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1. Scattering theory

The primary subject of this note is a reflectionless inverse scattering theory for an
energy dependent Schrodinger equation

"+ = (U(x) +2kQ(2))]f =0, —oo <z < o0, (1)

where U(x), Q(x) are real-valued, decreasing at x — 4o00. In this equation k is a square
root of energy and the potential U(x) 4+ 2k Q(x) is depending on energy; (1) is called an
energy dependent Schrodinger equation.

The original Schrodinger equation is the case () vanishes, which was introduced by
Schrodinger in 1926. He published four papers concerning this topic in that year and
this is the form in the so-called first paper: one-dimensional and time-independent. On
the other hand, Heisenberg studied S-matrix in 1943 and 1944 in also four papers as an
observable data in quantum scattering, because Heisenberg’s philosophy is that physical
theories should be built up based upon observable data.

Physical background can be explained by the following figure:
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Figure 1: scattering matrix

We consider the situation that a free electron comes from —oo as a wave €% in the
direction to +o0o. In that case the potential works as a barrier to the electron, but this
particle is a quantum, so some part of wave is transmitted in this direction with the
scattering amplitude s11(k) without phase shift, which is a function of k, and some part
of this wave is going back, namely, reflected in the opposite direction with the phase shift
as a wave s1»(k)e ™. Everything is converted by exchanging —co to oco; a wave e~ @
coming from oo is transmitted in the direction to —oo as a wave sa(k)e™*® and also is
reflected as a wave sy (k)e™. So now we have the matrix, the so-called scattering matrix
(S-matrix)
_ [ su(k) sia(k)
S(k) = < so1(k)  s22(k)
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), —00 < k < 0.




The coefficients s11(k), s22(k) are called transmission coefficients and s1(k), so1(k) are
called the reflection coefficients.

Now the inverse scattering problem is formulated as : to recover (U, () from the
scattering matrix S(k):

(U, Q) «—— S(k).

Important properties of this scattering matrix are:

e Firstly, S(k) is unitary, for example, |s11(k)|*+|s21(k)|> = 1. This is the conservation
law in the scattering.

e Secondly, s11(k) = s92(k). This is a symmetry.

e Thirdly, the transmission coefficient s11(k)(= s22(k)) is analytically extended to be
an analytic function in the upper half plane C', excepting at finitely many poles. If
s11(k) has N poles ky, -+, ky in C, (see Figure 2) then the scattering is said to have
N bound states.

In terms of the Jost solutions fi(z,k) ~ e*** as & — 400, the poles k,, are characterized
as numbers for which there exist nonzero complex numbers d, such that f (z,k,) =
d,fi(x, k). These d,, are called coupling constants.
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Figure 2: Bound states
Our subject, the inverse scattering, has a long history:
Table 1: Research history
Schrodinger equation Energy dependent equation
f'+ R =U@)]f =0 | f"+ [k — (Ulz) +2kQx))]f =0
Marchenko [8], 1955 Jaulent-Jean [4], 1976 (N = 0)
Faddeev [3], 1964 Sattinger-Szmigielski [9], 1995 N >0
Deift-Trubowitz [2], 1979 Kamimura [6], 2008 (N = 0) still open

Although in the case where N = 0, namely in the absence of bound states, a complete
generalization of the Marchenko-Faddeev-Deift and Trubowitz theory for the Schrodinger
equation was given by [6], the inverse scattering problem for energy dependent equation
in the presence of bound states (N > 0) is still open.

We consider the reflectionless case: s12(k) = s91(k) = 0. In order to determine (U, Q)
from S(k) we employ complex constants ¢,, defined by

cp = —iResgp,s11(k) xd,, n=1,--- N.



One can show that ¢, # 0 by using the Poisson formula. The numbers ¢,, are corresponding
to the norming constants in the standard Schrédinger case. In the reflectionless scattering,
the triplet {0, k,,, ¢, }, where 0 implies that so;(k) = 0, is used as scattering data.

In terms of the scattering data, we define an N x N matrix B and a column vector v

by
(tkm+ikn)x Cm
B = Cm e—— , U i= '_ezk'm:(}
ik, + ik, 1k,
and introduce a function A(z) by

A(z) :=det(I — BB) + (¢ ... ¢"¥*)(] — BBY (Bv — ), (2)

where (I — BB ) denotes the cofactor matrix of I — BB. By definition, A(x) is written
by only exponential functions.

In the reflectionless case, the scattering for the energy dependent equation is completely
controlled by this function A:

Theorem 1 ([7]) A triplet {0, k,,c,} with k, € Cy, ¢, € C\ {0}, n=1,--- N, is the
scattering data for some pair (U,Q) € S X S if and only if A(x) has no zeros on R, and,
under this condition, (U, Q) is (uniquely) determined by

{ Q(SII) = _% argA(xgv (3)
U(z) + Q(x)? = — L5 log| A(z)].

