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Abstract

The aim of this paper is to study a one dimensional model system of equations for ionized
gas dynamics at high temperature where the gas is a mixture of two kinds of monatomic
gas. In addition to the mass density, pressure, temperature and particle velocity, degrees of
ionization of both gases are also involved. By assuming that the local thermal equilibrium
is attained, Saha’s ionization equations are added. Thus the equations are supplemented by
the first and second law of thermodynamics, a single equation of state and, in addition, a
set of thermodynamic equations.

The equations constitute a strictly hyperbolic system, which guarantees that the initial
value problem is well-posed locally in time for sufficiently smooth initial data. The geometric
properties of the system are rather complicated: in particular, we prove the existence of a
region where convexity (genuine nonlinearity) fails for forward and backward characteristic
fields. Also we study thermodynamic properties of shock waves by a detailed analysis of
Hugoniot loci, which is employed for the study of existence and uniqueness of solutions to
the Riemann Problem. We prove that the Griineisen coefficient is positive and the Liu-Smith
strong condition is satisfied, which shows that the Riemann problem is well-posed.
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1 Introduction

A shock wave is a propagating discontinuity of density, pressure, temperature and etc., which
is supersonic with respect to the gaseous medium ahead of it and subsonic with respect to that
behind it. Behind a shock wave, not only pressure but also temperature increases abruptly
and the gas is heated to high temperatures. In the gas behind the shock front, almost all
molecules become dissociated and finally some of the atoms become ionized: X = X 4+ e™.
Numerous spectroscopic measurements of atomic parameters and thermodynamic equilibrium
of plasma thus generated have been done, for example, in various Helium-Hydrogen mixtures
(Fukuda-Sugiyama [10], Fukuda-Sugiyama-Okasaka [11]).

The model system of mixed ionized gas dynamics that we discuss in this paper is proposed
by Fukuda-Okasaka-Fujimoto [9]' for the purpose of providing a theoretical basis for their ob-
servations. The system consists of equations of macroscopic motion for 1-d mixed gas dynamics.
Its particular nature is: degree of ionization of each gas is considered to be a thermodynamic
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variable. The aim of this paper is to exhibit principal results obtained in Asakura [1] and to dis-
cuss the existence and uniqueness of solutions to the Riemann problem. For a single monatomic
ionized gas, studies have been done in Asakura-Corli [2, 3, 4]. This model system is similar to
the ideal dissociating diatomic gas model studied by Lighthill [13].

Basic thermodynamic variables are denoted in this paper by T : temperature, p : pressure,
p : mass density, v = 1/p : specific volume, e : specific internal energy and s : specific entropy.
The flow velocity is denoted by u and the specific total energy by & = %u2 + e. The system of
equations of one-dimensional motion for gas dynamics consists of the following three conservation
laws: conservation of mass, momentum and energy

Pt + (pu)l‘ = 07
(pu)e + (pu? +p)a =0, (1.1)
(p€); + (pEu + pu), =0,

which are supplemented by the first and second law of thermodynamics
de = TdS — pdv, (1.2)

a single equation of state and a set of thermodynamic equations. For brevity we will call s, e
and &, the entropy, internal and total energy, respectively.

Let us consider one mole mixture of monatomic gases A and B whose ionization reactions
are A =2 AT + e, B = Bt +e~. We denote the number of atoms and ions for each gas by
NA NEB and NiA, NB, respectively. The number of electrons are denoted by N.. Note that

NA + N2+ NB 4+ NB = Ny : Avogadro Number, N, = N{* + NP.

' - A _ N} B _ N2 A _
The concentration of atoms, ions and electrons are defined by n,' = <#,n, = J3*,n{" =
N NP .
7‘,11}3 = qr,Ne = %, respectively.

By denoting G2, GB : the partition functions of the neutral state, GiA,G%3 : same for the
l-ionized state, and y*,xPB : first ionization potentials, the coupled Saha’s laws for mixed

monatomic gas are presented as the following.

nfne  2GA [2rmokTN? A nPne  2GP [(2rmokT\? P

i e i e —x_ Ny Ne i TMe -

A = A 5 e kT , B = B 3 e kT (13)
ng G4 h ng Gy h

For A: hydrogen atom, we have x* = 13.59844 eV and for B: helium atom, x® = 24.58741 eV.

