2-generalized hybrid

mappings in Hilbert spaces. We also get some fixed point theorems.
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2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we denote by N and Z* the set of all positive
integers and the set of all nonnegative integers, respectively. We also denote
by R and R* the set of all real numbers and the set of all nonnegative real
numbers, respectively. Let H be a real Hilbert space with inner product (-,-)
and norm || - ||.

Let C be a closed and convex subset of H. For every point x € H, there
exists a unique nearest point in C, denoted by Pcox, such that

lz — Pox| < [l —yll
for all y € C'. The mapping P¢ is called the metric projection of H onto C.
It is characterized by
(Pox —y,x — Pox) >0
for all y € C. See [19] for more details. The following result is well-known;
see [19].

Lemma 2.1. Let C' be a nonempty, bounded, closed and convex subset of a
Hilbert space H and let T be a nonexpansive mapping of C into itself. Then,
F(T) # 0.
We write z, — z (or lim z,, = x) to indicate that the sequence {z,} of
n— oo
vectors in H converges strongly to x. We also write z,, — z (or w- lim x,, = x)
n— oo

to indicate that the sequence {x,} of vectors in H converges weakly to z. In
a Hilbert space, it is well known that z,, — x and ||z, || — ||=| imply =, — .

A sequence {z,} in H is said to be generalized hybrid [16] if there exist real
numbers «, 8 such that

allzipr — zjal? + 1 — @)z — 2yl < Bllwier — zi|)* + (1= B)||lxs — =

for all 4,5 € N. A sequence {z,} in H is said to be 2-generalized hybrid [17]
if there exist real numbers a1, 81, ag, B2 such that

atllzive — zjp | + azl|ziv — 2l + (1 - o1 — ag)||ai — 254
< Billwive — 2| + Bollwivs — xj|? + (1 — Bu = Bo)llas — 251> (2.1)
for all¢,j > 0. Such a sequence {x,} is said to be an (a1, ag, 81, f2)-generalized
hybrid sequence. We note that the class of (0, «,0, §)-generalized hybrid se-

quences is the class of generalized hybrid sequences.
Let {x,} be a sequence in H. We use the following notations:

Fy = {q € H : the sequence {||z,, — ¢||} is nonincreasing};
Fy={qe€ H: lim |z, — q| exists}.
n—oo
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Lemma 2.2. Let {x,} be a sequence in H. Then, F\ and Fy are closed convex
subset of H.

Using a mean, we obtain the following results (see [18]): Let {x,} be a
bounded sequence in H and i be a mean on £°°. Then, there exists a unique
point zg € H ¢o{x, : n € N}, where €64 is the closure of convex hull of A such
that

(1) n{xn, 2) = (20,2) Vze€ H.

We call such a unique point zgp € H the mean values of {x,} for pu.

3. NONLINEAR MEAN ERGODIC THEOREMS

In this section, motivated by Baillon [4], Hojo [5], Kondo and Takahashi
[11] and Djafari Rouhani [16, 17], we introduced a broad class of sequences
which covers nonexpansive sequences, generalized hybrid sequences [16] and
2-generalized hybrid sequences [17]. Then, we obtain a strong convergence
theorem and a nonlinear mean ergodic theorem for normally 2-generalized
hybrid sequences in a Hilbert space (see [2]). In 1975, Baillon [4] proved the
following first nonlinear ergodic theorem in a Hilbert space (see also [19]):

Theorem 3.1 ([4]). Let C be a nonempty bounded closed convex subset of H
and let T' be a nonexpansive mapping of C into itself. Then, for any x € C,
Spx = %Z?:_ol T'z converges weakly to a fixed point of T.

A sequence {z,} in H is said to be normally 2-generalized hybrid if there
exist real number «q, By, a1, 81, @, B2 such that

0> agl|zive — zj1l* + rl|zips — 2 | + aolles — 2|
+ Bollzive — xl|* + Brllwirs — 251 + Bollwi — 25 (3.1)

for all 4,7 € Z*. We call such a sequence an (g, 8o, a1, 81, @2, 32)-normally 2-
generalized hybrid sequence. We note that the class of (1—a, —(1—2), a, —3,0,0)
-normally 2-generalized hybrid sequences is the class of generalized hybrid se-
quences (see [16]).

As in the proof of [13, Theorem 4], we have the following theorem (see also
12, 22]).

Theorem 3.2 ([2]). Let {x,} be an («o, Bo, a1, B1, a2, B2) -normally 2-generalized
hybrid sequence in H. Assume that {z,} is bounded. Then, {Px,} converges
strongly to some v € H, where P is the metric projection from H onto F}.

Using the idea of attractive points and Theorem 3.2, we obtain a nonlinear
ergodic theorem for normally 2-generalized hybrid sequences (see also [4, 5,
11, 16, 17)).
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Theorem 3.3 ([2]). Let {z,,} be an («g, Bo, a1, 1, a2, B2)-normally 2-generalized

2
hybrid sequence in H. Assume Z(an +Bn) >0 and as+ai1+ag > 0. Then,

n=0
the following are equivalent.

