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Abstract

The complex Ginzburg-Landau equation (CGLE) is a general model of spatially extended nonequilib-
rium systems. In this paper, an analytical method for solving a variable coefficient CGLE (VCCGLE) is
presented to obtain exact solutions. Variable transformations for space and time variables with coefficient
functions yield an imaginary time advection equation related to a complex valued characteristic curve.
The VCCGLE is transformed into the nonlinear Schrodinger equation (NLSE) on the complex valued
characteristic curve. This result indicates that the exact solutions of the NLSE generate that of the

VCCGLE. Examples of the exact solutions of the VCGLE are presented through those of the NLSE.

1 Introduction

Spatiotemporal dynamics in dissipative systems have attracted the interest of researchers in the past
few decades [1, 2]. In this literature, complex wave patters play dominant roles in various fields, such
as fluid convections [3], fiber optics [4], chemical reactions [5] and biological systems [6]. In particular,
localized dissipative waves, known as dissipative solitons, serve variety of the spatiotemporal dynamics in
the dissipative systems [7]. Thus the nature of the dissipative solitons have been studied intensively by
analytical, experimental and numerical methods to obtain the knowledge of the related systems.

As a fundamental model of the dissipative systems, the complex Ginzburg-Landau equation (CGLE)
has been introduced by means of singular perturbation methods [8, 9]. The parameters of the CGLE
is derived from the original evolution equations of the dissipative systems. Thus the emergence of the
dissipative solitons can be predicted by estimating specific values of the parameters of the CGLE. Based
on the idea, the control method of the dissipative solitons were developed in and applied to the optical
fiber telecommunications [10].

Recently, the dissipative solitons under spatiotemporal modulations were began to be investigated in
the area of the Bose-Einstein condensation [11, 12, 13, 14] and signal processing in optical fibers [15, 16,
17, 18]. In these systems, the CGLE is modified to have space and/or time dependent variable coefficients
originated from external magnetic fields and/or optical lattices [19, 20]. To investigate the behavior of the
dissipative solitons in these systems, analytical approximation techniques with numerical methods have
been employed: a secant hyperbolic form anzats takes the dynamical system of the parameters of the
dissipative solitons [21], the method of variational approximation provides the criteria of stability [22],
steady state assumption derives nonlinear eigenvalue problems which determine the shape of the spatial
modes of the dissipative solitons [23].

Despite the previous studies of the dissipative solitons under spatiotemporal modulations, fully an-

alytical methods, which provide exact solutions, have yet to be developed except to the situation that
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temporal modulations only exist [24]. In this study, therefore, we develop an analytical method for solv-
ing a variable coefficient CGLE (VCCGLE) with its solvable condition. As applications of the proposed
method, we investigate the spatiotemporal dynamics of the dissipative solitons of the VCCGLE in related
physical systems.

2 Formal solutions of the variable coefficient complex Ginzburg-Landau
equation
The CGLE is derived from nonlinear partial differential equations of the dissipative systems, based
on the assumption that the spatiotemporal dynamics can be described by slow amplitude evolution on

a carrier wave. In order to incorporate the effect of inhomogeneity in media and temporal modulation,

space and time dependent variable coefficients are introduced into the CGLE in the form:
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where 9 (x,t) describes slowly evolving amplitude of the systems. The coefficient functions p(x,t) and
q(x,t) are given by p(x,t) = p.(x,t) +ipi(v,t) and q(z,t) = ¢.(v,t) + igi(w,t), where p,(z,1), pi(2,t),
gr(z,t), and g;(z,t) are real valued functions, (¢), and w(t) are positive definite real valued functions. It
is assumed that p(—z,t)g(—z,t) = p(x,t)g(z,t). In the literature of nonlinear wave theory, p(z,t), ¢(x,t),
~(t), and w(t) correspond to linear dispersion and dissipation, nonlinear saturation, linear gain or loss,

and frequency modulation coefficients, respectively.

