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1 Introduction and Main Results

In this paper, based on a recent work [5], we present our study on the existence and
the linear stability of stationary solutions for the following Schnakenberg model:

Uy = Uy, +de —u+ g(z)uto, z€(—1,1), t >0, (1)

evy = Dugy + 5 — Sg(x)u’v, xe(—1,1), t>0, (2)

ug(£1) = v, (£1) =0, (3)

where d and ¢ are positive constants, €2 and D are positive diffusion coefficients. u(z,t)

and v(x,t) represent the density of two chemical substances. Here, g(z) is a positive
function, which represents the reaction speed of the chemical reaction at x € (—1,1)
and may vary on the location z, for example by the effect of temperature.

Our system (1)-(3) is obtained from the original Schnakenberg model:

Uy =DUy+a—U-+g@)U?V, ze(-1,1),t>0,
Vi  =DyVy+b—g(x)UV, ze€(-1,1), t>0,
Ug(£1) =V, (£1) =0
by using the spacial scaling: ¢ = ﬁ, d=ac™s = 2ab, and
1 D

U=—u, V =2bsv, D;=¢? Dy=—.
2be €



Especially, we treat sufficiently small € and a fixed D, i.e. the ratio of diffusion coefhi-
cients % is large (cf. Turing’s diffusion-driven instability). Moreover, (2) means that v
reacts very rapidly than » in our model.

Inspired by the work of Iron, Wei and Winter [3] which studied in the case d = 0 and
g(x) = 1, the purpose of our study is to investigate the effect of symmetric heterogeneity
g(x), namely g(x) = g(—x), on the linear stability of stationary solutions for (1)-(3)
rigorously. To state our main results, we prepare some notations. Let wy be the unique
solution of

wy —wo+wi =0, x€R,
wy > 0, wy(0) = maxg wo, limy— wo(y) = 0.
It is known that wy is unique and can be written explicitly wy(y) = 3(cosh £)72,
Let w be the unique solution of the following problem:
w —w+g(0)w? =0, z€eR,

w > 0, w(0) = maxg w, limyy_,. w(y) = 0.
Then it is easy to see w(y) = ¢(0) *wy(y). Let x be a cut-off function:

1, |z| < i,

ECPMR),0<y<1, —

Define symmetric function spaces: for each a € (0, 00),
L2(=a,0) i={u € [*(~a,a) | ule) = u(~2)},
HX(—a,a) :={u € H*(—a,a) | u(z) = u(—=z),u/'(+a) = 0}.
Let I := (=1,1) and I, :=(— £, 1) for £ > 0. We also use the following notation for

el e

the rescaling: for a function v : I — R, define u(y) := u(ey) (y € I.).
The steady-state problem for (1)~(3) is the following:

0 =% +de —u+g(x)v?o, ze(-1,1), (4)
0 = Dot} tglaple e (-11) 5
u'(£1) =o' (£1) =0. (6)

First, we state the existence of a one-peak solution.

Theorem 1 Fiz D < +oo arbitrarily. Assume that g(x) is positive, Lipschitz contin-
uous and satisfies g(x) = g(—x). Then, there exists a sufficiently small e > 0 such
that, for 0 < e < ey, (4)~ (6) admits a symmetric one-peak solution (u.(x),v.(x)) €
H2(I1.) x H2(1.), where u.(z) concentrates at x = 0. Moreover, u.(x) takes the following
asymptotic form:

() = we(z) + ¢(), (7)
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where

we(x) == glw<£>x(m), & = cg(0) / w?(y)dy

0 € R
and ¢. € H2(I.) such that
10| 2,y < COVE (8)

holds for some constant C > 0 independent of . Also, v.(x) satisfies
v.(0) = & + O(ve) as e — 0. 9)
Moreover, there exists vg € H*(I) such that v. — vy weakly in H'(I), where vy satisfies

—Dug(z) =3 — do(x), =€ (—1,1),
UQ(O) = 50, Ué(:l:l) =0

and 0o(x) is the Dirac’s delta function.

