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1 Introduction

We consider the nonlinear dynamic equations with mixed derivatives(
r(t)Φp(x

∆(t))
)∇

+ c(t)Φp(x(t)) = 0, t ∈ T, (1.1)

where T is a time scale (arbitrary nonempty closed subset of the real numbers) unbounded

above; r : T → R is continuous function and r(t) > 0 for all t ∈ T; c : T → R is real

left-dense continuous function; p is a parameter that is greater than 1; Φp is the real-

valued function defined by Φp(u) = |u|p−2u for u ̸= 0 and Φp(0) = 0. For simplicity, let q

be the conjugate exponent of p; that is, the number 1/p + 1/q = 1. Then, the function

Φq is the inverse function Φp. Here, the term mixed derivatives represents the use of

∆-derivative [3] and ∇-derivative [2], introduced in:

x∆(t) := lim
s→t

x(σ(t))− x(s)

σ(t)− s
and x∇(t) := lim

s→t

x(ρ(t))− x(s)

ρ(t)− s
,

where σ(t) := inf{s ∈ T : s > t} is the forward jump operator; ρ(t) = sup{s ∈ T : s < t}
is the backward jump operator. Also, the graininess function µ, ν : T → [0,∞) are called

forward graininess and backward graininess respectively, and are defined by

µ(t) = σ(t)− t and ν(t) = t− ρ(t).

A point t ∈ T is said to be right-dense if µ(t) = 0, and it is said to be right-scattered if

µ(t) > 0. Similarly, a point t ∈ T is said to be left-dense if ν(t) = 0, and it is said to be

left-scattered if ν(t) > 0. We will use abbreviations rd, rs, ld and ls respectively. If T has

a left-scattered maximum M , then we define Tκ = T \ {M}, otherwise Tκ = T. If T has

a right-scattered minimum m, then we define Tκ = T \ {m}, otherwise Tκ = T. By these

definitions, we have

x∆(t) = x′(t) = x∇(t)

if T = R, while

x∆(t) = ∆x(t) = x(t+ 1)− x(t) and x∇(t) = ∇x(t) = x(t)− x(t− 1)
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if T = Z. A function f : T → R is said to be rd-continuous if it is right continuous at

all rd points and the left limit at ld points exists. If f is rd-continuous, then there exists

a ∆-differentiable function F such that F∆(t) = f(t). While a function g : T → R is

said to be ld-continuous if it is left continuous at all ld points and the right limit at rd

points exists. If g is ld-continuous, then there exists a ∇-differentiable function G such

that G∇(t) = g(t). The ∆-integral and the ∇-integral are defined by∫ b

a

f(t)∆t = F (b)− F (a) and

∫ b

a

g(t)∇t = G(b)−G(a).

In particular, if T = R, then∫ b

a

f(t)∆t =

∫ b

a

f(t)dt =

∫ b

a

f(t)∇t,

while if T = Z, then∫ b

a

f(t)∆t =
b−1∑
t=a

f(t) and

∫ b

a

f(t)∇t =
b∑

t=a+1

f(t).

For the case p = 2, equation (1.1) turns out to be(
r(t)x∆(t)

)∇
+ c(t)x(t) = 0, (1.2)

i.e. the linear dynamic equation. It is well known that the solution space of any linear

dynamic equation is homogeneous and additive. In contrast, the solution space of (1.1)

has just one half of the above properties, namely homogeneity (but not additivity). For

this reason, equations such as (1.1) are called half-linear . It was shown that equation

(1.1) is very convenient since it transforms to the usual half-linear differential equation

(r(t)Φp(x
′(t)))

′
+ c(t)Φp(x(t)) = 0 (1.3)

if T = R, while it transforms to the half-linear difference equation

∆(r(t− 1)Φp(∆x(t− 1))) + c(t)Φp(x(t)) = 0 (1.4)

if T = Z. We can easily find the literatures related to oscillation theory for (1.3) and

(1.4) (for example, see [6, 7]).

Now we introduce the definition on oscillation and nonoscillation of (1.1).

Definition 1.1. We say that a solution x of (1.1) has a generalized zero at t if x(t) = 0

or, if t is left-scattered and x(ρ(t))x(t) < 0.

Definition 1.2. We say that (1.1) is disconjugate on an interval [a, b] if the following

hold:
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(i) If x is a non-trivial solution of (1.1) with x(a) = 0, then x has no generalized zero

in (a, b].