2.1 Variable transformations

The complex valued function ¥ (z,t) is transformed into

P(z,t) = exp[['(t) +iQ(0)]p(, 1), (2)

where I'(t) and (¢) are defined by
v = [ 2@, 3)
Q) = /tw(t')dt'. (4)

Substituting Egs. (2), (3) and (4) into Eq. (1) with a transformed variable

t
T= / q(z,t)eat (5)
and a transformed coefficient function
p(,t) o
r(z,t)? = =22 2e , 6
(z,1) o D) (6)
one obtains a variable coefficient nonlinear Schréodinger equation (NLSE) as
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In order to obtain transformed variables which reduce Eq. (7) to the NLSE without the variable coef-
ficients, a complex valued characteristic curve is introduced. Suppose &(z,7) is a transformed variable
satisfying an imaginary time advection equation

0 _[19 9 _
IE — |:§£T(LE,T)2:| % =0. (8)



On the characteristic curve of Eq. (8), the variable coefficient NLSE in Eq. (7) is transformed into
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Introducing the variable transformation as

Eq. (9) yields the NLSE with respect to n and 7 as
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Since the exact solutions of the NLSE can be obtained by several methods, the inverse variable transfor-

mations for the solutions of Eq. (11) provide those of the VCCGLE in Eq. (1).

2.2 Solvable condition of the imaginary time advection equation
In order to solve the imaginary time advection equation in Eq. (8), without loss of generality, the
solvable conditions with respect to variable coefficients are introduced. Suppose p(x,t) and ¢(z,t) are

given by

p(z,t) = Xp(2)Tp(1), (12)
q(z,t) = Xq(z)T4(t), (13)

where X;(z) and T;(t) (I = p,q) are positive real functions, respectively. With Egs. (5), (12) and (13),

the imaginary time advection equation in Eq. (8) is rewritten as
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By the method of characteristics [29], the corresponding characteristic equations are derived as

dt i
as - T—<> 1

i (54)

where s is an auxiliary variable of the characteristic curve. From Egs. (15) and (16), the characteristic

[ RG] i

and thus the solution of the imaginary time advection equation is obtained as

curve is derived as

§(x.t) = &o(k), (18)

where &o(-) is an initial function of Eq. (8). Moreover, if X,(z) is constant, the transformed variable 7 is

by the inversion function theorem. Under these solvable conditions, the specific forms of transformed

reduced to

variables can be calculated.



3 Exact solutions of the nonlinear Scrodinger equation

With the use of the variable transformations in the previous section, one can obtain the exact solutions
of the VCCGLE through those of the NLSE. In this section, thus, exact solutions of the NLSE are briefly
reviewed.

Hirota’s bilinear method was developed to solve integrable nonlinear wave equations by algebraic

procedures. The D-operator for differentiable functions f(z) and g(z) is defined by [28]

O gy - s 22| (20)

2=z

The complex valued function ¢(7,7) is assumed to be a rational function of real F'(n,7) and complex

G(n, 7) functions as
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The following relations between partial derivatives and D-operators
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for Eq. (11) yield the bilinear forms with respect to F' and G as

D-(G-F) + D}(G-F) = AGF, (24)
D(F-F) - |G]* = AF. (25)

The auxiliary function A(n,7) is introduced to incorporate boundary conditions into the bilinear forms
in Eqgs. (24) and (25). The exact solutions of the NLSE are obtained from algebraic procedures for the
bilinear forms.

Suppose F' and G are expanded with respect to an infinitesimal parameter € as

F=14+&F+Fi+---, (26)
G=eGL+eCGs+ - (27)

Substituting Egs. (26) and (27) into Eqgs. (24) and (25), one obtains an e-hierarchy of the bilinear forms.
Although the perturbation expansions in Eqs. (26) and (27) are infinite series, the e-hierarchy of the
bilinear forms are truncated at finite order. In particular, the one soliton solution is immediately obtained
under A = 0 as follows:

50(777 T) = ASGCh(I{n — VT)eia[” (28)

where A, K,V and 0y are constant parameters. Since the NLSE describes the propagating envelope of a
carrier wave, the soliton solution in Eq. (28) is called an envelope soliton. Figure 1 shows spatiotemporal
dynamics of magnitude of the envelope soliton in Eq. (28). As well known, a unimodal shape propagates
with constant velocity in this figure.