Next, we study the linear stability of the solutions (u.,v.) constructed in Theorem 1.
We linearize the system (1)~ (3) at (u., v.) and obtain the following eigenvalue problem:

€2g0'€' — @, + 2gu.v. 0, + gu?d;g =\, € (—1,1), (10)
2c c
Dy” — ?guavac,p6 — ggugwe =AY, x€(-1,1), (11)

(1) = ¥L(£1) =0,

where, A. is an eigenvalue, and (¢.,1.) # (0,0) is an eigenfunction. We say that the
solution (u.,v.) is stable if Re\. < 0 holds for all eigenvalues and unstable if there
exists an eigenvalue satisfying ReA. > 0. We have the following result on the stability.

Theorem 2 Fix D < 4+o00. Let € > 0 be sufficiently small. Let (u.,v:) be the solution

given in Theorem 1 . Then, we have the following for large eigenvalues, namely
)\5 — /\0 % 0:

(1) (ue,v.) is stable for any D < 400, namely Re(\.) < 0 holds.

Furthermore, let g € C*(—1,1). Then, we have the following for small eigenvalues,
namely Ao — 0:

(2) If ¢"(0) <0, then (u.,v.) is stable for any D < +00.

(3) If ¢"(0) > 0, (uc,v.) is stable for D < Dy, (u.,v.) is unstable for D > Dy, where,
D1 > 0 is

b1 @0 _ 1 #0
b 2¢ [ws ¢"(0)  12c g"(0)



In fact, we have the following asymptotic behavior of A\ as e — 0:

N

Remark 1 Note [, w§ =6 and

& = cg(0) [ w(5)dy = cg(©)" [ uBl)dy = 6eg(0) "
R R
Hence, for the case g"(0) > 0 the condition D < Dy is equivalent to

(-0

Remark 2 Since we are concerned with the existence of unstable eigenvalues, we can

assume that Rel. > —%1 for example. We can show that eigenvalues \. are uniformly
bounded under the assumption Re\, > —%1. Therefore, we can assume that there exists
a \g such that A\. — A\ as € — 0, taking a subsequence if necessary.

Remark 3 In the case g(x) =1 and d = 0, by the result of Iron, Wei, and Winter[3],
the one-peak symmetric solution is stable for any D > 0. Compared with the case
g(x) =1, Theorem 2 reveals the strong influence of the heterogeneity g(x) on the stability
of the one-peak symmetric solution. We should mention that a similar destabilization
effect of the heterogeneity has been studied for the Gierer-Meinhardt system(see [8]).
We note that our results also cover the case d = 0. We emphasize that, even in the case
g(z) = 1, the remainder estimate O(£2) for small eigenvalues is more precise than, the
result of Iron, Wei and Winter. We also emphasize that for the case d > 0 we need to
take care of the remainder terms more carefully, compared with the case d = 0.

Even for non-symmetric heterogeneity g(x), we can expect similar results. However,
we need more computations and left to future works. For the related works with some
heterogeneity in other Turing systems, see for example [2], [6], [7] , [8] and the references
therein. Recently, for a given N € 2, N € N and a given symmetric %—periodic function
g(x) in the interval I = (—1,1), one of the authors studied the existence of multi-peak
symmetric solutions and its stability in details (see [4]). We also mention that Ao and
Liu[1] studied recently another heterogeneity effect on the existence and its stability for
the Schnakenberg model with precursors.

2 Outline of the Proof of Theorem 1

2.1 Heuristic explanation of the choice of &

Before giving the outline of the proof of Theorem 1, we explain briefly why we choose
&y as follows in Theorem 1:

& = cg(0) / w2 (y)dy.
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Suppose u; and v, are uniformly bounded. Then by the equation for v:

D = & — gt 13
e — 5 ECGUs Vg, ( )

we have |Dv.”(y)| < Ce. Since 7; is symmetric, we have 7./(0) = 0. Therefore, for fixed
R > 0 we have [77'(y)| < CRe (|ly| < R). This implies 7:(y) ~ Cy (ly| < R) for some
positive constant Cjy. On the other hand u; satisfies

—)/

—u" = de —u; + gu: v, y € I = (—

o | =

1
€

).