(i) Fy # 0;
(ii) Fy # 0;
(iii) {xn} is bounded in H;
1 n—1
(iv) {ﬁ Zxk} converges weakly to an element w € H.
k=0
Moreover, in this case w = lim Px, € Fi, where P 1is the metric projection

n— oo
of H onto Fy.

Remark 3.4. In Theorem 3.3, we obtain that ¢ = w- lim S,, is the asymptotic
n— oo

center of {x,} (see, for instance [19]).

By Theorem 3.3, we get the following nonlinear ergodic theorem by Djafari
Rouhani [16] for generalized hybrid sequences.

Theorem 3.5 ([16]). Let {x,} be a generalized hybrid sequence in H. Then,
the following are equivalent.

(i) F1 # 0;
(ii) Fy #0;
(iii) {xn} is bounded in H;
n—1
, 1
(iv) {ﬁ kz_:la:k} converges weakly to some w € H.

Moreover, in this case w = lim Pz, € F}.
n— oo

By Theorem 3.3, we get the following nonlinear ergodic theorem by Djafari
Rouhani [17] for 2-generalized hybrid sequences.

Theorem 3.6 ([17]). Let {z,} be a 2-generalized hybrid sequence in H. Then,
the following are equivalent.

(i) Fy # 0;
(ii) Fy #0;
(iii) {xn} is bounded in H;
n—1
1
) — kly t € H.
(iv) {n kZ::lxk} converges weakly to some w

Moreover, in this case w = lim Px, € F}.
n—oo

5



4. WEAK CONVERGENCE THEOREMS

In this section, using the idea of Theorem 3.3, we get weak convergence
theorems for weakly asymptotically regular sequences (see [2]).

Theorem 4.1 ([2]). Let {z,} be a normally 2-generalized hybrid sequence in
2

H. Assume Z(an +Bn) >0 and ag + a1 + ag > 0.
n=0
Let P be the metric projection from H onto Fi. And suppose that {x,} is
weakly asymptotically reqular, i.e.,
Tpt1 — Ty — 0.

Then, the following are equivalent.

(i) Fy # 0;

(ii) Fy # 0;
(iii) {xn} is bounded in H;

(iv) {xp} converges weakly to some u € H.

Moreover, in this case u = lim Px, € F}.
n—oo

Remark 4.2. In Theorem 3.3, we have that v = w- lim x,, is the asymptotic

n—oo
center of {x,} (see, for instance [19]).

By Theorem 4.1, we also get the following weak convergence theorem by
Djafari Rouhani [16] for generalized hybrid sequences.

Theorem 4.3 ([16]). Let {x,,} be a generalized hybrid sequence in H. Suppose
that {x,} is weakly asymptotically regular, i.e.,
Tn+1 — Tp — 0.

Then, the following are equivalent.

(i) F1 #0;

(i6) Fy #0;
(1ii) {xn} is bounded in H;

(iv) {x} converges weakly to some u € H.

By Theorem 4.1, we also get the following weak convergence theorem by
Djafari Rouhani [17] for 2-generalized hybrid sequences.

Theorem 4.4 ([17]). Let {x,} be a 2-generalized hybrid sequence in H. Sup-
pose that {x,} is weakly asymptotically regular, i.e.,

Tn+1 — Tp — 0.

Then, the following are equivalent.



(i) Fy #0;
(ii) Fy # 0;
(iii) {xn} is bounded in H;
(iv) {xp} converges weakly to some u € H.

By Theorem 4.1, we also get the following weak convergence theorem for
normally 2-generalized hybrid mappings (see [2, 3]).

Theorem 4.5. Let C' be a nonempty subset of H and let T be a normally
2-generalized hybrid mapping of C' into itself. Suppose thatT is weakly asymp-
totically regular, i.e.,

T Ty

for each x € C. Then, the following are equivalent.

(i) F1 #0;
(ii) 1 0:
(iii) A(T) #0;
(iv) {T"x} is bounded in H for each x € C.
(v) {T"z} is bounded in H for some z € C.
(vi) {T"z} converges weakly to an element v € H.

Moreover, in this case v = lim Pz, € A(T), where P is the metric projection
n—oo
of H onto Fi.

5. ABSOLUTE FIXED POINTS

In this section, using the concepts of attractive points, we establish the
existence of absolute fixed points of normally 2-generalized hybrid mappings
(see also [15, 16, 17]). The concept of absolute fixed points was introduced by
Djafari Rouhani [15] (see also [16, 17]). Let C' be a nonempty subset of H and
let T' be a normally 2-generalized hybrid mapping of C into itself. A point
p € H is said to be an absolute fixed point of T' if there exists a normally 2-
generalized hybrid extension S of T from C' U{p} to CU{p} such that Sp = p,
and if p is a fixed point of every normally 2-generalized hybrid extension of T’
to the union of C' and a subset of H containing p.