(ii) If x is a non-trivial solution of (1.1) with x(a) ̸= 0, then x has at most one gener-

alized zero in (a, b].

Definition 1.3. Let ω = supT, and if ω < ∞, assume ρ(ω) = ω. Let a ∈ T. We say that

(1.1) is oscillatory on [a, ω) if every non-trivial solution has infinitely many generalized

zero in [a, ω). We say (1.1) is nonoscillatory on [a, ω) if it is not oscillatory on [a, ω).

The use of mix derivatives such as equation (1.2) was considered by Messer [8], An-

derson and Hall [1] for oscillation problem. In extension, Došlý and Marek [5] studied the

half-linear equation (1.1) and its oscillatory properties. For example, Došlý and Marek [5]

have presented the following nonoscillation theorem for (1.1).

Theorem A. Suppose that
∫∞
t0

(
r(ρ(t))

)1−q∇t = ∞,
∫∞
t0

c(t)∇t < ∞ and

lim
t→∞

ν(t)
(
r(ρ(t))

)1−q∫ ρ(t)

t0

(
r(ρ(s))

)1−q∇s
= 0. (1.5)

If

lim inf
t→∞

Ap(ρ(t)) > −2p− 1

p

(
p− 1

p

)p−1

and

lim sup
t→∞

Ap(ρ(t)) <
1

p

(
p− 1

p

)p−1

,

then all non-trivial solutions of (1.1) are nonoscillatory, where

Ap(ρ(t)) =

(∫ ρ(t)

t0

(
r(ρ(s))

)1−q∇s

)p−1(∫ ∞

ρ(t)

c(s)∇s

)
.

In Theorem A, Došlý and Marek [5] established a nonoscillation criterion by consid-

ering the lower boundary value

lim inf
t→∞

Ap(ρ(t)) > −2p− 1

p

(
p− 1

p

)p−1

and other conditions. For the case p = 2, the lower boundary value is

lim inf
t→∞

(∫ ρ(t)

t0

1

r(ρ(s))
∇s

)(∫ ∞

ρ(t)

c(s)∇s

)
> −3

4
.

The purpose of this talk is to report the extended result of Theorem A. We focus on

finding the conditions that will extend the lower boundary value.

Our nonoscillation theorems are as follows.
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Theorem 1.1. Suppose that
∫∞
t0

(
r(ρ(t))

)1−q∇t = ∞,
∫∞
t0

c(t)∇t < ∞ and (1.5). Let

h(t) be a ∇-differentiable, monotonically non-increasing and positive function. If there

exists h(ρ(t)) > 0 such that

lim inf
t→∞

Ap(ρ(t)) > −(h(ρ(t)))
1
q − h(ρ(t)) (1.6)

and

lim sup
t→∞

Ap(ρ(t)) < (h(ρ(t)))
1
q − h(ρ(t)), (1.7)

then all non-trivial solutions of (1.1) are nonoscillatory, where

Ap(ρ(t)) =

(∫ ρ(t)

t0

(
r(ρ(s))

)1−q∇s

)p−1(∫ ∞

ρ(t)

c(s)∇s

)
.

Theorem 1.2. Suppose that
∫∞
t0

(
r(ρ(t))

)1−q∇t < ∞ and

lim
t→∞

ν(t)
(
r(ρ(t))

)1−q∫∞
ρ(t)

(
r(ρ(s))

)1−q∇s
= 0. (1.8)

Let h(t) be a ∇-differentiable, monotonically non-decreasing and positive function. If

there exists h(ρ(t)) > 0 such that

lim inf
t→∞

Bp(ρ(t)) > −(h(ρ(t)))
1
q − h(ρ(t)) (1.9)

and

lim sup
t→∞

Bp(ρ(t)) < (h(ρ(t)))
1
q − h(ρ(t)), (1.10)

then all non-trivial solutions of (1.1) are nonoscillatory, where

Bp(ρ(t)) =

(∫ ∞

ρ(t)

(
r(ρ(s))

)1−q∇s

)p−1
(∫ ρ(t)

t0

c(s)∇s

)
.

Let us compare Theorem 1.1 with Theorem A. In the case that h(ρ(t)) ≡ (p−1
p
)p, by

using p/q = p− 1, we have the upper boundary value of

(h(ρ(t)))
1
q − h(ρ(t)) =

(
p− 1

p

)p−1(
1− p− 1

p

)
=

1

p

(
p− 1

p

)p−1

and the lower boundary value of

−(h(ρ(t)))
1
q − h(ρ(t)) = −

(
p− 1

p

)p−1(
1 +

p− 1

p

)
= −2p− 1

p

(
p− 1

p

)p−1

.

