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1 Introduction

We consider the two-dimensional motion of the water over a flat bottom together with the
motion of a floating solid body on the water surface under the assumption that there are
only two contact points where the water, the air, and the body meet. Let ¢ be the time,
x the horizontal spatial coordinate, and z the vertical spatial coordinate. The horizontal
coordinates of these contact points at time ¢ are denoted by z_(t) and z(¢), which satisfy
x_(t) < z4(t). Let Z(t) and £(¢t) be the projections on the horizontal line of the parts
where the water surface contacts with the floating body and the air, respectively, that is,

() = (2 (1), 24(1)),
E() = E(UE), E(t)=(=s0,a (1)), E-(1) = (a4(t),00).

The corresponding water regions to Z(t) and £(t) will be called the interior and the
exterior regions, respectively. We consider the case where overhanging waves do not
occur and suppose that the surface elevation of the water in the exterior region is denoted
by Z.(t,x) and that the underside of the floating body is parameterized by Z;(t,z). See
Figure 1. Let hy be the mean depth of the water, so that the water depth in the interior
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Figure 1: Waves interacting with a floating body

and exterior regions are given by [1i(t,x) = ho + Zi(l,2) and He(t,x) = ho + Zo(l, x),
respectively. We denote by V (t, ) the vertically averaged horizontal velocity of the water
and put Q = HV, which is the horizontal flux of the water. The restrictions of ) to



the interior and the exterior regions will be denoted by ); and ()., respectively. Let
P,(t,x) be the pressure of the water at the underside of the floating body. This pressure
is an important unknown quantity and should be determined together with the motion of
the water. In the case where the floating body moves freely, the body interacts with the
water through the force exerted by this pressure. The shallow water model proposed by D.
Lannes [2] was derived from the full water wave equations by using the assumption that
8Z(f_Z,féx) V(t,x,2)%dz) ~ 0,(H(t,z)V(t,x)?), where V(t,x,2) denotes the horizontal
component of the velocity field in the water, and that the pressure P(t,z,2) can be
approximated by the hydrostatic pressure, that is,

oy ) P = pg(z = Ze(tw)) i E(1),
P(t,x,z2) =~ {Bi(t, r) — pg(z — Zi(t,z)) in I(t),

where p is the density of the water, g the gravitational constant, and P, a constant
atmospheric pressure. Then, the shallow water model for the water has the form

OtHe -+ OxQe =0 in g(t),
0Qe + O g+1 o2 ) =0 in &(t) (1)
t'we T He 2g e - mn I
in the exterior region, while under the floating body we have
6tHi -+ 81;@1 =0 in I(t),
Qi + 0 i2+1 H? Lio,p, | Z(t) @)
i+ 0\ o + 58l | = ——Hi0, Py 1n ,
t Hi 2g i P =i

with matching conditions

He=1H;, Qc=@Q; P,=Pyum on T(l), (3)

—1

where I'(t) = 0Z(t) = 0E(t) denotes the contact points, which together with (Z., Q.) and
(Z;, @i, P,) are unknown quantities in our problem. We note that the equations in (1) are
well-known nonlinear shallow water equations. As for the motion of the floating body, we
consider three cases: the floating body is fixed; the motion of the body is prescribed; and
the body moves freely according to Newton’s laws, and that we also need to prescribe
equations of the motion of the floating body according to these three cases.

1.1 The case of a fixed floating body

In the case where the body is fixed, we impose the condition
Zi = Zlid on I(t), (4)

where Zjq = Zya(r) is a given function defined on an open interval It and represents the
shape of the underside of the floating body.