First ionization temperatures are

A B

Ty = % — 1.5780 x 10°, T = X? — 2.8532 x 10°.
2GA 2GB .
Note that Ty < Tp < 2Tx. We have also = = 1, 7& = 4. We will assume that a local

thermodynamic equilibrium is everywhere attained: that is, the coupled Saha’s laws (1.3) hold

everywhere even in presence of shock waves.
A B
The degree of ionization and fraction for each gas are defined by ap = nTnJir?? apg = nTnjrﬁ’
a i a i
o N?—Q—NiA o n?—l—nlA . Nf—ﬁ—NiB . naB-‘,-n%3 . .
and g = N = el 8= N = T respectively. The density and molar mass
of each gas are denoted by pa, pg and Mya, Mp, respectively. The pressure is a sum of partial

pressures with respect to atoms, ions and electrons:

P =Da+Di+De=0a+2p, pj=knT (j=a,ie).



Then by setting @ = fap + (1 — B)ap
p=pi + 2+ +2F =k (nd + 20 +nf 4+ 20f) T

=k [(né +niA> (1+aa)+ (nf —|—n?> (1 —i—aB)] T=kno(l+a)T.

A
By noticing 1 + %}: = a—lg, 1+ % = C%B, Saha’s laws have the forms

A

3
n; :e _ QA (nlA +"F) _ Mo _ 2G/iA 2mmekT \ 2 e_TTA7
T4 1—oaa 1—oa G4 h?

3
nPne _(_os (n-A n nB) _ noaa 2GE [ 27mmekT ) 2 s
nB 1—ap ! ! l-ag GB h? '

Thus we conclude that thermodynamic state equation has the form

3 5
2 2

(1= aa)(1+ ) 2G (2mme)2 (KT) S
P= apQ GA h3
_ (L= ap)(1+0)2GP 2mme)2 (KT)? 7 (1.4)
N aga GB h3 ' .
Also we have a compatibility condition
A1 _ B1_
2GA 1 aAe_TTA _ QG];) 1 aB E_TTB. (1‘5)
G aa Gy aB
We assume T < Ty < 2TA and moreover
e Gases are well mixed so that: p = Bpa + (1 — 8)pB
e Pressure of each gas has the form
Rpa Rpp
PA= 0 (1+aa), pB Ms (1+aB)
e Specific enthalpies are defined by
5R RTy 5R RTy
ha=—-T(1 — hg = —T(1 —
A= 9N ( +aA)+MAaA, B = o0, ( +04B)+MB@B
e Local thermodynamic equilibrium is everywhere attained
e Macroscopic motion of the gas flow is one-dimensional.
We deduce from the above assumptions that the total pressure is
Rpa R
p=FBpa+ (1= B)ps = B0 T(1+an) + (1 - A ZP2T(1 + ap).
Ma Mg

Thus

BET(L+aa)+(1—B)ET(1+ap)  RT [1+ Bas+ (1 — B)as]
M +(1-p)Xe - BMa+(1-p)Msp

p
p



Denoting o = Baa + (1 — B)ag and M = SMp + (1 — §) Mp, we obtain
p=1e0T(1+a) (1.6

which is the equation of state. The total specific enthalpy is

_ BMaha + (1 — B)Mghg _ 5RT R B
"= BMa+(1-B)Mg  2M [8Tacs + (1 - B)Tpas] (1.7)

(1+O&)+M

After showing some basic calculus lemmas, we construct physical entropy functions in Section
2. The system (1.1) is shown to be strictly hyperbolic and characteristic fields are computed in
Section 3. However, unlike the ideal polytropic case, the forward and backward characteristic
fields of the system are not genuinely nonlinear and we study the set where this happens in
Section 4. We refer to [7], [18] for more information on systems of conservation laws. We study
in Section 5 the relation between ap and ap. A detailed study of Hugoniot loci of the system
is carried out in Section 6. Though Hugoniot loci are monotone in (7', «)-plane in a single
monatomic case, they are not always monotone in the present mixed monatomic case: If § is
sufficiently small, then they lose monotonicity at some base state. Thus the degree of ionization
does not always increase across the shock front, even if the temperature increases. However
we prove that the pressure actually increases as the temperature increases. In section 7, we
study the existence and uniqueness of solutions to the Riemann Problem and prove that the
Griineisen coefficient is positive and the Liu-Smith strong condition is satisfied, which shows
that the Riemann problem is well-posed.

2 Construction of Entropy Function

Introducing the specific enthalpy h = e 4+ pv, we have

Proposition 2.1 (Maxwell’s relations).