Here S denotes the Schwartz class on R.

A data {0, k,, ¢, } is said to be regular if A(z) has no zeros on R.

In the standard Schrodinger case where ¢, > 0, ik, < 0, it turns out that the matrix
B is real and A(z) = (det I — B))? > 0. Hence, as a special case of Theorem 1, we draw
the following:

Corollary If ¢, > 0, ik, <0 then Q =0, U(z) = —2;—; logdet(I — B).

This is a well-known representation (see, e.g., [1], [10]) of reflectionless potentials in the
Schrodinger equation via Hirota’s transformation. In other words, Theorem 1 gives a
(complex) generalization of reflectionless scattering theory for the Schrodinger equation:

Table 2: Summary in Section 1

Schrodinger equation Energy dependent equation
Poles k, on imaginary axis in C,
Constants ¢, ¢, > 0, any ¢, € C\ {0}, regular
Potential (U,0), single (U,Q), system
Inversion formula Ulx) = —2% log det(I — B) Eq. (3)

2. A nonlinear evolution system

In general, a nonlinear evolution equation along which locations of bound states k,
of a spectral problem are invariant in the time is said to be an isospectral flow of the



spectral problem. Isospectral flows of the energy dependent Schrédinger equation (1) was
formally found by Jaulent and Miodek [5]. Under the transformation

U= _4Q7 w = 4(U + Q2)7
the flow with the lowest degree is written as the nonlinear evolution system

us + w, + uu, = 0, (4)
Wy — Ugge + (Uw), = 0.

This is corresponding to the KdV equation which is an isospectral flow of the Schrodinger
equation.

Based upon Theorem 1, we establish the following inverse scattering method to find
N-soliton solutions of the system (4):

Scattering transform
(Theorem 1)

J Time evolution of a solution to (4) \Time evolution of the scattering data

(u(x,0),w(x,0)) Scattering data : {0, k,, ¢, (0)}

IHVGI'SG transform D)
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Figure 3: Inverse scattering method

The pair (u(z,t),w(z,t)) constructed by the above recipe is indeed a solution of (4):
Theorem 2 ([7]) Let A(z,t) be a function defined by the inversion formula (2) with
Cn = o (0)e¥®n°t . Then (u(z,t), w(z, t)) defined by

{ u(z,t) = 4.2 arg A(z, t),

2

satisfies the system (4) as long as {0, k,, c,(t)} is regular.
Example (N =1) Set

|e1(0)]
20’

, 1 c1(0
k1:a+b’l, $0:%10g|12(b)|,

assume © € (—m, ) without loss of generality, and put

¢ = 2b(x — x0 + 4at), n:=2a(r — zo + 4at) — (4(a* + b*)t — O).

O = argc;(0) + 2tan™* % + % log

Then 1-soliton solution found by Theorem 2 is written as:

(1 —(%)?)sinh&siny — 24 (cosh & cosn + 1)

u(z,t) = 8b )
(@8) (14 (%)?) cosh®¢ + 2 (coshgcosn + 3 sinhgsinn) +1—(%)?

w(w,t) = —16(a® + b?) {(1 — 3(%)?) cosh® { cosn + %(3 — (£)?) sinh® £ sinp
+3(1 — (4)%) cosh® € + 3(1 + (£)?) cosh € cos ) + cos 2 + 3(%)2} /
((1 + (%)?) cosh® € + 2 (coshgcosn + % sinh&sinn) +1-— (%)2)2

4



The life span of the solution (u(z,t), w(x,t)) is finite; it exists only in the interval

b = Ty 9T
min - 4(&2 +b2) 4(&2 +b2) - YImaxy

since it has a singularity © = zq — 4at at t = tyax, tmin (& c08(O — 4(a® + b?)) = —1).
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Figure 4: Profile of u(x,t) for —m < ¢t < 7 in the case a = —1—30, b= %, 29 =0,0 =0.
Table 3: Summary of Section 2
Schrodinger equation Energy dependent equation
Isospectral flow | KAV eq : u; — 6uty, + Uppe = 0 (4)
single system
Constants ¢, (t) ¢ (0)e3#n7: positive n(0)e*#n°t . complex
Life span infinite no longer infinite

There are many open issues left to be settled in connection with the subject of this
note. We wish to pick out some of them:

e To obtain inverse scattering methods for isospectral flows of (1) with higher degrees.

e To show that the life span of N-Soliton solutions of (4) is necessarily finite even for
N > 2.

e To develop inverse scattering theory for energy dependent equation (1), involving
the case with reflection.

e To develop a reflectionless inverse scattering theory for other energy dependent
Schrédinger equations.
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