1.2 The case of a floating body with a prescribed motion

Since the floating body is allowed only to a solid motion, its motion is completely deter-
mined by (z¢(t), z2¢(t)) the coordinates of the center of mass and 6(¢) the rotational angle
of the body. Without loss of generality, we have 6|,y = 0. Suppose that the underside
of the floating body is initially parameterized by Z;q(z) on an open interval If, so that
Zili=o = Zjq in Z(0). Consider a point of the underside of the body and denote the
coordinates of the point at ¢t = 0 by (X, Z). Let the coordinates of the point at time ¢ be
(x,z). Then, it holds that

7 = Zhd(X)7 Z = Zi(t,.T),

() () ) (o)

(Zi(t,x) — 2g(t)) cos (L) — (x — x5(t)) sin O(t) + 25(0)
= Ziia((z — 26 (1)) cos O(t) + (Zi(t, ) — 2¢(t)) sin O(¢) + z(0)). (5)

and that

This is the equation for the motion of the body and gives an expression of Z; implicitly
in terms of zq, 2,0, and Z;q. Here we note that x¢, 2¢, and 6 are also given functions
since we suppose that the motion of the floating body is prescribed in this case.

1.3 The case of a freely floating body

Finally, we consider the case where the floating body moves freely according to Newton'’s
laws under the action of the gravitational force and the pressure from the air and from the
water. Let m and iy be the mass and the inertia coefficient of the body. Then, Newton’s
laws for the conservation of linear and angular momentum have the form

md,Uq(t) = —mge, — / PndS,
aC(t)
0w (t) = Prg - ndsS,
aC(t)

where Ug = (0,2q, 0,2¢)" and w = 9,0 are the velocity of the center of mass and the
angular velocity of the body, respectively, C(t¢) is the domain occupied by the floating
body at time ¢, P the pressure of the air and the water on the surface of the body, n the
unit outward normal to 9C(t), and r¢ a position vector relative to the center of mass. Let
OwC(t) and JoC(t) be portions of JC(¢) in contact with the water and the air respectively.



Then, we see that

/ P’I’LdS :/ Blnqu +/ Patmndxq
ac(t) AwC(t) OAC(t)

= / (P, — Pa)ndS
OwC(t)

= _/ (Pi(t, ) — Patm)Ni(t, x)dz,
()

Ni(t,x) = (_‘%Zli(t’“’)) .

In the derivation of the above equalities, we used the identity

/ PyimndS = / VPymdxdz = 0.
ac(t) c(t)

where

Similarly, we have
/ Prg-ndS = — / (Py(t, ) — Pam)ra(t, )" - Ni(t, z)dz,
ac(t) I(t)

where B r— xq(t)
ro(t, ) = (Zi(t,w) - Zc(t)) '

Therefore, Newton’s laws for the conservation of linear and angular momentum are written
in the form

mo,Ug(l) = —mge, +/ (P(t, ) — Patm) Ni(t, z)de,
o (6)
0w (t) = —/ (Pi(t,x) — R,Ltm)rg(t,:z)l - Ni(t, z)dz,
Z(t)

which together with (5) constitute the equations of motion for the floating body.

In this communication we report that the initial value problem to these wave-structure
interactions are well-posed locally in time. The result was obtained through a joint
research with David Lannes at University of Bordeaux.

2 Reformulation of the problem

We proceed to consider the initial value problem to the shallow water models with a
floating solid body (1)—(3) together with (4), (5), or/and (6) according to the motion of
the floating body. By using the equations of the floating body, we can reduce the shallow
water equations (2) in the interior region Z(¢) to simple ordinary differential equations as
follows.



2.1 The case of a fixed floating body

It follows from (4) that H;(t, x) = ho+ Zia(z) does not depend on ¢, so that the continuity
equation in (2) yields 0,Q; = 0. This means that @); does not depend on z, so that we
can write Q;(¢, x) = ¢i(t). Plugging this into the momentum equation in (2) we have

¢

1 1
8 i 8 H2 - ——H181P~,

which is equivalent to

O 1 g 1
L+ gH, | = —=8,P,
7 + 0, <2H2+g pé)_l

Therefore, P; satisfies a simple boundary value problem
_ atQI 1 q12 :
8 P —p( HI + 8Z (5 H12 +gH1 m I(t),
P, = Paym on I'(t).