@)= r), (), =7 (ar),

As usual, the subscript T" or p above means that the derivative is computed by holding the
subscripted variable fixed. The specific volume v is expressed by (1.6) as v = %(1 + a) and

the enthalpy is (1.7). The dimensionless entropy 7 is defined by n = %S. Consequently we have
by Proposition 2.1

Lemma 2.1.

on\ 1 da
<a_p)T - 1+a—|—T(8—T>p
on 5 5 T Jap 5 Ta dap
(8_T>p = ﬁ(l +a)+p (5 + ?) <8_T>p +(1-75) <§ + ?> <8_T)p (2.2)

Saha Equations: Setting

z B ., 2GP (27rme)%k‘% 1 2GP (27‘1’77?,6)%]{,‘%

Th = k TB:?7 Hp = GaA h3 y Mg = GaB B3 ’
4

we have from (1.4) and (1.5)



Lemma 2.2. Saha’s equations have the forms

1 1 e 1 1 B
QA « T2 aB (e T2

and the compatibility condition

_Ta _T
(i—l)e T:(i—1>e - (2.4)
QA HA ap KB
Computation of (604_A> , <8&A> , (604]3) , (604]3) : For the sake of brevity, we set
op Jp \OT ), \ Op )p \OT /],

qga = aa(l —aa), g8 = a(l —a), ¢= Bqa + (1 - B)gs.

Differentiating Saha’s equations, we have two Pfaff equations

TA
ol +a) + Bga (I —ax)(1-5) pape® |dp (5 Tp\dT
d dog = —HAPCT |0 (2 IAN D) o
o3 a? aat op? aB T3 D 2 + T ) T (2.5)
T
(1—ap)s a(l+a)+(1-P)gs pupe™ | dp 5 Tg\ dT
LT oB)p — @ _(2,8)C 2.
. daa + Za? dagp pa » s T | (2.6)

which constitute a system of linear equation of dasy and dapg. By the inverse function theorem,
we obtain

Lemma 2.3.

dan _  a(l+a)ga dag) _  a(l+a)gs
(To)T ~ pla(t+a)+4q] ( p )T ~ pla(l+a) +4] 2D
() - i (3
( 5 1T Baaqe(TB — Th)
( 2" ?) T2 [a(l + @) +q] (29)

3aA) 4 (1= P)aags(Ts — Ts)
T T2 [a(l +a) + q]
_B) Baaqs(Ts —Ty)

r T?la(l4+a)+q]

Thus we obtain useful lemmas:

LT (Da) 5 (da) BTy (da) (1= )T (don
p@Tp_2 op)r T o )r T o )r
Lemma 2.5.

)-SR ) e G B(E),

Lemma 2.4.




We will construct the physical entropy function for the present model system. Integrating
(2.10) with respect to p, we have

Lemma 2.6. The dimensionless entropy n = %8 has the form
n(p,T) =loga+ flogap + (1 — B)logap — 2681og(1 — ap) — 2(1 — B) log(1l — ap)

+B(§+T—1‘f) ar+(1-p) <g+%) ap + H(T). (2.11)

where H is an arbitrary function of T.

By differentiating the above expression and employing (2.1) and (2.2), the form of H(T) is
determined up to constant.

Theorem 2.1 ([1]). The dimensionless entropy function has the form

n =log [Baa + (1 — B)as]

T T
+ B {logaA —2log(1 — aa) + ?A] +(1-7) {logaB —2log(1 — ap) + ?B
5} TA ) TB
—|—ﬁ<§+?> OZA—F(l—ﬁ) (54-?) OéB+COIlSt.

3 Equations of Ionized Gas Dynamics

For studying thermodynamic properties of the system (1.1), the Lagrangian equations [18] are
convenient
vy —ug =0,
ur +pe =0, (3.1)
1,2 _
<e+ Su )t + (pu)e =0

where p : pressure, v : specific volume, e : specific internal energy and u : flow velocity. For C*
solutions, equation (3.1); can be written as ? s; = 0.

Characteristic speeds and vector fields: The associated quasi-linear equations are

U
pt__z:()) ut+p$:O) St:O
Up
in the (p, u, s) state space and we find by direct computation that the characteristic speeds and
the corresponding vector fields are

+1
/\:I:(U) == ) /\O(U) =0, Ti(U) = \/__UP ) TO(U) =

= o O

We note that characteristic speeds and characteristic vectors are all thermodynamic quantities.

*The equation s; = 0 is transformed to (pS), + (puS), = 0 in Eulerian coordinates.

x



For further computation, we adopt (p,u,T) as a set of state variables. Since vy — ue =
vppt + vrTy — ug = 0 and 1y = npp; + N1y = 0, we can write system (3.1) in the form
nr —
i 0,
Ut +p§ = O, (32)
T+ —22 ug = 0.

VpNT —VTp

bt —

Characteristic speeds and vector fields are computed as the following.

Lemma 3.1. The characteristic speeds and the corresponding characteristic vector fields of the
system (3.2) are

+1 0

nr 1
A=+ /—— 8 X\=0, 7rL= — 7w — |, ro=]0
UpNT — UT7p vpNT VTP 1

:F_p

nr

The 0-characteristic field is linearly degenerate; a pair of Riemann invariants for \g is {u,p}. A
Riemann invariant for both Ay isn. The characteristic speeds of system (1.1) are then u + %Ai
and u.

