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ABSTRACT. We introduce Legendre’s elliptic functions with his theory and construction of the
Tables in origin of 1825-26 [1]. Legendre emphasizes his theory’s superiority to Euler’s integral
theory, (as you know, this is entitled with ’Eulerlian integral’ on the total title, of theses huge
volumes 1-3 of books), above all, the concept of echelon and the complete functions on which
we discuss specially.

Succedingly, we introduce Poisson’s applications of Legendre’s elliptic functions to the cap-
illary model owing to the theory and table by Legendre, which Poisson gives up the self made
theories based on the same elliptic functions including tables. Poisson discusses the heat prob-
lems, in which he also applies the elliptic functions and tables in the Earth’s science, 1n 1835.
Both application may be the first orthodox applications of Legendre’s theory to the nonlinear
differential equations. Hence, all these topics are the translations from the original by me.

Mathematics Subject Classification 2020 : 11-XX, 33E05, 35-XX, 35K05, 35QXX, 44-XX 44A11,
44A15, 91F10

Key words : Elliptic function, mathematical physics, Legendre’s Tables of elliptic functions, Poisson’s
applications of elliptic functions by Legendre, mathematical history.

1. LEGENDRE’S ELLIPTIC FUNCTIONS.

1.1. General consideration on the echelon of the modules and on the properties
of the function F related to different terms of this echelon. ! § 79. The
complete function Flc¢ 2 can explain from two manners, the one method from the decreasing
module ¢, ¢°, ¢®° ete. ; the another method from increasing modules ¢, ¢, ¢’. etc., The primary
expression Flc = ZK, or K = (14¢°) (14¢°°) (14¢°*°)- -+, we can also put K under the form

(e} (o] o . .
K= QVCC . 2Vc§ S . 2\/020007 or more simply again, under the form K = \/% - b°b°°, etc., where, we

Date: 2019/12/08.
1(il) Remark : hence, our footnotes are showed with ({}), the original footnote by authors with ’sic’.
2(l}) In the articles § 79 and § 80, the complete function F'c is spelled as F’c¢, we doubt it is the miss with
the TeX editing, so that we correct these symbols. Because in the last line of the § 80, it is correctly used.
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TABLE 1. Legendre’s definitions and discussions of three kinds of integral : F, E, II.

chapter
article
1| §5,all |constant of complement b, c b2 4+ ¢? =1, namely, b = v/1 — 2. cf. no. 4.
F : first ellliptic function (e.f.),

E : second e.f., IT : tertiary e.f.

no name of items symbols |definitions, meaning and discussions

2| §5,a13 |three kinds of integral F, E, 11

length of arc H H:A/f%‘ﬁ+B'fAdnp+C'f(l+—n:;m~
d(Atan p) d(Atanp) = A—Cdo‘;z’—(p — 22+ Adp.
e |F- %, E=[Ady, T=[gmtoss
3| §5,al5 |three kinds of integral n7A7c where,
T n==4,€R,C, A=+/1-c%sin?yp, c<]1.
4 §15,a18 [complete function F' F(p)+ F()=F(3m) = F'

relation between F, E1|F
(Legendre’s relation.) |F

= A
—
o
<
&
—~
o
N
E]

5 §15,a45 = F'(c)E'(b) + F'(b)E' (c) — F'(b)F(c).

(b), E'(b)| 2
I:n=cot?’f, IIl:n=—1+0b’sin?0, b>+c*=1.
6| §15,a53 three cases of n n,b,e IIT:n=—c*sin?0. 1,11, for circle, III for logarithm.
7 §§21a87 echelon of the modules b, ¢, ' |general consideration of echelon of the modules
method of applied approximation to
8 822,097 111 1 the elliptic function of the tertiary kind
9 (§23,a105|n II,n n = cot? 6.
§23,al111 n = —1-+ b’sin® 0.
§23,al115 n = —c’sin’ 0.
10[§35,a232[TI* (complete function) ' IT' is expressed with F' and ET.

, b°°°, converge rapidly toward an equal limit to the

will remember that the sequence b, b°, b°°
unit.
The second expression, owing to the formula of the (art. 72), is Flc = KT log -b%, where, we

have

,_Qﬁ.QW.QVb”’.”_ l-c’c”c’”'
b 4 b Ve ’

we suppose in this formula, b’V considerably small for that 1 — ¢’¥ were negligible.
Equalizing between them the two values, from F'lc, we will get this general formula

T \/bou . boooboobb/b/l . b/l/*l 4

E — — log - ——
( ) 2 blu Og b/ I/,

where, we see that the product under the root must be prolonged to right up to a term b°*
which doesn’t differ sensibly with the unit, and to right up to term b ~!, considerably small for
that the following b’ ¥ or at least its square, were of the order of the negligible quantities.

If we change b with ¢, we will have sensibly

T Ve " e c°cf° __,Co,ufl 4
I —log (1)

K

2 coH oV’
formula which suppose 1 — ¢ negligible hence as 1 — b° #.
If we multiple these formula of precedent article, we will have this very remarkable result,

4
bl v O M (2)

equation which suppose negligible the i of b’ ¥ and that of c°~.

2
@) 2 =log

- log

When b = ¢, we have generally b* = ¢°*. Hence, in supposing the i of c°#, that of b’ ¥ will be
also it, so that we can put v = u, and the preceding equation turns into

(H) g.gu:bg.
2

(3)

oK



These equations aren’t approached, however, in putting the suitable values to the number y and
v, the approximation will be made to a certain degree proposed, more rapidly than we could
make with all other method. Let’s give some examples.

§ 80. Let’s remark at first,

1°. that we can arrive directly at the equation (2) by means of the double values following

7r K’ K 4

1, T — D e
Fce=—-K 2Mlog o

T
= —log-— F'p=—K'
2 v 08 2

because in multiplying these values, we obtain immediately %2 = # - log 'b% - log -coiu.

2°. That when c = %, the comparison of the equation (1) to the equation (3) gives
c/,tl« A" e Pl co,ufl
4“ — coﬂ/ 9 (4)

3 where, we suppose 1 — ¢* negligible. This one would obtain immediately from the
equation (??) in putting b = ¢, this one which give b = V.