Integrating the first equation in (7) and using the boundary condition, we obtain

q
aql/ —dx—i— [[ - + HiH =0, 8
t I(t) 2H2 g ( )

where [F] = F(t,z_(t)) — F(t,z,(t)) for a function F' = F(¢,z). This is a solvability
condition of the boundary value problem (7) for P,. Conversely, once ¢; and x. are given
so that (8) holds, we can resolve (7) for the pressure P; explicitly as

Pt,2) = P — p{aqim
' ' z_(t) Hi(2')

1o 1 1 N Hoa
+§Qi(t) (HI(UL)2 Hi(:L‘_(t))Q) +g(H1( ) Hl( (t)))}

Therefore, the equations in the interior region (2) are reduced to a scalar ordinary differ-
ential equation (8).

To summarize, the problem is reduced to the nonlinear shallow water equations in the
exterior region

OHe+ 0,Q. =0 in E(t),
9,Qe + O g+1 H2) =0 in &) ©)
— + = = in
twe T He 2g e ?
the matching condition on the contact points
Ho=H;, Qc=¢ on TI(t), (10)

and the ordinary differential equation

1
g = — QI + gHiH’ (11)

el
Sz Hlid 2 72
where H; is given by H;(x) = ho+ Zyia(z). In this case, the initial conditions are given by
<Z97 Qe)|t:0 = (Zjenv Qien) in 5(0)7 ‘Tﬂ:|t:0 = Eij:l’ qi|t:0 = qiin‘ (12)
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2.2 The case of a floating body with a prescribed motion

We remind that (5) determines Z; in terms of G = (z¢, 2¢,0) and Zjq. More precisely,
by the implicit function theorem we see that there exists a function ¢ determined by Zjq
such that

Zi(t,x) = (x — zg(t), 6(1)) + z6(1). (13)

Differentiating (5) with respect to ¢ and z, we see that

0,7; = (Ug —wrg) - Ny = —@((Iff) : T(rg)>,
where T(r¢) is defined by
rd )
T(rg) = ).
ve) = (s

This together with the continuity equation in (2) yields that there exists a function g;(t)

of t such that
@@@:(gﬁv'ﬂm@ﬂﬂﬁﬁ) (14)

Plugging this into the momentum equation in (2), we obtain an equation for P;. As
a solvability condition of the boundary value problem to the equation for P; with the
boundary condition P; = P,y on I'(¢), we obtain an ordinary differential equation in the
form

8tqi = F(gi, G,@tG,afG,$_,:r+)

with some function 7. For the explicit form of this function I, we refer to T. Iguchi and
D. Lannes [1] and D. Lannes [2].

To summarize, the problem is reduced to the nonlinear shallow water equations in the
exterior region

O He + 0,Qe =0 in E(t),
Qe + 0y (FQ + %ng) =0 in &(1), 15)
the matching condition on the contact points
He=1H;, Q.=@Q; on T(1), (16)
and the ordinary differential equation
oq; = F (g, G,0,G,0?G,x_, ), (17)

where H; = ho + Z; and @; are given by (13) and (14), respectively, and G = (z¢, 26, 0)
are given functions of ¢. In this case, the initial conditions are also given by

(Ze; Qe)limo = (Z,QF) in &£(0), zifimo =2, Gilimo=7" (18)



2.3 The case of a freely floating body

We note that the calculations in Section 2.2 are valid although G = (zg, 2¢, 6) are un-
known functions in this case and are governed by Newton’s laws (6). Under the solvability
condition (17) we can solve the pressure P;. Plugging the expression of the pressure P;
into Newton’s laws (6), after some calculations we have a system of ordinary differential
equations of the form

oW =F(W,z_,x,)

with some function F', where W = (G, 0;G, q;) are functions of ¢t. Therefore, the problem
is reduced to the nonlinear shallow water equations in the exterior region

O He + 0,Qe =0 in &(t),
Qe + 0 (FQ + %ng) =0 in &(1), 19
the matching condition on the contact points
H.=H;,, Q.=0Q; on TI(t), (20)
and the ordinary differential equations
oW =F(W,x_ ), (21)

where H; = ho + Z; and (); are given by (13) and (14), respectively. In this case, the
initial conditions are given by

(Ze: Qe)’t:O = (Zén7 Qf@n) in 5(0); Sﬂi’t:o = Zil
qi‘t:O = q}nv (va 2G, 67 Uva)‘tZO = (Tl(r;'lv Zicr,}; 07 iCr,‘lawin)