Computation of AL : Fore the sake of brevity, let us introduce the quantities:

q = Bqa + (1 — B)gs,
Y=a(l+a)+B8ga+(1-B)gg=a(l+a)+g

2 2
@zﬂqA(§+ﬂ) +<1—6>qg(§+@) ,

2 T 2 T
_ 15 3Ty T} 15 3Ty , T3
\If—ﬂqA<4+T+T2>+(1 ﬁ)qB<4+T+T2 ,
O- B(1 — B)aags (Ta — Ts)*
= 2 )
Substituting (2.7), (2.8), (2.9) into (2.2) and (2.10), we obtain
54 Ta — 54 Tn
(97] 1+ a(1+a)|:ﬂ<2+T)QA+(1 6)(2+T>QB:|
any _ _ _ (3.3)
) r p Py
on\ 5 a(l+a)®+Q
Since v = %T(l +a) (a® = —A%), we have by applying Lemma 2.3
- <@> :_T(l—l—a) _ Ta(l +a)q .2 (@) :_(@)
op )¢ p? [ ’ oT v op )¢
Theorem 3.1 ([1]). The characteristic speeds A+ have the forms Ay = £\ where
p Sl+a)+a(l4+a)®+Q
A= 3 . (3.5)
aVT(1+ a) S +a¥ +Q



Remark 3.1 (Isentropes). In the (p,u,T) state space, an integral curve of a characteristic

d p
vector field v is a solution to the system of equations e u | = r where r stands for r4 or
I
T

ro. We have
dn  Ondp 677dT_:|: on  onmny _o
dr  Opdr  OT dr op OTnr)
for r4, and p = const., u = const. for rq. Thus the thermodynamic part of an integral curve is

n = const. for 1,2-characteristic directions and p = const. for O-characteristic field. A curve
an
LN

n = const. is called an isentrope. Since ( )T > 0 (see the proof of Lemma 7.3), an isentrope

is represented by the graph of a differentiable function apn = aa(T) defined on T € (0, 00).

4 Genuine Nonlinearity (convexity) and Inflection Loci

Now, we study the convexity of the forward and backward fields; each characteristic direction
having the eigenvalue A1 is called genuinely nonlinear if r. VAL # 0. We have chosen charac-
teristic vectors r4+ so that

TiV/\iZULS:%—@%. (4.1)
2—vy)z  Op  nrdT
Hence, genuine nonlinearity implies strict convexity (or concavity) of v as a function of p for
fixed s. We refer to [15] for more insight about the failure of this condition and we will see in
Theorem 6.5 that the entropy increases across the shock front if VAL > 0.
It is convenient to consider a differential operator

wsfn(2) -0 (),

which is proportional to r. V. Computation of R is simple but tedious. Outline of computation
is shown in [1] and the expression obtained is very heavy.
The inflection locus is defined to be the point set

J={(T,aa); 74VAs =0, T >0,0< as <1}.

Since 4 VA4 = r_VA_, both cases lead to the same result. Since r1+V AL > 0 for sufficiently
large T', we observe that J is located in a finite region. However it is difficult to get a sketch of
J by purely mathematical reasoning and Fig. 1 shows results of numerical computations.

On the other hand, it is possible to extract from the heavy expressions asymptotics of the
inflection locus for T" — 0. Since ap is negligible compared with «s, we observe that there
are two branches such that 75 — 0 or 7% — oc. Following theorem is a generalization of [2]
Proposition 4.2.

Theorem 4.1 ([1]). For T — 0, the inflection locus has two branches
3 . 3 Tg—T
60 (T 60ua [ T _Tp—Ty
(1) an~ B (&) on~ G (&) e
3 3
1 (T \2 u 7\2 _TB-Ta
@ aa~3(F) . an~ga (K) e
and we conclude that the characteristic directions of Ao are not genuwinely nonlinear in a neigh-
bourhood of (T, aa) = (0,0).
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Figure 1: Ty = 1576.0, s = 2853.2 left: 8 = 1(monatomic), right: 5 = 0.05.