3°. That in the equation (1) we can suppose ¢ already considerably small for that 1 — b were
negligible, hence we will be able to put ¢°* = ¢, this one which will give this formula

more simple
4 1
() log P %W

This formula, for the rest, isn’t another thing with the equation §K' = Fb =1log %.
§ 83. Let’s suppose now that the two complete functions F'b and F’c, as we have additionally
F'¢ =K and F'b = 2% log Coi#, it will result from here 5+ = 2% log cf)l#. Hence = will be equal
to the limit toward which tend rapidly the terms of the sequence % log ;io, i log C;%, % log c;%,
etc., the case of b = ¢ is contained in this formula in putting n = 1 ; however, there is another
case where we can make application from it.
Hence, we have found that in putting ¢ = sin15° = /1 — /3, we have F'b = V3 F'c ;

COO

hence, in calculating the sequence c°, , etc., owing to the module ¢ = sin 15°, %g will be
equal to the limit of the sequence %log ;io, %log c;io, etc. The approximation is such that from

the primary term we have 7 = % log (ta% = 3.141636, value which doesn’t differ from the

1
veritable which in the fifth decimal. E

We will see below, that in putting sin2a = tan®15° and ¢ = sina, we have F'b = 3F'c ;
hence, in calculating the sequence of the module ¢°, c°°, etc., owing to the value ¢ = sin a, we
will have 37” equal to the limit of the sequence % log ;%, % log c;io, etc. With the primary term,
we obtain already 7 = 3.1415926627, the error being only one decimal of the eighth order, from
here, we can conclude that at fifth term, the approximate equivalate to 128 decimals.

§ 84. Let’s suppose that we would want to find the module ¢ such that the relation of the
two complementary functions F'b and F’c were equal to a given number n, rational or irrational,
it will need to satisfy with the equation 5+ = 2% log coiw where the index p will turn to be taken
owing to the degree of approximation which we wish to obtain, in order that the quantities of
the order 1 — b°* or (c°*)?, were negligible.

Let, for example, n = v/2, if we take u = 3, then we will have log c;% =T7- 2%, this one gives,
in usual logarithms, log ¢°°° = 2.83398 18161 9082. Knowing ¢°°°, we deduce from it successively

c°®, ¢°, etc., and finally ¢, of which the logarithmic values are

¢ 6.74302 08075 1135, ¢® 8.67250 01689 4325, ¢ 9.61722 43146 6214.
With this logarithm, we find ¢ = v/2 — 1, and in effect, in the case of this module, we have
exactly F1b=+/2- Fle.

2
3(11)In doubly multiplying in both hand-sides of (3), we get (2“) = 4" of the left hand-side of (4).
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§ 85.  If we consider the ratio of the complementary functions in two consecutive degrees

Flp Flpe

of the echelon of the modules, namely : we will find the second ratio is double

TFic» Flcoo
from the primary. In effect, we have the equation Flc = (1 + ¢°)Flc°, from here, results also
F1b° = (1+b)F'b ; and because ¢® = %, we have 14 ¢° = %—kb ; hence ?—12’ = %ﬁ:igi ; similarly

130 1300 .
gllc’o = %ﬁ:l—goo, etc., so that in general

F'v 1 Fher
Fle = o Flow ©)
We would have similarly, in continuing the echelon in another sense, I{T—ii’ = 2?12’; = 4?1—2’::, t
This properties is general, whatever the echelon of the modules. In the particular case where
b = ¢ = sin45°, we have hence F'b = Fle, FW° = 2F'¢°, F'W° = 4F'¢°°, etc., F'V =
TFW, FW' = 1P, et

If the module ¢ = v/2 — 1, we will have ¥ = ¢ and ¢ = b ; hence g—ig = 2=+. Hence we have

in this case F'b = v/2F'¢, and successively, F1b° = 2/2.F1¢®, FWb*° = 4/2 - F1¢*°, ete. ;
this is also this one which we would obtain immediately with the equation F'¢’ = (1 + ¢)Flc,
where ¢ = b.
The two modules which we have given just now for example, are the only ones in which the
echelon of the modules is the same, to the near order, than that of the complementary theirs.
2. CONSTRUCTION OF THE TABLE.

te
T

&

B!
Sl

2.1. The calculation of the Complete Functions. § 643. (On the calculus of the com-
plete functions.) Let’s suppose in general that we wish to calculate the logarithms of the
functions of which it is the problem up to 14 decimals, because this number is that which com-
port (contain) the tables the most extended which would have been published up to present,
namely : the Arithmetica logarithmica of Briggs and the Trigonometriac Britannica of the same
author. The examples which supply in this hypothesis make judge easily the simplifications of
which the calculations are susceptible, when we will wish to obtain that ten or less number of
exact decimals. We will see soon that the same given which serve to calculate the functions
Fle, E'c, serve also to calculate the complementary functions F'b, E'b ; this is because we
consider only the values of ¢ less than sin 45°. When the module proposes will be greater than
sin 45°, we will exchange between them the letters ¢ and b, in order that ¢ designates always the
smallest of the two.

It needs at first to form the echelon of the modules ¢, ¢°, ¢°°, etc. and that of their comple-
ments b, b°, b°°, etc. ; however, the number of terms to calculate vary following the largeness of
the primitive module, and it implies to establish the general divisions which fix, with a precise
manner, the number of these terms.

§ 644. The object which we propose being to obtain as far as it is possible 14 exact dec-
imals, if we are arrived to a term b* such as — log b* were less than a half-unit decimal of the
14° order, then we will be able to regard log b* as null, and to more strong reason, the terms
following logb**1,  log b**2, etc. ; therefore b*~! will be the last of the terms b, b°, b°°, of
which it needs to regard.

The series of the modules ¢, ¢°, ¢°°, etc. always compose a term of more ; it will turn in conse-

2
quence, be terminated at the module ¢*. This reason is that we have then c* = (%c“*l)

. pr—1»
and which therefore the logarithm of ¥#~! is necessary to compose the value of log c*.
Passed the term ¢*, there isn’t location to consider the following ¢*!, because we will have

2
without sensible error ¢#t! = (%c“) , and because, therefore, the quantity 2%10gg% doesn’t

change in putting p + 1 instead of u.
Posed thus, it is easy to see that we will know the limits of the different cases, in beginning
with determining the value of the module ¢ which gives for its complement logb = %10_14.
The module supposed ¢ being extremely small, we have from a manner sufficiently exact
4



b=1- %02 and logb = —%ch : 4 therefore ¢ = M10~, then ¢ = 10~7v/M, namely °
log ¢ = 3.1811078.