)

Now we expect Uz (y) ~ Agw(y) := uoo(y). Then we have
—ulo(y) + e (y) = 9(0)uns(y)*Co. y € R.

So if we take w(y) to be a solution to —w” +w = g(0)w?, we must have 4,Cy = 1. Now
integrating (13), we have

0:1—c/ guz2vz dy.
I

So taking the limit, we would have

1= C/ 9(0)Ajw(y)*Co dy.
R

Therefore, since AgCy = 1 we should have

1
cg(0) [ w?dy
Thus if we define & := cg(0) [, w?(y)dy, then we have

'ug(;L‘)Né—low(g) and  0.(0) ~ &.

AOI

2.2 Outline of the construction by using the contraction map-
ping principle.

Let u = w. + ¢ with ¢(y) € B(Cy), where

wo) = zu( D)) &= cal0) [ w)iy

= —Ww\| —
o €
and

5(Co) ={3 € 1) |8l < Gov 72 =0}, (14)

where the constant C is independent of £, which will be chosen suitably later. Then,

we can find a unique solution v := T'[u] = T[w. + ¢] of the second equation (5):

1
—Dv" + gg(az)uz’v =5 re(=L1), J(F)=0.



We seek a unique ¢(x) € H2(I) such that (u(x),v(z)) = (w. + ¢, T|w. + ¢]) satisfies
the first equation (4). Substituting u = w. + ¢,v = Tw. + ¢| into the first equation

(4):

—e*u" =de —u+ g(x)u’Tu), z € (—1,1), u/(£1) =0,
we have
24" — ¢+ 29w 9T [we + ¢ + gwiT[w. + 9] + e*w! — w. + de + g¢*T'w. + ¢] = 0. (15)
Using the Fréchet derivative R.[¢] = (I"[w.], ¢), we have
S.[¢] + gw?T[w.] + e*w! — w,. + de + N1[¢] =0,

where
Selg] = e2¢" — ¢ + 29T [we]w.¢ + Re[¢plgw? (16)

and Ny[¢)] is the higher order term. Here, in the y-variable, using w.” —w; = —&yg(0)w:>+
O(e™ 1) we rewrite as follows:

S[0] + g w2 TTw.] — g(0)&w=2 + d= + O(e %) + Ny[¢] = 0, (17)

where
5c[0) = 5:[0] = ¢ — &+ 27 TTwe] Wz 6 + Re[é] g e
Now we have the following invertibility of the operator S, : HZ2(I.) — L%(1.).

Lemma 1 ([5, Lemma 3.2]) There exist £ > 0 and A > 0 such that, for e € (0,¢),
the following inequality holds:

5219

Furthermore, Ran(S.) = L%(1.) holds.

2 Ml - B BECL). 19

Thus we have

¢ =5 ' [Tw.]] -5 ' [Mi[e]]= M.[d], (19)
where
Iw.] =g W Tlw.] — g(0)&w:2 + de + O(e™%).

If we choose Cj > 0 large enough such that

— 1 C

I1Se " [Twel w2y < 70\/E (20)
we can show that M, is a contraction mapping on B(Cp) for small € > 0. Actually, we
can choose Cy so that Cy > w, where C is the constant will appear in Corollary 1
later. (Note that the constants A > 0 and C depend only on w(z), g(x) and the fixed
parameters ¢ > 0, D > 0. ) Thus, there exists a unique ¢ € B(C,) which satisfies the

desired equation.



2.3 Basic estimates, including the estimates for 7T [w. + ¢].

We note the following estimates, which play key roles throughout this work.

Lemma 2 ([5, Lemma 2.8, 2.9]) Fiz C; > 0. For each ¢ € B(Cy), let n(x) €
H?(—1,1) satisfy

) 2 h
_Dn// + Mn = 27 T € (—1, 1), n,(ZII1> = O, (21)

where h(x) is a given function on L*(—1,1). Then, the following estimates hold:
(1) 1l g ay= LIy 1,
(2) 712y = CVEIRILr 1y

(3) [n(w)g(y) — 10)g(0)] < CVElYl|[]] 1y v € L.