5 Compatibility Condition
The compatibility condition (2.4) constitutes a thermodynamic state space.

Lemma 5.1. The compatibility condition has the form

_Tp—Tp
HACAE T
aB = To—Ta .

paope T +MB(1—C¥A)

If ap — 0, then ag — 0 and we have

T —T
ag = M—AaAe_ Bt [1 + O(l)aA] .
B

alphaB alpha B

Figure 2: State space Th = 15,15 = 28, left: 0 < ap < 1,0 < T < 12, right: 0 < ap <
0.5,0<T <12

For A: hydrogen atom and B: helium atom, Z—g = 4.
Incidentally, we find

_Tp=Tp
 pappaa(l—ap)e T
ap(l —ap) = 5
_Tp=Tp
pacae T + up(l— OzA)




and we have derivatives of ap in the forms

Jap _ (Ts — Ta)ag(l — aB) dap _ ap(l — ap)
0T /o, T* " \Odaa /)y aa(l—an)

showing that (%)‘—713) ,(gg—i)T > 0. By setting for brevity ¢ = fga + (1 — 8)gs, @pa =
aa

w, derivatives of a take the forms

da\  _@sa (O _ q
<8T)QA_ T’ <8o¢A)T—qA’ (5:3)

In the following sections, we shall adopt T' and aa as a set of independent thermodynamic
state variables.

Lemma 5.2.

6 Thermodynamic Hugoniot Loci

In the one-dimensional gas dynamics, two constant states separated by a shock front = = ot
constitute a weak solution, if and only if the Rankine-Hugoniot conditions

olp] = [pul,
olpu] = [pu® + pl, (6.1)
o[pE] = [puE + pul.

are satisfied. Here we denote [p] = p4—p_, where p+ denote the right and left limits, respectively,
of p with respect to z at x = ot; the same notation is used for the other variables.

If [p] = 0 then [u] = 0 by (6.1); and [p] = 0 by (6.1),; in this case, 0 = u4+ : the speed
is equal to the flow velocity and the discontinuity is called a contact discontinuity. From now
on we discuss the discontinuity corresponding to the forward and backward characteristic fields
having charcteristic speeds Ay and assume [p] # 0. In this case o is eliminated from the first
equation and by substituting it into the other two equations, the conditions (6.1) are reduced to

{ (uy —u_)?+ (py+ —p-)(vy —v_) = 0: Kkinetic condition, (6.2)

e+ —e_+3(py+p ) vy —v.) = 0: thermodynamic condition.

In the following, we consider a single forward shock front; we fix a constant state (p4,u,T4)
and consider (p,u,T) = (p—,u—_,T_) as a set of state variables. Under this notation, (6.2) is a
set of equations for Hugoniot locus of (p4,u, T ). For brevity, we call solutions to (6.2), and
(6.2),, respectively, the kinetic and thermodynamic Hugoniot loci.

In this section we will give a precise description of thermodynamic Hugoniot loci for the
present model system and evaluate, in particular, change of the thermodynamic variables along
them; this analysis is fundamental for the study of shock waves (see [3]).

The right thermodynamic state is denoted by (p4,T4) and the left state (p,T). The ther-
modynamic Rankine-Hugoniot condition is written as®

T(1+a) (4 + %) +2 [BTaaa + (1 — B)Tos)

=T, <1 + oﬁ) <4 + p%) + 2 [ﬁTAaf{ +(1- B)TBOZE}

3For the sake of convenience, we adopt the notation ai instead of aa+.
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By (1.4) the pressure is expressed as

b= (1_0[A)(1+0)T%6_TTA _ (1_aB)(1+a)T%e_TTB. 63)
27.NeT.Ne HBaBQ
and thus
po_(-ap(+adafor (TN Jacis v pT(da) o
— = — ) e T- , — = .
P+ (1—ap))(l+at)aja™ \ Tk vy p-Ti(1+at)
Consequently by setting I'=T_,a = a~,aa = o, and ap = ag, and defining
5
(1—al)1+a)asa (T+>2 T Tp
HT, apn)=T(1+a«a) |4+ L) e ™+ T
+2 [ﬂOAATA + (1 - ﬁ)OJBTB]
_ +t s Ty T
(1) [ Uoo e (1)F e
(=l +at)ana \T%
~ 2 [Ba{Th + (1 - BlafTs| (6.5)

the thermodynamic Rankine-Hugoniot condition is represented by H (T, as) = 0.

Asymptotics: We have the following asymptotic formulas.

Theorem 6.1 ([1]). On the thermodynamic Hugoniot locus (6.5), if T — 0, then aa,ag — 0
and by setting

a+a+{4(l+a+)+2 BaJrT—A-i-(l—B)aJrT—B] }e%
‘A : ‘AT, ‘BT,
A= ,
|5+£20-9)] 1-a ) 1+at)

we have . .

T\ 2 T A T\ 42 2T T,

ap ~ A (—) e 2, ap~ ZhA <—) e~ T (6.6)
Ty ps \T4

On the other hand, if T — oo, then aa,ag — 1 and

+ -3 T + - T
| an 4(1+ o:_A) <T£) PR 4uA(1+ O-:_A) (T1> ST (67)
Qp + HBOpA O +
Loss of Monotonicity: For a single monatomic gas, Hugoniot loci are graphs of strictly
increasing functions in (7, ) plane ([2], [3]). We will show in this subsection that it is not
always the case for mixed monatomic gases.