4



Hence, the condition of Theorem 1.1 becomes Theorem A. For the case p = 2, from

Theorem A, we have

lim inf
t→∞

Ap(ρ(t)) > −3

4
= −0.75 and lim sup

t→∞
Ap(ρ(t)) <

1

4
= 0.25.

In the case that p = 2, from Theorem 1.1 ((1.6) and (1.7)), we assume that there exists

h(ρ(t)) ≡ k (positive constant) such that

lim inf
t→∞

Ap(ρ(t)) > −
√
k − k and lim sup

t→∞
Ap(ρ(t)) <

√
k − k ≤ 1

4
.

Notice that there is parameter k remains, which gives us opportunity to get our desired

value by setting it. If k = 1/4, then we have the same Došlý and Marek’s result. As

another example, we set k = 1/2, then we have

lim inf
t→∞

Ap(ρ(t)) > −
√
2 + 1

2
≈ −1.207 · · · and lim sup

t→∞
Ap(ρ(t)) <

√
2− 1

2
≈ 0.207 · · · .

We have the lower boundary value extended from −0.75 to −1.207 · · · . Therefore, we

can conclude that by setting the parameter k, we can extend the lower boundary value.

Moreover, in Theorem 1.2, we investigated the same boundary value with distinct con-

ditions. Under those conditions, all non-trivial solutions of (1.1) are also nonoscillatory.

However, since it is not the same conditions with Došlý and Marek’s work, Theorem 1.1

and Theorem 1.2 can be considered as new results.

2 Proof of Theorems 1.1 and 1.2

We show some preliminary results that are used directly for proving the main results.

The readers can find more preliminaries that support the proof in [5].

Lemma 2.1. Let f : R → R be a differentiable function g : T → R be nabla differentiable.

Then we have

[f(g(t))]∇ = f ′(ξ)g∇(t),

where g(ρ(t)) ≤ ξ(t) ≤ g(t).

Lemma 2.2. Suppose that x is a solution of (1.1) such that x(t) ̸= 0 in a time scale

interval I = [a, b]. Then w = rΦp(x
∇/x) is a solution of the Riccati-type equation

w∇(t) + c(t) =


−(p− 1) |w(t)|q

Φq(r(t))
if ρ(t) = t,

−w(ρ(t))
ν(t)

(
1− r(ρ(t))

Φp

(
Φq(r(ρ(t)))+ν(t)Φq(w(ρ(t)))

)) if ρ(t) < t.
(2.1)

Moreover, if

x(ρ(t))x(t) > 0

for t ∈ [a, b]k, holds, then

Φq(r(ρ(t))) + ν(t)Φq(w(ρ(t))) > 0 for t ∈ [a, b]k. (2.2)
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We will denote R[w], the so-called Riccati operator (compare (2.1)), i.e.,

R[w] :=


w∇(t) + c(t) + (p− 1)(r(t))1−q|w(t)|q if ρ(t) = t,

w∇(t) + c(t) + w(ρ(t))
ν(t)

(
1− r(ρ(t))

Φp

(
Φq(r(ρ(t))

)
+ν(t)Φq

(
w(ρ(t))

)) if ρ(t) < t.

Lemma 2.3. Equation (1.1) is nonoscillatory if and only if there exists a ∇-differentiable

function w satisfying (2.2) such that R[w] ≤ 0 for large t.

In other words, we need only one function w and establish R[w] ≤ 0 for each case

(left scattered case, and left dense case) to prove our main theorems.

Proof of Theorem 1.1. We denote

r̃(t) := r(ρ(t)), w̃(t) := w(ρ(t)),

and

Ap(t) :=

(∫ t

0

(r̃(s))1−q∇s

)p−1(∫ ∞

t

c(s)∇s

)
.

Let

w(t) = h(t)

(∫ t

0

(r̃(s))1−q∇s

)p−1

+

∫ ∞

t

c(s)∇s.

By using Lemma 2.1, we can calculate[(∫ t

0

(r̃(s))1−q∇s

)1−p
]∇

= (1− p)(r̃(s))1−q (θ(t))−p,

where ∫ ρ(t)

0

(r̃(s))1−q∇s ≤ θ(t) ≤
∫ t

0

(r̃(s))1−q∇s.