If we assimilate ¢ at the sin of an arc, we will find that this arc isn’t only fraction of secondary
and that we have ¢ = sin 0" 03130.

It needs now to start from the module very small to form the sequence of the module increas-
ing ¢, , ', C", etc. ; this is a calculus which we will be able to make from a sufficiently exact
manner for our object, with a Table to seven decimals only. We will have,

o at first, ¢ = 2/ or, simply ¢ = 24/c, this one, which gives log¢ = 6.8915839 and

1+c?
c =sin(0°2 40”+70.
e To have ¢’ I put ¢ = tan?16, I have [tan$60 = 8.4457919, 160 = 1° 35 55" 78,
0 = 3° 11’ 51” 56 ; therefore ¢’ = sin3° 11’ 51” 56 and log ¢’ = 8.7464836.
o If we put again ¢’ = tan? 36’, we will have [ tan 36’ = 9.3732418, 16’ =13° 17’ 18" 84,
0" = 26° 34’ 37" 68 ; therefore ¢ = sin26° 34’ 37” 68 and log ¢ = 9.6506981.
e Let finally, ¢” = tan? 30", then we will have  tan 16" = 9.8253490, 16" = 33° 46’ 40" 15,

0’ = 67° 33’ 20” 30; therefore ¢!V = sin 67° 33’ 20” 30 and log ¢!V = 9.9657898.
§ 645. It results from the preceding calculus.

1°. that from ¢ = sin 67°33’ until ¢ = sin 26°34’, we will turn to restrict to calculate the four
terms b, b°, b°°, b°°°, and the fives ¢, c°, ¢°°, ¢°°°, ¢°°°° ;

2°. That from ¢ = sin 26°34’ until ¢ = sin3° 11/, then we will have to calculate the three
terms b, b°, b°°, and the fours ¢, ¢®, c°°, ¢°°° ;

3°. That from ¢ = sin3°11’ until ¢ = sin0° 2’ 40” , then it will suffice the two terms b, b°,
and the threes ¢, ¢°, ¢°° ;

4°. That from ¢ = sin0°2" 40" until ¢ = sin0” 0313, it will suffice to calculate the term b
and the twos ¢, ¢° ;

5°. Finally, that below from ¢ = sin 0” 0313, we haven’t necessity the only one term c.
Such is the number of the terms of the series of the modules and of that (module) of their
complements, which it will be necessary to calculate in the different cases, to obtain 14 exact
decimals in the logarithms of the functions Flc, Elc, F'b, E'b. We are going to see now how
the calculus of these modules can be effectuated in the easiest manner.

2.1.1. Formation of the echelon of the modules. § 646. (Formation of the echelon of the mod-
ules.)  Knowing the logarithms of ¢ and b, it is important to find these of the terms following

2
- ()
c® and b°. For this, let ¢® = = be, the equation b°c = 2v/bc® will give x = 2b (1 —2?), and in

()

putting p = ~—*—, the value of = developed in regular series will be
1 1-3 1-3-5

=p——-4p> + — - 16p° — - 64p” + etc.

T=p— 7 p+4‘6 6p 4‘6‘86p+ec

\/14+4p2—1

But, it is important to calculate directly logx ; namely, the value z = o gives
d d d 1-3 1-3-5
@ .__ W@ :—p<1%-4p2+—-16p5— -64p6+etc-),
from here, we get in integrating
3 3:5 4p% 3-5.7 8pd
logleogp—p2+—-p4—— i—i— i—etc.

2 2.3 3 "'2.3.4 4

4n all the logarithmic calculus which follow, let’s designate constantly with the letter m, the known number
0.43429, etc., of which the logarithm is 9.63758 43113 00537 and with the letter M its inverse 2.30258, etc., of
which the logarithm is 0.36221 56866 99463.
5(1) m means log,, e = 0.43429 44819 03252, -- -, and M means log, 10 = 2.30258 50929 94046 - - .
5



These logarithms are hyperbolics ; to convert them into vulgar logarithms, it needs to multiply
the algebraic parties with m ; this is because putting P = mp? — %mp4 + %mp6 — etc., then we
will have log z, namely, logc® =logp— P and logbh®° = —%P ; therefore we will know at once
log ¢® and log b°.

§ 650. Let’s always start from the hypothesis which we wish to have the logarithm of these
four functions, approached until the fourteenth decimal ; additionally, we can always suppose
¢ < sin4bo. Posed thus, let’s start with the case which requires the longest calculus, that one
where the module ¢ is composed between sin 45° and sin 26°34” ; then the echelon of the modules
needs to be prolonged up to the terms 5°°°, ¢°°°°, inclusively. The other cases will be susceptible
of diverse simplification to order that the module ¢ will turn smaller.

The values of Fle¢, Elc are found at first immediately with the formulae

Flc — g . K’ K = l%boboobooo, Elc — LFlc, I = b.% (1 _ %COQCOO o iCOQCOOCOOO>.

To simplify the calculus of the coefficient L, I observe that the two terms %0020000(1 + %) can
be reduce to only one ; because we have of a sufficientlt exact manner, 1 + %COOO = /14 c°°° =

2+/co0 ., » 24/c°° _ pecee°
5o on the other side, o = Vo Therefore

L= b%(l - %CO%OO . ?;;)

then we will have E'lc = bo%Flc(l —7). When c is given

1 02 o0 beoo

Therefore, putting r = 5¢°“¢ Vpoo

under the form sin#, and that the angle 6 as well %6’, is found immediately in the Table, we

have more simply boi? = cos? %9. All is reduced therefore to find log(1 — r), this one, which will
make with the formula log(1 —r) = —mr — $mr? — %, of which it will suffice to calculate three
terms at best.

The primary term mr of this value can be calculated with the precision sufficient with the

Tables to 10 decimals ; because it con’t have at most than ten effective number : and when
similarly there would be an error of one or two units on the tenth effective number, which will
be at the rank of the fourteenth decimal, this error will be mixed with those of which the other
logarithms are susceptible ; because in pushing the approximation up to the fourteenth decimal,
we can’t pretend only the fourteenth decimal will always be exact.
2.1.2. An example. (c=sinf, sin20 = tan?15°.) § 666. In this example which is
related to the tertiary case of the (art. 645), we don’t give directly neither the value of ¢, nor
that of b ; it needs to deduce them from the equation sin 260 = tan? 15° or 2bc = tan® 15°. Here,
the process which we will use for this object.