By direct computation, we have

<§5A)T B T(lqj : [1 - a(lia)] % " - (1(1: - [1+ a(lia)] o
Tq

+— (4 + Iﬁ) + 2 [BgaTa + (1= B)geTs] , (6.8)
N p qa

showing that (%)T > 0. We have

11



Theorem 6.2 ([1]). For every T > 0, there is a unique 0 < ap < 1 such that H(T,ap) =0
and the function aa = aa(T) is differentiable.

In the same way

(g—g)% —4(1 + )

@BA T8
1 1+ —
+ 1+« +2T

3, Ta @pa) p+ It |5 T QBA p
—Q Oy IA WBAYPE g “H2 A WBA | P .
(+a)<2+T a>p (I+a) 7 5+ 7 a(l+a)| ps (6.9)
Theorem 6.3 ([1)). If B is sufficiently close to 0, then
dan (%), T4.0)
ar ) = 7o <0
(m)CYA (Ty,ay)

showing that ca is a decreasing function of T in a neighbourhood of T =T,
Outline of Proof: Let us study the sign of <g_¥)aA at (T4, a’}). We find by the above expression

that (‘3—[;) > 0 if and only if

1(3 T
Feren =g (57 - 90) B
T (1+a™) [5 Ta @BA ]p

AT1+a) |2 T a(l+a)

@BA T8
1 1+ —
+ 1+« +2T

is negative. If 8 = 0, then

Ta
F(T-I-v O‘X) =

1—ap 2+5O&B+T]3a]3 Tg —Ta
ST

1+ap 2 T T

Obviously for any ag > 0, there is some T > 0 so that the above expression is negative.

Pressure Change: Let us study the behaviour of the pressure. By direct computation, we
have
OH 5 T, Q OH
oy _[rn] (), 9 [+ ) (82),
pdl oH
g o (#5),

Substituting (6.8) and (6.9) into the above expression, we obtain

Theorem 6.4 ([1]). The pressure p strictly increases along the Hugoniot locus as the temperature
T increases.

It is well known that ( Bethe [5], [12, §86] ): if (po, uo, So) and (p1,u1,s1) are connected by
a shock front, then

1 82’0 3 4
§1— 80 = TTD 8_1?(2) . (p1 —po)° + O(1)(p1 — po)*. (6.10)

By virtue of this theorem, the physical entropy inceases as the temperature increases on condition
that vpp|p:po > 0. For discontinuities with arbitrary amplitude, the following theorem is known.

12
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Figure 3: Th = 1576.0,175 = 2853.2,T = 800,aK = 0.3 left: 8 = 1(single monatomic), right:
3 =0.05
L

Theorem 6.5 (Bethe-Weyl). The thermodynamic Hugoniot locus of the state (vo, so) intersects
each isentrope at least once. Moreover, if pyy > 0 (equivalently vy, > 0) along an isentrope, then
lu — | < ¢, if v1 < vg. while the opposite inequalities hold if v1 > vo.

The kinetic condition (6.2) shows that v; < vy if and only if p; > py. Hence the Lax condition
(see [7], [18]) is satisfied even for large [p1 — po| as long as p1 > po. Proof is found in [5], [15,
(3.44)] and Weyl [20]. We may also call this “shock wave”, however the physical entropy does
not necessarily increase.

Next theorem in [5] guarantees increase of the physical entropy. Let I' denote the Grineisen
coeficient I whose definition is found and I' > 0 is shown in the next section

Theorem 6.6 (Bethe). Suppose that p,, > 0 (equivalently vy, > 0) and I' > —2. Then the
thermodynamic Hugoniot locus of the state (vg, so) intersects each isentrope exactly once and
s1 > 8o if v1 < v, while s1 < sg if v1 > vg.

7 Riemann Problem

In this section we consider the Lagrangian system of the ionized gas dynamics mainly in the
(p,u, s) state space. For the sake of brevity, we denote U = ' (p, u, s). The Riemann problem is
the initial value problem with special initial data

U(£,0) = Up for &<0,
" U for €>0.

where U, = T(pr,ur,s.),Ur = T(pr,ur,sg) are constant states. We will construct a self-

similar (weak) solution to the initial value problem.

Rarefaction Curves The integral curves of 7;(U) (j = 0,1,2) are represented by
ﬁl(U) Dou+ / \/—vpdp = const, s = const,
ﬁo(U) :
Ro(U): u— / \/—vpdp = const, s = const.

p = const, wu = const,
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As we have mentioned in Remark 3.1, rarefaction curves are isentropes in the thermodynamic
state space. For the Riemann data Uy, Ug, we define the forward 1-rarefaction curve fRf (Ur)
and the backward 2-rarefaction curve RE(Ug) as the following.