(22)

Now, our initial value problem to the shallow water model with a floating solid body on
the water surface was reduced to (9)—(12) in the case of a fixed floating body, to (15)—(18)
in the case of a floating body with a prescribed motion, and to (19)—(22) in the case of
a freely floating body. However, all of the reduced problems have the same structure:
a free boundary problem to the nonlinear shallow water equations with a Dirichlet type
boundary condition on the free boundary coupled with a system of ordinary differential
equations. These considerations motive us to analyze a new type of free boundary problem
to a quasilinear hyperbolic system of equations.

3 Free boundary problem to 2 x 2 quasilinear hyperbolic system

Motivated by the reduction in Section 2, we consider a free boundary problem to a
2 x 2 quasilinear hyperbolic system of partial differential equations in a moving domain

((t), 00):

U+ AU)O,U =0 in (z(t),00) (23)
with a Dirichlet type boundary condition
U=U on z=uzxt), (24)
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where U; = Ui(t, r) is a given R?-valued function, whereas z(t) is an unknown function.
As for the coefficient matrix A(U) we assume the following.

Assumption 1 Let U be an open set in R?, which represents a phase space of U.

i AeceU).
ii. For each U € U, the matriz A(U) has eigenvalues A (U) satisfying AL (U) > 0.

In the case of nonlinear shallow water equations

8tH+8xQ:0,
2,Q+0 Q—2+1H2 =0
t x H 2g -

the coefficient matrix A(U) with U = (Z,Q)" are given by

0 1
AU) =
0= (gn 197 25)
with H = hy + Z, so that the eigenvalues £, (U) are given by AL(U) = /gH + %
Therefore, the second condition in Assumption 1 corresponds to the subsonic condition
in the gas dynamics.

3.1 Equation for the contact point

In the free boundary problem (23)-(24), we do not have any explicit equation for the
contact point z(t) such as the kinematic boundary condition in the standard free boundary
problems in the fluid dynamics. In our problem, the equation of the contact point z(t)
is a part of the boundary condition (24). In fact, differentiating the boundary condition
U(t,z(t)) = Ui(t,z(t)) with respect to t, we have

U + (04x)0,U = 0U; + (042)0,U; on  x = z(1),
which implies
(0 U — o,U) - (0,U — 0,.U;)
|0, U — 0,U;|?
In view of this, a discontinuity of the spatial derivative 0,U on the free boundary is crucial

to the free boundary problem (23)—(24) whereas U itself is continuous. Note that we have
also

Oz = —
z=z(t)

(OU = 0,Uy) - (0,U — 0,U)F =0 on x=z(t),

which can be viewed as a boundary condition to the hyperbolic system (23), so that
the nonlinearity of the problem (23)—(24) is very high, especially, on the boundary. We
also note that only one boundary condition is allowed under the subsonic condition in
Assumption 1, that is, a part of the condition in (24) is used as a standard boundary
condition and another part is used to determine the contact point z(t).

In the case of the shallow water model with a floating solid body on the water surface,
this discontinuity condition is equivalent to a transversality condition for the water surface
to the underside of the floating body. More precisely, we have the following proposition.



Proposition 1 Suppose that U, = (Z, Q.)T, Uy = (Z;, Q)*, P;, and r+ satisfy (1)—(3).
Then, the condition 0,U., — 0,U; # 0 on I'(t) is equivalent to 0,Ze — 0,Z; # 0 on I'(t).

3.2 Coordinate transformation

To analyze the free boundary problem (23)—(24) mathematically rigorously, we need to
transform this problem on a moving domain (z(t),c0) into another one cast on a fix
domain, say, R;. This is done through a diffeomorphism ¢(¢,-) that maps Ry onto
(x(t), 00) for each time ¢, which should satisfy ¢(¢,0) = z(t). Several choices are possible
for ¢ and we choose it appropriately. Here, we should emphasize that this diffeomorphism
©(t, ) is also unknown quantity. Once we have the contact point x(t), ¢(t, -) is determined.
We put u = U o ¢ and introduce the notations

0Pu = (0,U) o, Fu= (U)o .