From the equation sin 2 = tan® )\, we get cos 20 = —VCZ(S)SQA)‘ 6 Let therefore, A = Cvss%sf’gf , then
tan? 15°

we will have successively ¢ with the equation ¢ = . Knowing the logarithms of ¢ and b,
we will find with the ordinary method, that of ¢°, b°, successively that of ¢°°, this one, which
suffices in the present case to complish the series of the methods.

§ 667. The echelon of the modules being terminated, we will calculate as if follows the
quantities F'le, Elc Let’s now start calculating F''b, it will make with the equation F'b = K Mh,
where we have h = i log cé}%. We see that between the logarithms calculated from F'b and Fle,
the difference responds exactly to the logarithm of 3, this one which accords with the property
of these functions.

We can again make see that the value found for F'lc satisfies exactly with the equation Flc =

6(}) By using sin®26 + cos?20 = 1, we get cos20 = 7”08475“’4, then (cos” A +sin®\) (cos’A — sin? \) =

cos2\
| S —
1
(cos® A —sin®A\) = 1 —2sin® A =1 —2(1 —cos®> \) = 1 — 24 2cos? A\ = —1 + 2cos® A = cos 2). Finally we get
cos 20 = VCOZQAA.
cos

6



%Fl(sin 45°), given the (art. 155). value which accords perfectly with the result of the

preceding calculation. There isn’t more than to calculate the log of E'b ; for this, let’s follow
the formula of the (art. 655). The values which we are going to find for E'c, E'b can be verified
with the formulae of the (art. 158) ; or at once, with the formula E'b = 2E'c — 2F!(sin 45°).

§ 669. To find the function E'c, we have he formula reduced E'c = bo%F Le(1 —r), namely,

simply Elc = b%Flc,

b 9.99999 97172 733 14
1:6°%... 46
Fle... 0.19612 00183 93492

A )
Elc... 0.19611 97356 668 52.

" The function F'b will be calculated with the formulae h = %log c;io, Flb = hM,/ %O.

4--- 0.60205 99913 27962 ho- 0.54958 60704 10184

-+ 6.42304 49983 30089 M- 0.36221 56886 99463
U

4h = 14.17901 49929 97873 ? e 1413 63331

h = 3.54475 37482 49468 A )i e

F'b--- 0.91180 19004 72978

Flc--- 0.19612 00183 93492

diff--- 0.71568 18820 79486.

The difference of these two logarithms responds to very near to /27, and in effect we need to
have exactly Fb = 3v/3Flc. 8
The value of E'c, E'b will be able to be verified with the formulae of the (art. 169)

1 1 2n—1\ 4 0 1 1 1-2n\_ 4 0
Ele= <§+ 2/3 )F cripy PbE (§+ 2/3 )F b Ipie
and the results will accord also exactly with that we can desire it.

§ 685. It is important in general to find the logarithms of the functions F''b, E'b, when b
differs few from the unit or when its complement c is the sine of an angle of a small number of
degrees. In this case, we will find easily, with the interpolations, the complementary functions
Fle, Elc, and this is with the mean of F'c which must determine F'b, E'b.

For this I observe at first that in the case of which let’s occupy, we would be able to suppose
b°° = 1 ; however, let’s contain to suppose b°°° = 1, in order that the solution is applied to a
greater number of cases ; then the general formulae give (art. 654).

1 KM 4
, Fle= TR FIB=""log

8 000 :

bO bOO

b
It needs hence to seek if we can explain F''b with the only data b, ¢, F'e, with having help at
the auxiliaries b°, b°°, c°°°.

At first, K is known with the value K = Fl—lwc Let successively ¢® = z, ¢°° = y ; from the
2

K=

7(i}) This verifies log E'c = logb + log b% +log Fle.
8(1) iiz = 3v/3 = /27, namely, log v/27 = 0.71568 1882---. log gilc’ =log F''b — log F''¢, which is expressed
as dif f in the bottom of the above tableau.

7



equations bK? = b°0°°,  ¢cb® = 2vVbe® , b = 2V/b° ¢®°, ¢°° = 2v/b°° ¢°°°, we will deduce
2V bK? 1 b 1
b = \/_x, b = = —cKQ\/;, b = 5[(%\/% = 2/b°y.

c be 2

This last being squared gives K4c?bx = 16b°y ;° squaring again and substituting the value of
b°, then we will have K8c*b%a? = 2 - % : hence y? = & " be. This equation doesn’t suffice to

43
determine z and y ; however, we have additionally, b>° = (1 — yQ)% = K;c % ; from here, we
get
1y 7042 6.4
bK*c 1 K°c*b
_ 4 _ 4 27700\—2 _ oo\—1
xr = 1—y2_Zch(b) , V=35 (b°°)~ L,

4 2
Let K2b = o*, then this last equation will give % = (Céa) b°° ; however, ccﬁ% = (%) be° =

oolw

<§)2b°° = (Céa)4(b°°)3 : therefore F'b = MK log Léa (boo)%]. Let 8 = <b°%> , then we will
have finally

4 ) a = VK2,

1
Fb MKIOg(cKaﬁ logﬁzglogb%o:%MOogé)z
Therefore we see that in the calculation of log F''b, it enters only the quantities b, ¢, K, of which
we have the logarithms, in order that we avoid therefore the direct interpolation for F'b, which
is reduced to the interpolation of F''c which hasn’t difficulty.

5 686. To judge the exactitude of this formula, let’s take ¢ = sin15°, and let’s give to
log K the exact value up to fourteen decimals, which we find with the direct calculation, and
additionally, for the Table to give immediately. We will have therefore the givens

c---9.41299 62305 6934, b---9.98494 37781 0270, K ---0.00749 54886 8247.