P
~ u—u, = —/ \/—p dp,
RE(UL) - oL P

b SPL,
S — S e O/‘p d (71)
S U —Ur = v —Up ap,
RE(UR) on L p < Pr.
s—sgp = 0

ItU e fJAQf (UL), the state Uy, is connected to U from left to right by a 1-centred rarefaction wave
U=U (%) ;if U € RB(Ug), U is connected to Ur from left to right by a 2-centred rarefaction
wave (see Dafermos [7], Smoller [18]).

Hugoniot Loci Two states separated by a shock front ¢ = ¥t constitute a Lagrangian weak
solution if and only if the kinetic and thermodynamic conditions (6.2) are satisfied. The La-
grangian shock speed 4 satisfies $2 = —%. In section 6 we have proved that the thermody-
namic Hugoniot loci is represented by a smooth curve in the (7', a5 ) plane. In order to study the
Riemann problem we have to consider them in the (p, s) plane, and somtimes (v, s) and (p,v)

planes. Following argument and notations are due to Menikoft-Plohr [15].
From now on, we denote by ¥, in particular, the positive Lagrangian shock speed , /—Iﬁ.

We have two branches of Hugoniot loci such that
+1
= S = 24/ vp(po, 50).
P=Ppo p=po

— du
b~ Po for p>py and —
dp

u—uy ==L

We will show these two branches are strictly increasing and decreaing ones for all p > pg.
The adiabatic exponent v and Grineisen coeficient are defined respectively by

v [(Op v 0% v (Op dp
’y = —— —_— s F = —— = — _ = _ .
p \0v ), Tosov T \9s)/, de ),

Obviouly we have

1
dp = - (TTds — pydv) . (7.2)
Denoting H = e — ey + %(p + po)(v — vp), we have by the thermodynamic Hugoniot condition

together with the first and second law of thermodynamics
1 1
Tds =dH — 5(2} —vo)dp + §(p — po)dv. (7.3)

Lemma 7.1. If 2y > T', then the theromodynamic Hugoniot locus is represented by the graph of
a smooth function v = v(p) for p > po in the (p,v) plane and the specific entropy s is a smooth
function of p defined for p > pg. Derivatives have the forms

v— — U(—_)
pdy_1+85 g o) e ) (74)
vdp ~_ Lle=po)’ dp o |4 — Le=p) | '
v 2p v 2p

4The Eulerian shock speed is ¢ = uy + %.
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Proof. For the Hugoniot locus, we have by (7.2) and (7.3)

T
dp=— [dH + (p — po)dv — (v — vo)dp] — ?dv

2v

I I'(v— I'(p —
_ Ly =), p| I—r)

2v 2v v 2p

which gives
T T'(v— T(p —
2v 2v v 2p
Suppose that v > %F. Then for p > pg
I'(p — po) 1. Tpo_ Tpo

_— L =y —=I 4+ —>— >0.
i % Tt g, Ty

Thus we find that there is a smooth function v = v(p) defined for p > pg such that H(p,v(p)) =0
and hence the first claim follows.
We consider s as a function of (p,v), and then a function of p by substituting v = v(p). Since

1 dv
Tds = —— — —(p—po)—| d
8 ) (v =) — (p — po) dp P
Substituting the first expression (7.4) into the above expression, we obtain the second. O

Let us next consider the (full) Hugoniot locus and, in particular, its projection onto the (p, u)
plane. By the above lemma, we may suppose that v is a smooth function of p. Hence by the
kinetic Hugoniot condition, u is a smooth function of p, which is the projection onto the (p,u)
plane. Notice that v < vy if p > pg. The following theorem is due to Liu [14] and Smith [17],
and formulation and proof are to [15].

Theorem 7.1 (Liu-Smith). Suppose that v > I'. Then the projection onto the (p,u) plane of
each Hugoniot locus of Uy is represented by the graph of a smooth function u = u(p) for p > pg
in the (p,u) plane and

Llp—po) , %2
du (0= ) [y Moo w2
ao_ [ i p};&O for p > po.

dp 2(u — uo) [’Y - F(pg—;m)}

Proof. By (7.4) and the kinetic Hugoniot condition, we find that

2(u — up)du = —(p — po)dv — (v — vg)dp

B (v —p) [W_F(p;po)_zgiizgg ]
Proof of Lemma 7.1 shows that’y—r(pQ—;pO)>Oforp2po. We have
V_F(p—po)_U(P—po):7_F+%+U_22>A/_F>O
p p(v — o) p P

for p > pg which shows that fl—’; =% 0 for p > pg, Also we have observed that, in a neighbourhood
of (po,ug), there are two branches of solutions each of which is represented by a smooth function

u(p) and %’ # 0. Thus we obtain the theorem. O
p=po
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Let us consider the positive Lagrangian shock speed as a function of U and Uy denoted by
(U, Up). For the Riemann data Uy, Upg, we define the forward 1-shock curve Sf (Ur) and the
backward 2-shock curve 85 (Ug) as the following.