Then, we have the relation

1 Opp
&Py = @&Eu, O u = dyu — é—waﬁu = dyu — (Dyp)0%u, (25)

and the free boundary problem (23)—(24) can be recast as a problem on a fix domain

(26)

Fu+ A(w)dfu=0 in (0,7)x Ry,
U= on (0,7) x {z =0},

where u;(t) = Ui(t, z(t)) contains an unknown contact point x(¢). The first equation in
(26) is written in the standard form

Ou + A(u, 0p)0,u = 0,

where 1
A(u, dp) =

(u, 0) o
The eigenvalues of A(u,dp) are given by iﬁ()\i(u) F Jip) and we will consider the
solution (u,x) of (26) satisfying Ay (u(t,x)) F dyp(t,z) > 0. Under Assuption 1 and an
appropriate choise of the diffeomorphism (¢, -), this condition would be equivalent to
Ax(u(t,0)) F dz(t) > 0. Without loss of generality, we can assume that z(0) = 0, so that
we impose the initial conditions of the form

(A(u) = (Dep)1d).

ul—g = u™ in Ry, z(0) = 0. (27)

3.3 Linearized equations and good unknowns

We linearize (26) around (u,z) and denote the variation in the linearization by (du,dz).
It is important to introduce good unknowns (u, &) by

i :=ox, U = 0u — (0gp)0u.



In terms of these unknowns the linearized equations have the form

28
U+ 2(0%u—0%u;) =g on (0,T)x {z =0}, (28)

{afu +AWoRa=f in (0,T) x Ry,
where [ and ¢ are given functions. We note that thanks of the introduction of the good
unknowns, the structure of the equations, that is, the principal part of the first equation
in (28) does not change under this linearization. We decompose the boundary condition
into the direction 0¥u — J%u; and its perpendicular one to obtain

ofu+ A(w)dgu=f in (0,7) x Ry, (20)
velu= g on (0,7) x {z =0},
and
vhoa
L= +ga on x=0, (30)

\Gfu — 8fui\2
where v = (0%u — 0%u;)*. Here, we note that the first equation in (29) can be written as

Ot + Au, 0p) 0, = f,

where we are assuming that A(u, dp) has positive and negative eigenvalues. Therefore,
the equations for @ and that for & are now decoupled, and that it is sufficient to analyze
the initial and boundary value problem to (29).

3.4 Energy estimate and Kreiss—Lopatinskii condition

In view of (29), we need to consider the classical initial and boundary value problem to a
linear hyperbolic 2 x 2 system of equations

Owu+ A(t,z)0,u = f(t,z) in (0,7) x Ry,
A(t) - u = (1) on (0.T) x {r =0}, (31)
u = u"(r) on {t=0} xRy,

where u, v'*, [, and v are R?-valued functions and ¢ is a real-valued function, while A

takes their values in the space of 2 x 2 real-valued matrices. We also make the following
assumption on the hyperbolicity of the system.

Assumption 2 There exists ¢y > 0 such that the following assertions hold.

i. AeWhe((0,T) x Ry), v e C([0,T)).
ii. For any (t,x) € (0,T) x Ry, the matriz A(t,x) has eigenvalues £ (t, ) satisfying
)\i(t, I’) 2 Cop.

Under the condition ii in Assumption 2, the system in (31) is particularly strictly hy-
perbolic, so that one can easily construct a symmetrizer S(t, z), that is, a positive matrix

10



with the property that S(¢,z)A(t, z) is symmetric. Then, by the standard calculations
we have

d

a /. S(t,x)u(t,z) - u(t, z)de — S(t,0)A(t,0)u(t,0) - u(t,0)

= {(0eS(t, ) + 0, (S(t, x)A(t, 2)))u(t,x) + 25(t, x) f(t,x)} - u(t, z)dx.
R+
In order to obtain a useful energy estimate, we have to control the boundary term
S(t,0)A(t,0)u(t,0) - u(t,0). The next proposition relates the uniform Kreiss—Lopatinskii
condition with a control of this boundary term, and particularly, the condition yields the
maximal dissipativity on the boundary.