By means of these data, the calculation of h = %log cc% will be made as it follows :

4. 0.60205 9991 3 2796 Vb 9.99247 18890 5135
c 9.51299 6230 5 6934 K- 749 54886 8247
=) e )
4
- 1.18906 3760 7 5862 - 9.99996 73777 3382
K- 0.00749 5488 6 8247 Q- 9.99998 36888 6691
1
)t s log — = 0.00001 63111 3309= p
«
4 3
— 1.18156 8272 0 7615 log 3 :ZMpQ
C
o 9.99998 3588 8 6691 P 5.21248 413
) e e, p-- 0.42496 826
4
1.18158 4583 2 0924 Sur.. 0.23727 695
cKa 4
4) e
B 4 5946 13- 0.66224 52
e e,
B 1.18158 45827 4978.

9(l}) By squaring both sides of the expression : %K2C bx = 21/b°y, we get this equation.
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10 This value of h accords exactly with that which would give % log c;%, calculated with the direct
method !, up to the fifteenth decimal. Therefore in substituting in the formula F'b = KMh,
then we will have similarly an exact value of log F''b, up to the fifteenth decimal, and which will
satisfy with the equation F''b = /3.F !¢, explaining a particular property of this functions. '2

3. POISSON’S APPLICATION OF LEGENDRE’S ELLIPTIC FUNCTION AND HIS TABLE.

3.1. The capillarity action. Preface. We will find, in the following chapters, the applica-
tions of these general equations to the equilibrium of the liquid in the tubes of a very small
diameter and to the other analogous question, and we will be capable to remark the usage which
I have made the elliptic tables by Mr. Legendre, for the rigorous solution of problems which we
couldn’t have solved in any other way, without this aid, except for approximation.

§ 87. I designate with h the value of z which responds to the point C' ; by reason of g—; =0
in this point, we will have a? = b — h? ; and in eliminating b of the equation (6) :

a2

(Ve ——— =b-2 (6)
(%)

the right hand-side of the equation (6) will turn into a® + h? — z2. The radical being a positive
quantity, it needs that z? weren’t greater than a® + h? ; and, by reason of that the left hand-side
of the equation is less than a?, it needs that z? were not smaller than h2. Then, we see already
that without consideration of the sign, the variable z is composed between the limits h and
Va2 + h? ; it will be positive or negative, according as the curve will turn its concavity or its
convexity with upward.

We get from this equation

(a? + h? — 2?)dz
V(z2 = h2) (h2 + 242 — 22)

I will consider separately the two parts of the curve which arrives at the point C' ; in each of
them, the variable x will be regarded as positive and regarded from this point ; and for that it
cross from this point up to each edge of the curve, I will suppose the radical of the same sign
with dz.

Posed thus, to explain z in elliptic function, I put 22

dz =

_ (h®+24®)R?%
" h2+4+2a2cosp
(h2 + 2a2)(22 — h2)'
h2(h? + 2a% — 22) ’

from here we get

tan? Y=

and the variable 22 is neither less than h%, nor greater than h? + a2, this value of tan? ¢ will be
positive ; this one suffices for that ¢ were a real angle. The expression of dx will turn

(a® + h?)dyp B (h? 4 2a?)h3dy

Vh? +2a? cos? ¢ (h? + a2 cos? <p)% ’

consequently, this one is the same thing,

dr =

(2-c?a dy 2(1 - c*a dp

V2 /1= 2sino NG (1 — ¢%sin? cp)%,

lo(l}) I3 =logf = %Mp27 where, Mp? = M log é log h = log ﬁ = log ﬁ —log 3, 0 means log,, =
p’ 4+ 3M = log;,4.5946 = 0.6622452 - - - .

(1)) f. the (art. 664).

12(}}) ¢f. the (art. 83)

dr =




in designating with ¢ a quantity positive, less than the unit, and given with the equation ¢ =

202 Additionally, we have identically

2a2+h?"
sin ¢ cos 1 5 - 2 (1—¢c?) dy
d<—>:—2 1 — ¢?sin® pdp — 5 T
2 c C 2

1 —c%sin® (1 — c%sin? @)

from here, it results

(2-c?)a dy 2a ] sin ¢ cos @
dr = — \/1 — ¢2sin? gpdgp+acx/§d<—>
V2 J1-2sin?yp V2 3

1 —c2sin®

Owing to the notation known of Mr. Legendre, we have also

/d—@ = F(e, ), /Mdgp =E(c,9) ;
V1= Zsin®p

the integrals starting with the variable . In integrating, we will have then

x\/§_2—02

a &

csin 2¢p

(3)s Fle,9) ~ 2Ble, ) + 2 @

1—cZsin® o

We don’t add the constant arbitrary, because that x is null at the point C, for which we have
z = h, this one, which gives ¢ = 0 and makes evaporate the right hand-side of this equation.
We will have at the same time

2a2(1 — ¢?
@ A=l ®
1 —c2sin®
and these equations (7) and (8) make known the = and z of each of the points of the curve, the
functions of a third variable ¢, when we will have determined the module c.
dz

Consequently, if we put ——4—— = — cosw, where w will be the angle which is given at

(1+(£)")"
the two extremities of the layer, and which depend, at each of these points, on the material of
corps terminated with the vertical plane, and on that of liquid. In designating with k the value
of z which responds to the one of these two points, and eliminating g—; in the equation (??) and
the precedent, it turns into k = h? +a?(1 —sin w) ; in regarding to the value of ¢?, we will have
then
~ 2a%(1— ) a?

) E* = c_2(2 —? = Psinw) ; 9)

(5)6 h?

2
c
and if we call 6 the value of ¢ which responds to z = k, it will result

1 —sinw
(1+sinw)(l—c2)

(6)6 tan? 6 = (10)

Let a be the value corresponding to z, namely, the distance from the point C' to the one of two
vertical planes ; we will have

x\/§_2—02

a C

2 sin 26
Fle,0) — ZE(c,0) + —— 2 (11)
c 1—¢2sin2%6

(Me

If we designate with o/ and w’ the distance and the angle relative to the other vertical plane,

and with €’ this one turns into 6, when we put ' instead of w, we will have a second equation

which will be deduced from the precedent, in changing o and 6, with o/ and ¢’. T add these two

equations, and I put a4+ o’ = ¢, so that § were the distance composed in the two vertical planes
10



; it turns

X — C2
(8)s f _ 2 - [F(c,9)+F(c,9')} —%[E(c,@)-l—E(c,G’)

csin 26 csin 26’
+
V1—c2sin20 /1 — 2sin2¢

for the equation which will serve to determine c.