The NLSE has a rational function solution [30]. Suppose F and G in Eq. (21) are polynomial functions
of x and ¢, their coefficients are determined sequentially by direct substitution. Depending on the highest
order of the polynomials, the rational function solutions of the NLSE exhibit different forms. The possible
lowest order polynomials of F' and G yield the following rational function solution
4(1 + 2ir)
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Fig. 1: Spatiotemporal dynamics of the envelope soliton solution. The parameters in Eq. (28) are fixed as A = K =
V =0y =1.0.

Fig. 2: Spatiotemporal dynamics of the Peregrine soliton.

The spatiotemporally localized soliton in Eq. (29) is known as the Peregrine soliton, which is used as a
mathematical model of rogue waves and freak waves [31, 32]. In Fig. 2, it is seen that a localized wave
emerges around the center of filed. It disappears after a short living time.

In addition, a periodic wave solution is derived from the NLSE [33, 34]. To obtain an oscillating

solution the following ansatz is introduced as

p(n,7) = [p(n,7) + o (7)) 7, (30)

where p(n, 7) is a complex valued function, o(7) and 6(7) are real valued functions. Substituting Eq. (30)
into Eq. (11) provides the set of differential equations with respect to p, o and 6. Through a cumbersome

calculation with integrable conditions, a periodic solution is obtained as

cos(v/2n) +iv/2sinhr
o, ) = el
cos(ﬁn) — v/2cosht

This periodic solution shows breathing of localized wave trains, which is known as the Akhmediev breather,

31)

as is shown in Fig. 3. In this figure, periodically aligned localized waves emerge around the center of field.



Fig. 3: Spatiotemporal dynamics of the Akhmediev breather.

4 Examples of related physical systems

Some relevant physical models of the VCCGLE appear in the field of plasma fluid, optical lattice
and the Bose-Einstein condensation. In previous works, both analytical and numerical approximation
methods have been introduced to investigate the spatiotemporal dynamics of the relevant models. The
proposed method in this paper, on the other hand, provides the exact solution of the VCCGLE related
to those of the NLSE presented in Sec. 3.

4.1 Nonlinear waves in plasma systems

In the plasma system where an electron beam is injected, an unstable NLSE is derived from electro-
magnetic fluid equations. As a generalized model of slowly varying amplitude modulations, the NLSE
with space variable coefficients has been introduced as follows:

el
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+ p(x)

Interchange of variables 2 and ¢ in Eq. (32), one obtains a stable variable coefficient NLSE considered in

the system of soliton equation with slowly varying variables [25]:
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Since this equation is a reduced form of the VCCGLE in Eq. (1), exact solutions with the corresponding
variable transformations can be obtained. As an example, here, the time variable coefficients in Eq. (33)

are given as
p(t) =1+ apcos(wpt + 6p), (34)
q(t) = 1+ agsin(wgt + dq), (35)

where a,, aq, wp, Wy, 0, and d, are positive real parameters. In this case, auxiliary variables are readily
obtained from Egs. (5) and (19) as

T=t+ %[cos(wqt +dq) — 1], (36)
q

. 1+ agsin(wqt + d4) . (37)
1+ apcos(wpt + 6p)




Fig. 4: Spatiotemporal dynamics of the envelope soliton under periodic temporal modulation. The coefficients of

p(t) and ¢(t) are fixed as follows: a, = 0.1, w, =10, 6, =0, ag = 0.1, wy = 5, g = 0.

Fig. 5: Spatiotemporal dynamics of the Peregrine soliton under periodic temporal modulation. The coefficients of

p(t) and ¢(t) are fixed as follows: a, = 0.1, w, =10, 6, =0, ag = 0.1, wy = 5, g = 0.