Here, the constant C' is independent of €. Furthermore, if we have a uniform bound
IRl 21y < M, then we have

n(0) = 50/ hdy+O(/z) as & — 0. (22)
I
By using Lemma 2, we can obtain the following estimate which allows the estimate
(20).

Corollary 1 There exists a constant C such that the following estimates hold

|7 [welllzery < Cr. [ Twe](0) = ol < Crive,

19 wT[w.] — g(0)&w| 121,y < Civ/e.

(Proof.) By (1) , (3) of Lemma 2 and (22) as ¢ = 0 and h(z) = §, there exists a
constant 7, independent of € and Cy, such that the following estimates hold:

1T [wel|| ooy < Ch, [T w:](0) — &l < Civ/e,

Tw.](y)g(y) — Tw.](0)5(0)| < Civ/=ly|, y € L.

Thus we have

< w2(y) (mwa] (1)3(y) — T l(0)3(0)] + 7(0)TTw.)(0) - go|)

< g(O)CT2 (y) (vl + VE) < g<0>§—§w2<y><m L VE) el

This implies the desired estimate.



3 Global pointwise estimates for solutions
Since Uz (y) = W (y) + ¢ (y) with |¢c||mz(r.) < Cv/E, we easily have

[yl

w(y)| < CVe+ Ce vz, yel.

by using the Sobolev’s embedding theorem. However, this estimate is not enough to
treat several error terms in the stability analysis. We need the following pointwise
estimates for the solution (u.,v.) in our stability analysis.

Lemma 3 ([5, Proposition 4.2]) There exists a constant C, which is independent of
e, such that the following estimates hold:
(i)
17| Lo (1) < C,
(i)
1 _lul
[T(y)| < Clde+e %5 ), ye L,
(iii)

V2 |

[T ()] < O + e o

o

), y € L.

These estimates can be obtained by using comparison arguments. In particular, u;(y)
and @ (y) are exponentially small near the boundary of /. if d = 0. We also have the
following uniform bounds:

el|zoory <Oy ellpeery £ C, Nellze@y <O, |20y < C.

4 QOutline of the Proof of Theorem 2

We may assume that |G|/ g2y = 1. By the extension theorem we have ||@Z|| p2m) <
C. So, there exists a subsequence and g € H?(R) such that @, converges to p weakly
in H*(R) and strongly in C} (R).

loc

Lemma 4 (Boundedness of unstable eigenvalues, [5, Proposition 4.2] ) Assume
Re(A:) > —}L. Then, we have the following:

(1) % #0.

(2) There exists a constant C, independent of €, such that |\.| < C.

By this Lemma, we may assume \. — \g for some constant \g. We consider two cases:
(a) large eigenvalue: i.e. \. — A\g # 0.
(b) small eigenvalue: i.e. A\, — 0.



4.1 Stability analysis for large eigenvalues

Lemma 5 Assume \. — \g # 0. Then, we have

#() 0 + 20n(u)) ~ 20T () = Mol

Then, by the well-known lemma of Wei and Winter (see Lemma 2.2 in [3], or [8]) for
nonlocal eigenvalue problem above, we can conclude Re)y < 0. So for sufficiently small
e > 0 we have Re\; < 0, namely ). is a stable eigenvalue.

(Sketch of the proof of Lemma 5.) From the equation (11) for 7)., we can show
|¥e]| 11y £ C and apply Lemma 2 to obtain

T2(0) = ¢.(0) = & / (—26gum — A0) dy + O(v/3)

I

2 fR wy dy
0 Jp w?dy

Here we used & = ¢g(0) [, w?dy. On the other hand, from the equation (10), we have

— (0) = —2¢g(0)& / wpdy = —2¢ as € — 0. (23)
R

7 — P: + 20U0-p: + Gz, = \.pz on ..