Proposition 2 Suppose that the conditions in Assumption 2, |v(t)| > ¢y, and |A(t,z)| <
1/cy hold for some co > 0. Then, the following four statements are all equivalent.

i. There exist a symmetrizer S € W1°((0,T) x Ry) and positive constants oy and [y
such that apld < S(t,z) < Bold and that for any v € R? satisfying v(t) - v = 0 we
have

v S(t,0)A(t, 0)v < 0.

ii. (The mazimal dissipativity.) There exist a symmetrizer S € W1>((0,T) x Ry) and
positive constants g, Bo, a1, and By such that apld < S(t,z) < Bold and that for
any v € R? we have

v S(t,0)A(t, 0)v < —ay || + Bi|v(t) - v]?.
iii. There exists a positive constant oy such that
|7 (£, 0)w(1)*] > av,

where T (t, x) is the eigenprojector associated to the eigenvalue =My (t,x) of A(t,x).
iv. (The uniform Kreiss—Lopatinskii condition.) There exists a positive constant o such
that
(1) - e4(t,0)] = ao,

where ey (t,x) is the unit eigenvector associated to the eigenvalue AL (t, x) of A(t, x).

Thanks of this proposition, if we impose the uniform Kreiss—Lopatinskil condition,
then we can show the well-posedness of the initial and boundary value problem (31).
Now, we turn to consider the free boundary problem to the 2 x 2 quasilinear hyperbolic
system (26). In view of the linearized problem (29), the corresponding Kreiss-Lopatinskii

condition would be
lv-ey(u)] >0 on x=0, (32)

where v = (9%u — 9%u;)t and e (u) is the unit eigenvector associated to the eigenvalue
+Ai(u) of A(u). The following proposition helps us to check this Kreiss—Lopatinskii
condition.

11



Proposition 3 Suppose that u together with x is a regular solution to (26) satisfying
(0fu — 0fU;)|p=0 # 0 and Ay (u(t,0)) F0z(t) > 0. Then, there exists a unique unit vector
= p(t) up to the sign such that

J2 (E)ful -+ A(ui)afui)]xzo =0.
Moreover, we have the following identity on x = 0:

oy Pel) — B)lOFu B
Vet Gt — Ay e

Therefore, under our restriction (0fu — 0%u;)|,—0 # 0 and Ay (u(t,0)) F dz(t) > 0, the
Kreiss—Lopatinskii condition (32) is equivalent to

lp-ep(u) >0 on x=0. (33)

In the case of the shallow water model (1)—(3) with a floating solid body on the water
surface, the eigenvector e, (u) and p are given by

ex(w) = ﬁ (xfuo) T @ |

so that the Kreiss—Lopatinskii condition is automatically satisfied.

4 Local well-posedness

We now fix the diffeomorphism ¢(¢,-) : Ry — (z(t), 00) by

ot ) = 2+ (Z)alt), (34)

where ¢ € C3°(R) is a cut-off function such that ¢(z) = 1 for 2| < 1 and = 0 for |z| > 2,
and £ > 0 is chosen to be sufficiently small. As for the local well-posedness of the initial
value problem to (26), we have the following theorem.

Theorem 1 Let m > 2 be an integer. Suppose that Assumption 1 is satisfied. If u'™ €
H™R.,) takes its values in a compact and convex set Koy C U and if the data u™ and
U; € Wm>((0,T) x (—6,6)) satisfy

i A (u],m) F 2 > 0,

ii. (@cui“)\x:o - (aq;Ui)‘t:a::() 7£ 07
iii. ((0pu™)|a=0 — (0xUs)t=a=0)" - €1 (t™|2=0) # 0,

where 2™ = (0yx)|i=o is determined by

v — (AW =0) (9™ o=0 + (9:U3)1==0) - (8o1™)[a=0 = (92Ui)1=a=0)
- ’(@cuin)‘z:o - (a:nUi)t::v:O‘Q ’
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and the compatibility conditions up to order m—1, then there exist Ty € (0,T] and a unique
solution (u,x) to (26) in the time interval [0,17] with the diffeomorphism ¢ defined by
(34) and the solution satisfies

HueC([0,T1]; H" I (R,)) for 0<j<m—1,
(0Fu)|p—o € H™*(0,T7) for 0<k<m,
z e H™(0,T).