Kondo and Takahashi [11] proved the following nonlinear ergodic theorem
of Baillon’s type ([4]) (see also [2, 4]).

Theorem 5.1 ([11]). Let C be a nonempty subset of H and let T be a normally

2-generalized hybrid mapping of C into itself. Assume that {T"z} is bounded

for some z € D. Let Pypy be the metric projection of H onto A(T'). Then,
7



1 n—1
for each x € C, lim —ZTkx converges weakly to u € A(T), where u =

n—oo M
k=1

lim PA(T)Tn:L‘

n—oo

By Theorem 5.1, we have the following (see [3]).

Proposition 5.2 ([3]). Let C be a nonempty subset of H and let T be a
normally 2-generalized hybrid mapping of C' into itself. Assume that {T"z} is
bounded for some z € C. Let x € C and let

n—1

1
u=w-lim — ZT’%.

n—oo N
k=1

Then, for eachy € C andn € 7T,
1Ty — ] < (1T — ull
holds. Thus, u € F}.

Theorem 5.3 ([3]). Let C' be a nonempty subset of H and let T be an
(v, Bo, a1, B, v, B2) -normally 2-generalized hybrid mapping of C' into itself
Assume that {T"z} is bounded for some z € C. Let x € C' and let

1 n—1
u=w-lim — E TF .
n—,oo N 1

Let M be a nonempty subset of H such that M > C' U {u}. Assume that S is
a normally 2-generalized hybrid extension of T to M. Then, we have Su = u.

Adding that C is closed and convex, we can obtain the following fixed point
theorem ([11]) by Theorem 5.3 (see also [11, 17, 21]).

Theorem 5.4 ([3]). Let C be a nonempty closed and convex subset H and let

T be a normally 2-generalized hybrid mapping of C into itself. Assume that
{T"z} is bounded for some z € C. Then, we have F(T) # ().

In our next lemma, we give a sufficient condition for a normally 2-generalized

hybrid mapping of C' into itself with a bounded orbit, to have a normally 2-
1 n—1 4
generalized hybrid extension to C' U {u}, where u = w- lim — Z T'z.
n—oo N prt
Lemma 5.5 ([3]). Let C be a nonempty subset H and let T be an («, Bo, a1, b1, oz, 52)
-normally 2-generalized hybrid mapping of C' into itself. Assume that {T"z}
8



is bounded for some z € C. Let x € C' and let

1 n—1
u=w-lim — E T x.
—

Then, the mapping S : CU{u} — CU{u} defined as Sz =Tz for all z € C, and
Su = w is an («o, fo, a1, f1, @2, B2) -normally 2-generalized hybrid mapping of

C U {u} into itself, if either ag + P2 > 0, ag + 1 > 0 and Z(an + Bn) =0,

n=0
2

or as+ B <0, a1 + 51 <0, Z(an + Bn) = 0 and the orbit {T*y} of every
n=0
y € C lies on the sphere centered at y, with the radius ||y — ul|.

By Theorem 5.3 and Lemma 5.5, we get the existence of absolute fixed
points of normally 2-generalized hybrid mappings.

Theorem 5.6 ([3]). Let C be a nonempty subset H and let T be an (v, Bo, a1, 1, 2, B2)
-normally 2-generalized hybrid mapping of C into itself. Assume that {T"z}
is bounded for some z € C. Let x € C' and let

n—1

u = w- lim lsz

n—oo N
k=1

Then, u is an absolute fized point of T if either (aq —|— B2) >0, (a1 + SB1) >

andz an + Bn) =0, or ag+ P2 <0, a1+ 1 <0, Z an + Bn) =0 and the
n=0 n=0
orbit {T*y} of every y € C lies on the sphere centered at y, with the radius

ly = ell-
6. FIXED POINT THEOREMS

In this section, motivated by [16, 17], we obtain some fixed point theorems
for normally 2-generalized hybrid mappings defined on nonconvex domains in
H.

Let C be a nonempty subset of H. We say that C is Chebyshev with respect
to its convex closure, if for any y € €6 C, there is a unique ¢ € C such that

ly = qll = nf{lly — 2] : 2 € C}
(see [16, 17]).
Theorem 6.1 ([3]). Let C' be a nonempty subset of H and let T be a nor-

mally 2-generalized hybrid mapping of C into itself. Then, T has a fixed
9



point in C if and only if {T™z} is bounded for some x € C, and for any
yeco{T"x :n € Z1}, there is a unique p € C such that ||y—p|| = inf{||y—z| :
z e C}.

As a directed consequence of Theorem 6.1, we obtain the following theorem.

Theorem 6.2 ([3]). Let C be a nonempty subset of H which is Chebyshev with
respect its convex closure. Let T be a normally 2-generalized hybrid mapping
of C into itself. Then, T has a fized point in C if and only if {T™x} is bounded
for some x € C.

1.
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