§ 88. When we will have w = «/, the distances o and o will be equal between them and
to %5. If these angles are, in additionally, zero or 7, we will have simply cosf = v/1 — 2. To
consider with relation to ¢, the equation (11) which is transcendental, it would need to give to ¢
a series of values ascending with the very small differences, from ¢ = 0 to ¢ = 1 ; let calculate by
means of elliptic tables by Mr. Legendre, the value corresponding to the right hand-side of this

(12)

equation!® ; and let form then a table of the values of & \/_ , relative to all these value of ¢ : these

being, when the distance § or sa, and constant a, and in consequence, the quantity a\[ would
be given, we would seek in this table, the value corresponding to ¢. But, the problem will be
moreover simple if we give the elevation h of this point C and the constant a, and if we demand
how long it must exist that the distance 2o composed between two planes.  Let suppose, for

example, which we musty have h? = 2a? ; it will result ¢ = %, cotf = \/é, 0 = 54°44’,

4 and the equation (11) will turn h = }F(c ) — 2v2E(c,0) + \/g For these values of ¢ and

6, the tables by Mr. Legendre give F'(c,0) = 1.02806, E(c,0) = 0.89111 ; from here, we
conclude % = 0.4776, for the ratio of the distance from the two planes to the smallest ordinate
of the curve.

F (¢, 8) = 1, 02806,

E(c,8) =0, 8g111; TABLE IX. 529

F(§o). F(§1). F (§29). F (43°). FU4%)- F(§5°%

2266 0.82280 o. o 34647
35 0.84298 31483 0.84449 1
o IZ 0.86286 67332 0.86470 252
12 25| 0.88305 8:4 0.88502 328
28 0.90335 g73§o| 0.90546 o

56 o. 93317 2 0.g26o1 53540|

l bede) o
00. s 0065 0! 3
z " oa-;54 ﬁlgl :.o X 2.7!

o. 857 SgJ 85927 18123

0.87733 6 0.87921 31y

0.8972 o Bgga5 23922
1

0.
0.
o.
0.
o.
e 9,73 0.91939 06051 o.
o
0.
0
2.
1.

¢
s .818 22| 0.81967 84387
g :8;-;3 365 0.83942 73270
51

.937354855 0.93g62 8
it ohes :m,ﬁ'z’f

5
= J4° ro||8 1.00 005!
=30, || i ool a2 1

?- E (40°). E{41°). E(42°) E(43°). E(44°)-
e ek
o. Zggg 0.7 11 ° 7 068;{ 0.78130 gi54g| 0.7
120 5: 0. 1 6g2 og ﬂgj ggGSg 35987 0.337
o.81650 3 0.&%! o n 563 o0.81140 03221 o
[ 0.83173 188g3| o0.82004 43479| 0-828 07957 0.82632 32302 o.
.84499 60 510| 0. 8‘116 43 0.83g22
g; ::8 19 ?:’l’él :. 7 3:%; :. 15 3&59 o.ﬁl
e B SRR R R
m gg :gg::g: Zl ; ::go 6002393 o-gozng 74163| o. 8997: 4:26: 0.89731 g:gzl

fig.1 Legendre’s table of the elliptic functions.

(l}) cf. This means the equation (11).
14(1}) We show the fig.1 of F(c,6) and E(c,8) of the Legendre’s table (1825) in a few part of the relating page.
(c= 75, 0=54°44") cf. [1, vol.2, p.327].
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Owing to the equation (9), the greatest ordinate is k = h % ; the average ordinate is then

z= %h(l + h\/§> ; and the value corresponding to ¢ will be ¢ = 38°16’30”. For this value of ¢

and ¢ = sin 45°, we see, in the tables of Mr. Legendre, F(c,6) = 0.69500, E(c,0) = 0.64437
; and the equation (7) gives successively = h(0.2061). In comparing this value of z with that
of «, consequently of %5, x = «(0.8628) ; so that, in this example, the average ordinates are
very more approached from the planes vertical than the point C ; this one give at the few of
curvature of the liquid near this point.

3.2. Motion of the heat of the interior and on the surface of the Earth.
We define ¢(t) as follows :

1 2m 1 o0 27
1 - / ry= ] ’ a8 1
(s o) = 50 [ o)+ 232 [ [T eos it ott) ] (1)
§ 215. (To apply the formula (13) to the function V.)  Let 4] be, which is the one v, turns
out when we change v in another variable v’ ; in applying the formula (13) to the function V,
we will have, according to the preceding value of this quantity,

. . o 2T
(15)y V. = LAY ! sin v dv’ + o M/ \/1 —sin? v sin? o sin ! dv/
27 0 27 0
: : 2
+ WZ[ ! cos i (v—0') sin v dv'}
2w 0
cos [ 2m . 9 D) . N wie
+ o { ; 1 —sin® v sin® v cos ¢ (v —v') sin ¢Zdv}. (14)

Supposing that the latitude p of the point O were northern ; and consider first of all, the case
where we have p < 90° — v, so that 1] were a continuous function of v'.
In integration by part, and observing that the values of ¢/ which responds to two limits v' = 0

. 2 . 2 ' .
and v’ = 27, were equal, we will have [;7 4] sin o' dv’ = [;7 Zlﬁf cos v’ dv’ ; by suitable means,
we will have
2m

P! cos (v—1') sin v dv'

cos v dv’
A )

1 2 . 1 . . I / / .
= —7° sin v+ —sin u sin v {— cos (v —2v") — v’ sin v]
2 2 . L2

2
P! cos i (v—1') sin v dv’

1. . /27r [cos (iv—iv' —v')  cos (iv—iv' + UI)] cos v’ dv’
= —Sln 4 sin 7y - - : ’
0 i+1 i—1 A

where, we put, for abridgement,

A= (1-sin? v sin? V') \/0082 w—sin? v sin2 v’

I substitute these values and this sin] in the formula (14). The integrals relative to v" of
quantities which are for factor, the sines of a multiple even or odd, or the cosines of a multiple
odd of this angle, is deleted as being composed, between the limits v = 0 and v' = 2, of the
elements equal to two by two and the contrary signs. Relatively to integral which includes v’
under the sign f, on the outside of the sines and cosines, we have