We turn to consider the local well-posedness of the initial value problem to the shallow
water model with a floating solid body on the water surface. For simplicity, we restrict
our consideration to the case of a freely floating body, so that we consider the initial value
problem (19)—(22). The other cases can be treated in the same way. As before, we need
to use a coordinate transformation to reduce the equations on the unknown region £(t)
to those on a fixed region £. Let 2™ and 1‘}: be the initial contact points at time ¢ = 0
such that 2™ < z'* and put £_ = (—o0,2™), £, = (2!, 00),and E=E_UE,. We use a
diffeomorphism (¢, -) : £ — £(t) and put {, = Zeop, he = Hoop, ge = Qo0 @, G = Ziop,
and ¢ = @; o ¢. Such a diffeomorphism ¢ can be constructed as in (34), that is,

m
x+ w(T £_)(x_(t) —2™) for z€&
olt,2) = e (35)
T+ z/)<

€_+)(m+(t) —2) for re&.,
where ¢ € C3°(R) is a cut-off function such that ¢)(z) = 1 for |z| < 1 and = 0 for |z| > 2,
and € > 0 is chosen to be sufficiently small. As before, we will use the notation 0¥ and
07 which were defined by (25). Now, the problem under consideration is reduced to

O he + 02¢o =0 in &,
2 1 36
8206](3“‘85 q—e+—gh§ =0 in é, ( )
he 2
with the matching condition
he=hi, Go=q on JE, (37)
the ordinary differential equations
HW = F(Wv T, x-‘-): (38)
and the initial conditions
(Cea Qe)‘t:q = ( én7 Qén) in 5(0)7 x:l:‘t:() = giﬁ? (39)
Qi‘t:() = q;n7 (IGa G, 07 UGa w)‘tzo = (ml(l;'lv ZICI;? 07 Ulcrllu wm)'

Let us calculate 21t | = (9@+)|i=o in terms of the initial data. Differentiating the
boundary condition Z(t,z1(t)) = Zi(t, x4 (t)) with respect to ¢t and using the equation
O Zo + 0:Qe = 0, we obtain (0,Ze — 0, 4;)0rry = (0:Qe + 0:Z;) on OE ., so that

. Z% + 0.q™
P 40

13



where Z = (8;Z;)|1—o is given by

/() = (UG L (z}é@ ;G)G)) _ (—alehdu)) |

The following theorem asserts the local well-posedness of the initial value problem (36)—
(39) to the shallow water model with a freely floating solid body on the water surface.

Theorem 2 Let m > 2 be an integer and Iy an open interval. If the data (¢, q™) €
H™E), 2 € I, (g, z2, 22 UL W) € R®, and Zyqg € W™ (I;) satisfy

iz <z,
ii. inf (ho + Zia(7)) > 0, inf (ho + ¢ (x)) >0,

zels

iii. n;g( g(ho + ("(x)) — M) >0,

ho + ¢i*(x)

. i qén in

1v. <V g(ho + an) - ‘ho + (in S ) >0,
e o0&

V. (a:vZIid - a:v(:én)‘@§ 7£ 07
where £$1 is defined by (40), and the compatibility conditions up to order m — 1, then
there exist T > 0 and a unique solution (e, Ge, T+, Giy Ta, 26, 0) in the time interval [0, 7]
to (36)—(39) with the diffeomorphism ¢ given by (35) and the solution satisfies
Ao, dgo € C0,T]; HMI(E)) for 0<j<m—1,
(aaIcCCe)‘aéa (aaIcCQe)‘aé S Hm_k(O:T) Jor 0<k<m,
vy € H™0,7T), q € H™Y0,T), xg,2q,0¢€ H™?0,T).

The details in this communication will be published in T. Iguchi and D. Lannes [1].
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