Then , for any ¢ € C§°(R), we have

/ (? — 0 + 2quv:9: + m%) C(y)dy = / AP (y) dy.
I R

Taking ¢ — 0 and using Lemma 2, we obtain

/ (@'%y)—z(y)—+2g<o>w<y>¢<y>+%§>w2<y>w<o>><<y> iy =0 [ B)t) du. (20

Since w(y) = ¢(0)two(y), (23) and (24) yield Lemma 5.

4.2 Stability analysis for small eigenvalues

We have the following key precise asymptotic for small eigenvalues A\, which yields
the proof of Theorem 2.

Proposition 1 Assume . A\, — 0. Then, as ¢ — 0, the asymptotic form of A\, is given
as follows:

2 fR w’ 9(0)  ¢"(0) 5
A—e fR(W’)2<_6D§o+ 5 )+0(H). (25)



(Sketch of the proof of Proposition 1.) We denote u.1(z) = u.(z)x(z). To show
Proposition 1, let us decompose

pe(x) = eacu y (v) + ¢ (), (26)
where a. is some complex number and ¢ satisfies
of LK. in L*(I.), K.:=span{w1'}C H*(L.).

In y-variable, we have
P:=(y) = a1 (y) + o2 (y)-
Similarly, we decompose

V() = cap. 1 (z) + > (v). (27)

Here, 1. is a unique solution of

2c
Dzbgl — —g(z)uit., — ?g(:t)vguz;l =AY, x € (—1,1), g[);l(:lzl) =0, (28)

m | o

and ¢ is defined by ¢+ := 1. — ca.1p.;. We have the following formula for \.:

Lemma 6 ([5, Lemma 6.1])

Ji+ o+ I3+ I+ O(|CL€|E3> = /\€CL€€0_2 /(w')2dy + O(\/E/\€|CL€|> (29)
R

where J; (i =1,2,3,4) are defined as follows:

L "\ —2— —— —2—
Jl — aa/ (Edja,l — Ve )us,l Ue, 1 dy - as/ g Us Ug1 Uen dy:
Ic

I
Jp = — / (77 + 9 0 )ua” pidy,
1.

Js = / Gt ' dy,  Jy = / 7z pldy.
I. 1.

(=

Here, 77 is a function satisfying 7= (y) = 0 on |y| < £ andTZ(y) = O(e?) on £ < |y| <

P

This is obtained by multiplying %, ;" and integration by parts. Among them, J; is the
leading term to determine the precise asymptotic for A.. The following Proposition 2
is important and decide the asymptotic behavior of .J;.

Proposition 2 ([5, Proposition 6.2]) The following estimates hold:
. )
(1) ||(even —o)g HLl(Is)S Ce”.

(2) leven(y) — 2 (y)] < Cyl.
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-1
(5) <eal) w2 s) = - L8 [+ 0,

Here, the constant C' is independent of € > 0.

These are obtained by the representation of ¥.’(y) and 1. (y) by using Dirichlet and
Neumann Green functions, respectively. By Proposition 2, we have the following.

Proposition 3 [t holds that

9O fyw' | ¢"(0) [y
6D 363

= a2 )+0(lacl<),

where the constant C' is independent of € > 0.

(Sketch of the proof of Proposition 3.) By (3) of Proposition 2, we have

e / (T (y) — 72 () T2 dy
1.

~1
= aEEQM </ w? dm) /y@zm' dy + O(|ac|e?)
R R

2D
9(0)? [ w? da
2290 Js T/Rw3da:+0(|aa|53):_%5251%

6DE]

= —a.c

/ w? dx + O(|ac|e?).
R
Here, we used

9O [w@r i =6, [ye@re=—3 [ww?d

Since by using 7'(y) = £2yg”(0) + O(£3|y|*) we also have

" -2 5
/ EIUETEJZT,II dy — —82% / w3 dx + 0(53), (30)
I R

we can conclude that

— N\ —2—o e 2
Jp = aE/ (Ve — 0 )Ucr Uer dy — aa/ Gz Ueg Uey dy
I

I

g(0) fyw®  g"(0) f,
= ace?( - GD%S i 3ng

To estimate the remainder terms Js, J3, and J4, we need the following several estimates.