T cos v dv! T cos v dv ™ (v + ) cos v dv T cos v dv
R —_— - = —7Tr _—
0 A 0 A 0 A 0 AT

12




by reason of cos (v+m) = —cos v’ ; and this last integral is zero, as being also composed of the
elements which is deduced two by two. in respect to the integrals of the quantities which are
for factor the cosines of an even multiple of v/, we will be able to reduce their limits to v/ = 0
and v/ = % 7, quadruplicate their values. Posed thus, we find

1
(16) g V:§7r sin g sin 7y sin v+ Q4+ Q, cos 2 v+ Q, cos 4 v+ Qy, cos 6 v+ etc. ;(15)

where, Q, Q,, Qu, Qu, etc., being the quantities of independent of v. We have in particular,

L 2 02 2
2 [2 9 . 9 . o, sin” p sin” y cos® v ,
Q=- cos? p —sin® vy sin? v + v,
™ Jo A
and for a certain index ¢, different from zero,
1
4 [27 . . -
Q, = - [\/cos2 p—sin? v sin? v’ cos 2i v
T Jo

sin? p sin? v cos v’] d!
(4i2—-1) A

§ 216. (Explanation with elliptic functions)  All these integrals @, @,, Q., Q.., etc., are

explained with elliptic functions ; this one will permit additionally to calculate easily the nu-

merical values.
For the primary, we have

1 1
P : : 2 7 sin? p dv’
/ \/(3082 p—sin? ~ sin? v dv’ + K
1
2

. / R L A /
— <COS 21V cos v +24¢sin 27 v sin v>

0 +cos? pu—sin® v sin® v/

/ sin? p cos? v dv' ) '
- . . )
o (1—sin? 7 sin® o) \/cos? p—sin? v sin? v/

this one shows that Q will depend on a complete elliptic function, of each of three kinds, having

a same module 2T : quantity is little one than the unit with hypothesis. In putting, >

COSs
¢, —sin® y=mn, and using the notation of Legendre ', we will have

cos u

2 2
Q== E'c) cos ,u—i——[Fl(c)—Hl(c, n) cos® | sin p tan p.
i s

However, we see that the complete functions of third kind is explained by means of the
functions complete and incomplete of primary kind and of the same module ; in putting
n = —c® sin? ¢, from the above, we get ¢ = % m — i, the angle ¢ will be the amplitude

of the incomplete function, and we will have ¢

(A7) 1'(e, n) = F'(c) + ——[F' (0) B(e. ¢) — E' () Fle.)] 5 (16)
1—¢2 sin® ¢

tan ¢

%ic. Traité des Fonctions elliptiques, tome I, page 141.

in consequence, the value of @) will turn out finally

2
Q= —{El(c) cos i+ F1 (c) sin? ~ sin p tan pu— {Fl(c) E(c, ¢) — E* (¢) F(c, <p)} cos vy sin p
T

If we put ¢ = 1 in the value of @),, it comes into

1 1
2 4 sin? p sin? 2T cos? v/
/ \/cos2 —sin? 7 sin® v/ cos 20" dv' — #/ (1+2 sin? v') X dv'.
0

3w

(l}) Legendre [1].
13



Moreover, we have identically, according to this one, which A represents,

(142 sin® v') cos? o/ (2+sin? 7) cos® v 2y/cos? p—sin® v sin® o

A A sin® sin?
14 cos? v+ 2 cos?

sint v \/0052 p—sin? v sin? o

Being thus, we will have in eliminating IT' (¢, n) by means of the equation (16), it results
from here

@ = ﬁ[{}ﬂ(c) E(c, ¢) = E' (c) F(c, SO)}(Q‘FSiHQ 7v) cos v sin p

+ (2—sin® v) cos p E' (¢) — (2 cos® v cos® p+sin v sin p tan p F' (c)].

The two primary integrals are obtained with the ordinary rules, and have for values

1
1 /57 gin? ~ sin 240 sin o

1 2 7 sin® 7y sin 270 sSIln v — cos \/0082 ,u—sin3 - (17)

2iJo  Jcos? p—sin? v sin2 v/

2 ™ sin? v sin v’ cos v dv’ 1 1 sin 1
= — [— T — [t — arccos ] (18)
0 A sin p L2
in elliptic function, the value of the third turns in virtue of the formula (16), into
1
2 "sin? 4 cos? v/ dv/  sin? v cos
= F' ()= > [F (o) B ~E' Fle. ¢)|. (19
/ > P - 2L [P Q) Ble o)~ B Fe )] (1)
For all the indices 7 different from zero, we will have hence,
1
EQZ < —_(cos w— \/C082 @ — sin? 'y>
4 214
il [— T — L — arccos o ,u] (20)
442 -1 L2 cos 7y
481_;1 N [tan p sin® v F! (¢) — cosvy {Fl (¢) E (¢, ¢) — E* (¢) F (c, cp)}]
Z p—

At the equator, where it has u = 0, we will have

Q=ZF(©, Q=

T [(1%—0052 v) E' (¢) — 2 cos® v F! (c)},

and generally, Q, < W If it should hold ~ = 0, this limit of @), would be zero ; it should
need hence that @), should have it also ; this one result, in effect, from the value of @), of the
preceding number, when we put ¢ = 0 and v = 0. The module ¢ is sin 7 in case of y =0 ; in
developing the elliptic functions contained in the preceding value of @,, in accordance with the
powers of ¢ or of sin? ~, we have
1 T_om .2 1 ) .

E (c)—2 5 sin v + etc., F (c)—2+8 sin® v + etc. ;
this one reduces also to zero this value of @, in the case v = 0, and that of ) at the unit.
However, we have really ¢ = sin v = sin 23° 28 ; the tables by Legendre ¢ gives, in ordinary
logarithm, log;, E! (¢) = 0.1779800, log,, F' (c) = 0.2146639, and we deduce from here
170 = 0.95910, Q, = 0.04132, Q. < % (0.05265).

16(1}) Legendre [1].
17(l}) According to our calculation, @ gives %El (c), and E'(c) = T
0.9602596.

Z sin” vy fetc, then Q = 2-Z(4—sin®v) =

14



If we take for p the latitude of Paris, ¢ we will have
=48 50, 4 =23°28, ©=41°10, c= % — sin 37° 14’
and according to the same tables,
E' (c) = 1.41513, F' (¢) = 1.75490, E (¢, ¢) = 0.69511, F (c) =0.73514 ;
from the above, we conclude @ = 0.66662, Q, = 0.00253.