Also, by using Lagrange mean value, we have

w̃(t)

ν(t)

(
1− r̃(t)

Φp

(
Φq(r̃(t)) + ν(t)Φq(w̃(t))

))

=
w̃(t)

ν(t)

(
Φp

(
Φq(r̃(t)) + νΦq(w̃(t))

)
− Φp(Φq(r̃(t)))

Φp

(
Φq(r̃(t)) + νΦq(w̃(t))

) )

= (p− 1)
|η(t)|p−2|w̃(t)|q

Φp

(
Φq(r̃(t)) + ν(t)Φq(w̃(t))

) ,
where

Φq(r̃(t)) ≤ η(t) ≤ Φq(r̃(t)) + νΦq(w̃(t)).
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From (1.6) and (1.7), there exists ε > 0 such that |Ap(ρ(t)) + h(ρ(t))|q(1 + ε) < h(ρ(t)).

We also need to calculate

|w̃(t)|q =

(∫ ρ(t)

0

(r̃(s))1−q∇s

)−p

|Ap(ρ(t)) + h(ρ(t))|q.

We will divide the argument into two cases: (i) t > ρ(t) and (ii) t = ρ(t).

Case (i): Since h(t) is a ∇-differentiable, monotonically non-increasing and positive

function, we have

R[w] = w∇(t) + c(t) +
w̃(t)

ν(t)

(
1− r̃(t)

Φp

(
Φq(r̃(t)) + ν(t)Φq(w̃(t))

))

= −(p− 1)h(ρ(t))(θ(t))−p(r̃(t))1−q + h∇(t)

(∫ t

t0

(r̃(s))1−q∇s

)1−p

− c(t)

+ c(t) + (p− 1)
|η(t)|p−2|w̃(t)|q

Φp

(
Φq(r̃(t)) + ν(t)Φq(w̃(t))

)
≤ (p− 1)(r̃(t))1−q

[
− h(ρ(t))

(∫ t

t0

(r̃(s))1−q∇s

)−p

+

(∫ ρ(t)

t0

(r̃(s))1−q∇s

)−p
|η(t)|p−2(r̃(t))q−1

Φp

(
Φq(r̃(t)) + ν(t)Φq(w̃(t))

) |Ap(ρ(t)) + h(ρ(t))|q
]

=
(p− 1)(r̃(t))1−q(∫ t

0
(r̃(s))1−q∇s

)p [−h(ρ(t)) + S(t)|Aρ
p(t) + h(ρ(t))|q],

where

S(t) :=

( ∫ t

0
(r̃(s))1−q∇s∫ ρ(t)

0
(r̃(s))1−q∇s

)p
|η(t)|p−2(r̃(t))1−q

Φp

(
Φq(r̃(t)) + ν(t)Φq(w̃(t))

) .
We can see that

ν(t)

∣∣∣∣w̃(t)r̃(t)

∣∣∣∣q−1

= ν(t)

∣∣∣∣h(ρ(t))(∫ ρ(t)

0
(r̃(s))1−q∇s

)1−p

+
∫∞
ρ(t)

c(s)∇s

∣∣∣∣q−1

(r̃(t))1−q

=
ν(t)(r̃(t))1−q∫ ρ(t)

t0
(r̃(s))1−q∇s

∣∣∣∣∣∣h(ρ(t)) +
(∫ ρ(t)

t0

(r̃(s))1−q∇s

)p−1(∫ ∞

ρ(t)

c(s)∇s

)∣∣∣∣∣∣
q−1

→ 0
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as t → ∞ because of (1.5). Therefore, we can estimate

|S(t)| =

(∫ ρ(t)

0
(r̃(s))1−q∇s+ ν(t)(r̃(t))1−q∫ ρ(t)

0
(r̃(s))1−q∇s

)p

|Φq(r̃(t)) + νΦq(w̃(t))|p−2(r̃(t))1−q

Φp(Φq(r̃(t)) + ν(t)Φq(w̃(t)))

=

(
1 +

ν(t)(r̃(t))1−q∫ ρ(t)

0
(r̃(s))1−q∇s

)p
(r̃(t))(q−1)(p−1)|1 + ν(t)Φq(w̃(t)/r̃(t))|p−2

r̃(t)Φp(1 + ν(t)Φq(w̃(t)/r̃(t)))

=

(
1 +

ν(t)(r̃(t))1−q∫ ρ(t)

0
(r̃(s))1−q∇s

)p
1

1 + ν(t)Φq(w̃(t)/r̃(t))

→ 1

as t → ∞. Summarizing all estimates, we have

R[w] ≤ (p− 1)(r̃(t))1−q(∫ t

0
(r̃(s))1−q∇s

)p [−h(ρ(t)) + S(t)|Ap(ρ(t)) + h(ρ(t))|q(1 + ε)] < 0

for large t.

