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Abstract

In this paper, we construct the analogue theory of Eisenstein series in classical
invariant theory. The groups appearing from the construction are also investigated.

1 Introduction

Eisenstein series can give very concrete example of modular forms. By corresponding
combinatorics and modular forms, we introduced the concept of E-polynomials.

On the other hand, classical invariant theory plays important roles in many branches
of mathematics. Here we show a construction of the analogue theory of Eisenstein series.
We give an investigation of graded and centralizer ring that appear.

2 Classical Invariant Theory

We begin the discussion by a ground form of degree m
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To shorten, we write v’ = (A)m u

We operate SL(2,C) on Clu] = Clug,uq,...,uy,| by the above representation and
consider the invariant subring S(2,m) defined by:

S(2,m):={J€Clu]: J)=Ju), "Aec SL2,C)}.



It is known that S(2,m) is of finite type over C and here we consider only invariants
of even degree and denote it by S(2,m)c.
In order to obtain the useful construction of invariants, we shall interpret the ground

form as
= Ug H 252

The fundamental theorem of symmetric functions gives the explicit relations between wu;s
and ;5. At any rate, the following lemma is a construction of invariants we expected (cf.

2]).

Lemma 1 An expression of the form

ug Z(Ei —¢gj)er—er). ..,

in which every €; appears r times in each product and which is symmetric in €1,2,...,Em
can be considered as an invariant of degree r.

3 Preliminaries

Let g be a positive integer. We start with a ground form of degree 2¢g + 2
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= Ug H (51 - €i§2) :
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We would like to concentrate on one type of invariants we shall define now. We fix the
following polynomial
pon = uy" (61 — £2)"" (€3 — £4)™" . (Engr1 — E2g42)™"

We denote by G the symmetric group of degree 2g+2. The group G acts on the polynomial
ring Cley, ..., e2942) as F(...,&;,...)7 = F(...,&0,...). The stabilizer G,,, of ¢, is
defined by the elements of G that do not move s,.

Proposition 2 The group G,,, can be generated by the (g + 1) + 2 elements

(12),(34)....,(294+129+2),
(13)(24),(135 ... 2g+1)(24 ... 29+2)

and 1s 1somorphic to Cé"“ X Sgt1. In particular, G,, does not depend on n.

We denote by K the group G,,, and by « the cardinality of K'\G.



4 Result

In this section, we investigate the subring of S(2,2¢g + 2).

We set
an: Z SOZW
K\G>0

which is actually an element of degree 2n in S(2,2¢g + 2) by Lemma 1. We shall denote
by A, the ring generated by o, (n = 1,2,...) over C. The ring A, is a subring of the
invariant ring S(2, 29 + 2).

Theorem 3 The ring A, is finitely generated over C and generated by 12, vy, ..., Y.

Theorem 4 (1) A; is generated by 12, s and coincides with S(2,4)°.
(2) Ay is generated by 1o, V4, Vs, 10 and coincides with S(2,6)°.
(3) As is strictly smaller than S(2,8)°.

Now we explore combinatorial properties of the permutation group arising from the
action of G on 2 = K\G. Define a permutation group G as a representation of G on ).
Let GG; be the stabilizer of a point 1. For each orbit A, we define an adjacency matrix

P(A) = (v)34 by

(1)

Vo, =

A 1 g such that 19 = 8 and 09" € A
0 otherwise

Denote the matrices P(A) by Ag = I, Ay, ..., Ay where d is class of association scheme.
It is known that the matrices Ay = I, Ay, ..., Ay generate an algebra, called bose-Mesner
algebra 2 of the association scheme X.

Denote A® be the centralizer of algebra of the k—th tensor representation of G. We
have the following theorem.

Theorem 5 For g =2, we have that

@z‘el M; k=2

% = q+a

= (ak,bk,Ck,dk7ek,fk7gk,hk7ik,jk7kk>,

where I = {ak,bk,ck,dk7 ek,fk7gk,hk,ik,jk7 lk} and
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Corollary 6 We have that
1. A" is commutative if and only if k = 1.

2. The dimension of A*) can be obtained by

1
dim A® = %(15% + 15.7% 4+ 100.3%" 4 300).

We apply the Corollary 6 for £ = 1,..,5. The following table is the result.

k|1 2 3 4 5
dim2® | 3 132 18373 3680582 806796423
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