%({}) The latitude of the location of the today’s Paris Observatory is 48° 50'11.18"” N, showed with p.

Legendre

TABLE 1X. 322 TABLE IX. Bpt6k1101484
—— \/0].2
pp. 322:3

F(35°). F(36°). I F(37°). '\F(EB-). o | Ecasy. E(36°). E(ay E(38°).

| 0.81088 31102] 0.81228 0235{|| 0.81370 6352g| 0.8:5:§ 03gol .
o830 73 ofBoly b 3

5 > 5°| 0.76188 30381 0.76003 726246775877 34888| 0.75749 30ga§

| 083001 02860 0.83150 457\ 0.83303 offa 0.332 074 5 | o 15ra0 Bosos| o.Jo588 Jaea]] o 1o0ld 34358 0.37:1?57) 3e924
0.84920 37097 0-85072 gﬁbg 0.85242 98645| 0.85; o 348 o. 9307 98928| 0.79167 00834[ 0.79023 95352 o0.7888 9784

| o.86846 325..4 0.87010 58751 0.87190 52506) 0.87368 092/ 3] e 25 758] 080739 9348(| 0.80588 07045| o.80434 14654

3 060 9 | 0.82465 g%;sf 0.82307 of414| 0.82146 o:zme 0.81982 85844

9 4

'

0.88779 1 0.88960 foolll 0.89145 73032( 0.89335 0035
5 | 0.90718 67936] 0.gogi1 4646{| o.91 ye8-66 3s034 3868 33977 0.83697 gog1o| 0.83525 11484
%5 | 292665 01500( 0.92869 8013 "0.93d H . [5423 8321]| 085243 63806| o.85050 92434
5 | 0.04618 18298 oség3 448o]| 0-95d's ’lﬁy . - . oF . [Ga73 530 0.81;7:453 26525 0.86590 3o3sd
0.96578 20002] o.96808 {304 | 0974 (( B ememmim = Y Y 570 '4 3 [B5i7 485 0 88516 8148s| 088115 2790

5 i
o 98545 07391| 0.98788 7589|[| o.99d:

éé ..?:5.8 80316{ 1.00776 4370]|| 1-019 Coom
1.02771 {605
1-04773 Bon3

.0

0055 7038 0.8984% 31727| o829 8
1588 23398]| 0.97365 B1don o,g?‘.’/.i 15033

1.030!

3015 12254] 0.92881 35342| 0.92644 1
-94636 424 o.gg’ﬁqo gglé} o gﬁllf 02_.9;7

+02499 37673
5 | bedids 2730

p=A40* 5 y=23"18", a=45110, ¢= x-l:f =an3p*14";
et, d'spres les mémes tables,

By = 1,4:5:3, F'{e} = 1,75400,
Ee, 9= o,ﬁgSu,\{{c, @}?/0,75514;

T T 3 Y T.15353 G1682] 1.18200 57060] 1.17818 q15 73 (3675]
1.37154 68716| 1.37748 5890{| 1.3836a 55014| 1.38996 83g1 SES 90 570601 117818 915971 1.17339 o695
1.39244 4oBy4| 1.39861 4123][ 1.404gg 53407| 1.41159 osggt “aeaes n?,é: ::;??:; ;:,;é ::;2;,‘,{: :%/xgg 118747 ggsoq
1.41338 90243| 1.41979 1984]] 1.42641 9o333| 1.43327 1786 - i o f06| 1.20152 86966

N T Er R e Rk esrerbese
145540 ardig) 140228 Es8ail 140041 gign| 147690 71017
1.27646 Gbigd| 1.48350 Bo3el| 1.49998 Adgo| 1.49803 35644
140756 84205( 1.5040% 85464| 1.51250 71906] 1.52052 0075,
.52633 52344| 1.53424 77551] 1.54244 73467
54775 510811 1.55603 44190 3584
56920 5tool| 1.57765 38552 1. 1 Gor54
-50068 206 0815 01363
.61218 3784 63051 2300/

62477 B5589| 1.63370 3984
Ll A 1,73490,
64605 aqoBa| 1.65524 2333 s
166733 gbr0q| 1.65679 a5l +.G8CGa 95504] 1.60082 go54
69835 6454| 1.70846 24942| 1.71896 457

.
.
168863 8344|1608
TOOgg3 Gi700] T-7 1007 03501 [ T-73031 107
7 T83| 1:74500 92344|3- 35216 53365] 146325 61841
T 1/ 5.

55

1.2208f 72719| 1.2155§ 28{33]
1.23500 o;nﬁg
1.24912 32908 1.24347 19278
1.20321 86241| 1.25739 12483
1.27728 83494 1.27128 3428§

0 62466/ 1.29133 46537 1 28515 07825
0 75324 1.30535 07634| 1.29809 560680
1.33209 10987 1.3 0y832)| 1.31936 59fo8| 1.31282 of811
1.34643 29286| 1.33995 Bg620|| 1.33335 55805 1.3266a (530
1.36076 20761| 1.35511 30583, 2
T37508 o6220| 1.3085 Gongo]| E(€} = r 41513, |
1.38939 06671( 1.38239 00703 |Ms OFF JOEI0] T 30790 S0708)
1:4036y 43227] 1.39631 72035 138919 40715 1.38195 0513
5lia3gEil 7

48 Sgans

1.4t 7132| 1.41063 99216\ 1.40313 57025])
_Ihlﬂn. 2] ugbgdl 74276 o3tot||[r. 41707 49234]+. 40923 47160

S
w
&

1.2267 2165
8| 122687 1670
1.28318 49920

B3 S

1.51870 34704
1.53986 go144
1.56106 22239
1.58228 02022,

L1260351 09913

.30336 11740
131773 45259

)
Il
LI
q Ras

193124 51759 1,941

%
’F L -

fig.2 Complete elliptic functions of Legendre’s table
4. Conclusions

Legendre may be, we think, the only person in Poisson’s all life, whom Poisson defeated in
such academic arena in high esteem for the tremendous works by Legendre. Without his works,
as Poisson says, his applications to the elliptic functions haven’t put into practice.
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