Case (ii): If ρ(t) = t, then r̃ = r and w̃ = w. Hence, the Riccati-type equation is

R[w] = w∇(t) + c(t) + (p− 1)
|w(t)|q

Φq(r(t))

= −(p− 1)h(ρ(t))

(∫ t

0

(r(s))1−q∇s

)−p

(r(t))1−q + h∇(t)

(∫ t

0

(r(s))1−q∇s

)1−p

− c(t) + c(t) + (p− 1)

(∫ t

0
(r(s))1−q∇s

)−p

|Ap(ρ(t)) + h(ρ(t))|q

Φq(r(t))

= (p− 1)

(∫ t

0

(r(s))1−q∇s

)−p

(r(t))1−q[−h(ρ(t)) + |Ap(ρ(t)) + h(ρ(t))|q]

< 0

for large t. From Lemma 2.3, this completes the proof of Theorem 1.1.

Proof of Theorem 1.2. One can show in the same way as in the proof of Theorem 1.2

that the function

w(t) = −h(t)

(∫ ∞

t

(r̃(s))1−q∇s

)p−1

−
∫ t

0

c(s)∇s

satisfies R[w] ≤ 0.

3 Linear difference equation

In this section, let T = N and p = 2. Then, we consider the linear difference equation

∆(r(t− 1)∆x(t− 1)) + c(t)x(t) = 0. (3.1)
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Needless to say, from T = N, p = 2 and ∇(r(t)∆x(t)) = ∆(r(t−1)∆x(t−1)), we see that

equation (1.1) becomes (3.1). We present an example of which all non-trivial solutions

of (3.1) are nonoscillatory even if lim inft→∞ Bp(ρ(t)) is less than the lower limit value

−3/4.

In Theorem 1.2, we assume that T = N, p = 2 and h(ρ(t)) ≡ k (positive constant).

Then, we have the following corollary.

Corollary 3.1. Suppose that

∞∑
t=1

1

r(t− 1)
< ∞ and lim

t→∞

1
r(t−1)∑∞
j=t

1
r(j−1)

= 0. (3.2)

If there exists a constant k > 0 such that

lim inf
t→∞

B2(t− 1) > −
√
k − k (3.3)

and

lim sup
t→∞

B2(t− 1) <
√
k − k ≤ 1

4
, (3.4)

then all non-trivial solutions of (3.1) are nonoscillatory, where

B2(t− 1) =
∞∑
j=t

1

r(j − 1)

t−1∑
j=1

c(j).

Example 3.1. we consider the

∆ (t(t+ 1)∆x(t− 1)) +

(
− 1

2
+

√
2

2
sin
(
log t+

π

4

))
x(t) = 0 (3.5)

for t ∈ N. Then all non-trivial solutions of (3.5) are nonoscillatory.

Proof. Comparing equation (3.5) with equation (3.1), we see that r(t − 1) = t(t + 1)

and

c(t) = −1

2
+

√
2

2
sin
(
log t+

π

4

)
= −1

2
+

1

2

(
sin(log(t)) + cos(log(t))

)
.

From r(t− 1), it is easy to check that

∞∑
t=1

1

r(t− 1)
=

∞∑
t=1

(
1

t(t+ 1)

)
=

∞∑
t=1

(
1

t
− 1

t+ 1

)
= 1 < ∞,

∞∑
j=t

1

r(j − 1)
=

∞∑
j=t

(
1

j(j + 1)

)
=

∞∑
j=t

(
1

j
− 1

j + 1

)
=

1

t
,
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lim
t→∞

1
r(t−1)∑∞
j=t

1
r(j−1)

= lim
t→∞

1
t(t+1)

1
t

= lim
t→∞

1

t+ 1
= 0.

Hence, conditions (3.2) are sutisfied. By a straightforward calculation, it follows that

t−1∑
j=1

c(j) =−
t−1∑
j=1

1

2
+

t−1∑
j=1

1

2

(
sin(log(j)) + cos(log(j))

)
=− t− 1

2
+

t

2

t∑
j=1

1

t

[
sin

(
log

(
j

t
t

))
+ cos

(
log

(
j

t
t

))]
− 1

2
(sin(log(t)) + cos(log(t)))

=− t− 1

2
+

t

2

t∑
j=1

1

t

[
sin

(
log

(
j

t

)
+ log (t)

)
+ cos

(
log

(
j

t

)
+ log (t)

)]
− 1

2
(sin(log(t)) + cos(log(t))) .