Periodic temporal modulations in  and t directions are expected to appear by influence of the variable
coefficients in Eqgs. (34) and (35). Figure. 4 shows a propagating envelope soliton under the periodic
temporal modulation. In these pictures, the velocity of the envelope soliton varies periodically while the
shape of it is invariant. In Fig. 5, the Peregrine soliton is also affected by the periodic temporal modulation.
Its tails spread periodically in time direction after the wave emerging suddenly. The spatiotemporal
dynamics of the Akhmediev breathers under periodic temporal modulation is exhibited in Fig. 6. The

influence of temporal modulation is observed clearly far from central domain.

4.2 Nonlinear optical lattice

The system of nonlinear optical lattices is given by the NLSE or CGLE with spatially modulated
variable coefficients for linear and/or nonlinear terms [26]. For the sake of brevity, we consider the case
that only nonlinear terms are influenced by spatial modulation. In this case, the NLSE with a linear

damping and a spatial variable coefficient is presented as

0 0?
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Fig. 6: Spatiotemporal dynamics of the Akhmediev breather under periodic temporal modulation. The coefficients
of p(t) and q(t) are fixed as follows: ap = 0.1, wp =10, 6, =0, ag = 0.1, wg =5, 64 = 0.

The linear damping term with the positive constant « leads to T' = ~¢ in Eq. (3). In this example, the

variable coefficient g(x) is given as
q(z) =1 —Kksin’z, (0 <k < 1), (39)

which appears in P7-symmetric systems [27]. Transformed variables are derived from I'(t) and ¢(z) as

- %(1 — KPsin?e)(e2" — 1) (40)
n= eQ'th(|x|’ k)a (41)

where F(¢, k) is the incomplete elliptic integral of the first kind. With these transformed variables, the
exact solutions presented in Sec. 3 provide the spationtemporal dynamics of Eq. (38).

Figure 7 shows an envelope soliton in the nonlinear optical lattice. It is observed that the shape of
the envelope soliton changes under acceleration. The symmetry breaking of the Peregrine soliton on the
time direction is observed in Fig. 8. In fact, as is confirmed in Egs. (40) and (41), both 7 and 1 no longer
have symmetry with respect to the time variable . With existence of the linear damping and spatial
modulation, the Akhmediev breather focus on the time direction and then converges into a plane wave.
To the best of my knowledge, it is first time that such an anomalous dynamics of the nonlinear wave

propagation under the optical lattice are observed.

5 Conclusion

In this paper, the analytical method for solving the VCCGLE was presented. On the characteristic
curve, which introduces the imaginary time advection equation, the VCCGLE can be transformed into
the NLSE with respected to the transformed variables. Also, the solvable condition for the imaginary time
advection equation was introduced in order to obtain the characteristic curve analytically. Examples of the
VCCGLE were investigated related to the plasma systems and optical lattices, where it was demonstrated
that the proposed method yields the exact solutions of the VCCGLE with closed forms of the transformed
variables.

A space dependent coefficient function for the linear term was not considered in this paper. In

other words, as a model of the Bose-Einstein condensation, Eq. (1) is not applicable to describe the



Fig. 7. Spatiotemporal dynamics of the envelope soliton under linear damping and spatial modulation. The coeffi-

cients are fixed as follows: v = 0.5, kK = 0.5.

Fig. 8: Spatiotemporal dynamics of the Peregrine soliton under linear damping and spatial modulation. The coeffi-

cients are fixed as follows: v = 0.5, k = 0.5.

Fig. 9: Spatiotemporal dynamics of the Akhmediev breather under linear damping and spatial modulation. The

coefficients are fixed as follows: v = 0.5, £ = 0.5.



spatiotemporal dynamics of macroscopic wave functions. Incorporating the space variable coefficient into

the linear term of the VCCGLE will be considered near future.
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