)+0(acle?).

Lemma 7 ([5, Lemma 6.6]) For ¢t it holds that:
(D 9] o1y S Clle | oy

(2) |10 ]] 21y S CVEIOE ] gy
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Basically, these estimates can be obtained by applying Lemma 2 for ¢=. Lemma 7
implies the following estimates.

Lemma 8 ([5, Lemma 6.8]) For J; (i =2,3,4), it holds that:

(1) 172 < Cel[62] | o

(2) 155] < VLo
(3) |Ja| < Og%”w_é_HLQ(Ig)'

Here, the constant C' s independent of € > 0.

By using Proposition 2 again and the inveritibility of some operator L., which is close
to the operator S., we can show the following estimates.

Lemma 9 ([5, Lemma 6.9]) The following hold:

(1) lac| #0.

(2) [[¢] 2= Claclet.
Combing these estimates, we arrive at the remainder estimates for J,, J3 and Jy.
Lemma 10 J, = O(Jacle2) , J5 = O(lacle?) , Jy = O(|ac|e?) .

Estimates for J, and J, follow directly from Lemma 8 and 9. However, for J;, Lemma 8
and 9 yield just J3 = (|a.|e?), which is not enough. Actually, we need the following
refined estimate to get the correct estimate for Js.

UL (y) — ¥2(0) = O(lacle? [y)). (31)

This is obtained by the representation of zZJ_EL(y) by using the Neumann Green function.
Now, by using Proposition 3, Lemma 10 and Lemma 6, we can complete the proof of
Proposition 1.

5 Further Remarks

We give two remarks.

Remark 4 Assume g(z) is Lipschitz continuous and g € C*((—1,0]) and g € C3([0, 1)),
respectively. Let ¢'(4+0) := limy~0 .0 ¢ () and ¢'(—0) = lim, <o .0 ¢'(z) = —¢'(40)
by the symmetry. When ¢'(+0) # ¢'(=0), the stability of the solution is determined by
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the sign of ¢'(40). First, note that using g'(y) = =g’ (+0) + £2yg”(+0) + O(3|y|?) for
y > 0 and gvu-2uz is an even function, we can compute

/ﬁﬁmﬁiwz2/)ﬁﬁﬁmﬂy
I. 0

— /(0G| ulu )y + 0l - —LEIRO

Thus, in the computation of the small eigenvalue \., the leading term of J; become as

nojo

+O(€%).

follows: .
Ji = e 59 (+0)w(0)* + O(Jac|e2).
380
Compare with (30) and Proposition 3 for the case g € C3(—1,1). This implies
g'(+0) 3 g
Ae =e————(w(0 0 :
s MO+ (e

Therefore, the solution is unstable if g'(+0) > 0 and stable if g'(+0) < 0.

Remark 5 (Boundary peal solution and its stability) For a given Lipschitz con-
tinuous positive function g(x), we can construct a boundary peak solution (u.,v.) on
the interval I := (—1,1). Because, consider an extension of g(x) on the interval
I = (—1,3), which is symmetric with respect to x = 1. We denote it by j(z). For
this function g, we can construct solution (t.,?.) to the corresponding Schnakenberg
system on the interval I, which is symmetric with respect to * = 1. Restricting this
solution on the original interval I, we obtain a boundary peak solution (u.,v.). For the
stability of this boundary peak solution, let us consider the linearized eigenvalue problem
on I. We denote by A\ and (p-, 1) the eigenvalue and the associated eigenfunctions,
respectively. Now, extending the eigenfunction (., 1.) on the interval I = (—1,3) to be
symmetric with respect to x = 1. Then by the Neumann boundary condition at x = 1,
this extended function (gﬁg,d;g) 1s an eigenfunction associated with the eigenvalue \. on
the interval I. Then, we can apply our theorem to study the stability of the bound-
ary peak solution (u.,v.). Namely, assuming g(x) is C? function, §"(1) determine the
stability of the boundary peak solution constructed in this way.
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