By using addition theorem of trigonometric functions, we have

t−1∑
j=1

c(j) = −t− 1

2
+

t

2

t∑
j=1

1

t

[
cos(log(t))

{
sin

(
log

(
j

t

))
+ cos

(
log

(
j

t

))}]

+
t

2

t∑
j=1

1

t

[
sin(log(t))

{
cos

(
log

(
j

t

))
− sin

(
log

(
j

t

))}]
− 1

2
(sin(log(t)) + cos(log(t))) .

Hence, we see that

lim
t→∞

B2(t− 1) = lim
t→∞

∞∑
j=t

1

r(j − 1)

t−1∑
j=1

c(j)

= lim
t→∞

t− 1

2t

+ lim
t→∞

1

2
cos(log(t))

t∑
j=1

1

t

[
sin

(
log

(
j

t

))
+ cos

(
log

(
j

t

))]

+ lim
t→∞

1

2
sin(log(t))

t∑
j=1

1

t

[
cos

(
log

(
j

t

))
− sin

(
log

(
j

t

))]
− lim

t→∞

1

2t
(sin(log(t)) + cos(log(t))) .
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Taking into account that

lim
t→∞

t∑
j=1

1

t

[
sin

(
log

(
j

t

))
+ cos

(
log

(
j

t

))]
=

∫ 1

0

(sin(log x) + cos(log x))dx

= lim
ε→0+

x sin(log x)
∣∣∣1
ε
= 0

and

lim
t→∞

t∑
j=1

1

t

[
cos

(
log

(
j

t

))
− sin

(
log

(
j

t

))]
=

∫ 1

0

(cos(log x)− sin(log x))dx

= lim
ε→0+

x cos(log x)
∣∣∣1
ε
= 1,

we can check that

lim inf
t→∞

B2(t− 1) = −1 < −3

4
and lim sup

t→∞
B2(t− 1) = 0.

Form Corollary 3.1, if we set k = 81/100, then

lim inf
t→∞

B2(t− 1) > −171

100

and

lim sup
t→∞

B2(t− 1) = 0 <
9

100
<

1

4
.

Thus, conditions (3.3) and (3.4) hold. Then all non-trivial solutions of (3.5) are nonoscil-

latory.

5 10 15 20
t

-2
-1
0
1
2
3
4
x

Figure 1: The initial condition of the solution of Eq.(3.5) is (x(1), x(2)) = (−1, 1).
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4 Appendix

Let T = R and p = 2. Then, equation (1.1) becomes linear differential equation

(r(t)x′(t))′ + c(t)x(t) = 0. (4.1)

As a condition to guarantee that all non-trivial solutions of (4.1) are nonoscillatory, it is

known by Moore [9], Wray [10] and Wu and Sugie [11] that the existence of the lower limit

value −3/4 is not important. For example, Moore [9] gave the following nonoscillation

theorems for (4.1).

Theorem B. Suppose that
∫∞
t0

r−1(t)dt = ∞ and
∫∞
t0

c(t)dt converges. If there exists a

constant k > 0 such that(
1 +

∫ t

t0

1

r(s)
ds

)(∫ ∞

t

c(s)ds

)
≥ −

√
k − k

and (
1 +

∫ t

t0

1

r(s)
ds

)(∫ ∞

t

c(s)ds

)
≤

√
k − k ≤ 1

4
,

then all nontrivial solutions of (4.1) are nonoscillatory.

Theorem C. Suppose that
∫∞
t0

r−1(t)dt converges. If there exists a constant k > 0 such

that (
1 +

∫ ∞

t

1

r(s)
ds

)(∫ t

t0

c(s)ds

)
≥ −

√
k − k

and (
1 +

∫ ∞

t

1

r(s)
ds

)(∫ t

t0

c(s)ds

)
≤

√
k − k ≤ 1

4
,

then all nontrivial solutions of (4.1) are nonoscillatory.

Theorems 1.1 and 1.2 are generalization to Theorems B and D. Indeed, we assume

that T = R, p = 2 and h(ρ(t)) ≡ k (positive constant) for Theorems 1.1 and 1.2. Then,

we have the upper boundary value of
√
k− k and the lower boundary value of −

√
k− k.
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