w—uy = __p—pL_
—~ Z(Ua UL
8{(Ut) : p (vvo)f ,vﬂ p > pr,

s—s;, = / — dp

py 2T ==

uU—UR —pLR _[p p ] (79
—~ Z(URa U)
8P (Ug) : v p > pr.

P (v—vo) [v— - ]
S — SR = /PR W dp

Since we have proved in Theorem 6.4 that the pressure p is an increasing function of the tem-
perature T, we may consider the above curves are admissible branches. If a states is located on
gf (Ur) or ng (Ur), the jump discontinuity connecting U and Uy, or Ug, respectively, is simply
called a shock wave. The line of discontinuity & = Xt is actually a shock front. Note that the
above branches complement the rarefaction curves (7.1).

IfU e gf(UL), the state Uy, is connected to U from left to right by a 1-shock wave; if
U e /S\QB(UR), U is connected to Ug from left to right by a 2-shock wave (see [7], [18]).

If p, = p_, we have a discontinuity

Uy =U—y Py =P—, 3+7é8—a »=0 (76)

which coincides with the integral curve Ro(U_). This type of discontinuity is called a contact
discontinuity.

Solution to the Riemann Problem Suppose that v > I': the Liu-Smith strong condition is
satisfied. In order to solve the Riemann problem, we define the forward 1-wave curve W¥(Uy)
and the backward 2-wave curve WE(Ug) to be
. RE(U < - RE (U <
Wf(UL) _ A;( L) (p = pL) 7 Wf(UR) _ A;( R) (p > pR) ) (77)
81 (U) (p>pr) 85 (Ur) (p>pr)

Each wave curve is a C?-curve with Lipschitz continuous second derivative and represents
all realisable rarefaction waves and shock waves. If (p,u,s) € \/AV{ (UL), then there is a 1-
rarefaction wave or shock wave connecting (pr,ur,sp) and (p,u,s). If, on the other hand,
(p,u,s) € \/AVZB (Ur), then there is a 2-rarefaction waves or shock wave connecting (p,u, s) and
(PR, uR, 5R). R R

Let WE(UL) and WE(UR) be the projection of W¥ (U ) and WE(Ug), respectively, onto the
(p, u)-plane. We find by Theorem 7.1

Lemma 7.2. If v > T, WI(UL) and WP (UR), respectively, are represented by the graphs of
strictly decreasing and increasing, respectively, functions of p defined for 0 < p < oco.

Let U, = T(pr,ur, sp) and Ug = T (pg,ur, sg) be given Riemann data. The Riemann prob-
lem is solved in the following way: If two curves W' (Uy) and W2 (Ug), have an intersection
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point (pm,um ), then the state (pm,um,s,,) € Wf(UL) and (pm, Um, s;) € \7\72B(UL) are con-
nected by a contact discontinuity (see Smoller [18] Chap. 18 for the details). In most cases (for
example: except for the isothermal gas v = 1), we may assume

20
/ /—vpdp < oo for any po > 0.
0

If this is the case, both WI'(U) and WZ(Ug) have limit points at p = 0, namely

23 DR
ug:uL+/ \/—p dp, u?zuR—/ /—p dp.
0 0

Since Wf (Ur) and W’lB (URr), respectively, are represented by the graphs of strictly decreasing
and increasing, respectively, functions of p, there is a unique intersection point if and only if
uf < ul’. Thus we obtain

Theorem 7.2. Suppose that v > T". If
PR PL
ugp — ur, < Vv dp + \/—vpdp
0 0
then there is a unique solution to the Riemann problem.

Computation of Dimensionless Quantities Finally we will verify the Liu-Smith strong
condition for our model system. We have adopt as,T as state variables so that

R
p=plaa,T), v=v(aa,T), s=s(ar,T)= MT}((){A,T).
Let us first represent v and I' in terms of derivatives with respect to as and 7.

Lemma 7.3.

s I8 nie 1o
"o qon o0 Fow
QABQA oT v dap v T
V=T pap Lo
Agas Lor UAgasr Lor
ga Ov. T Ov ga Ov. T Ov
v dap v OT v dapa v OT
Proof. We have
Os 0s ov ov Op Op
ds = —dap + =—=dT, dv=——das + —dT, dp=——daas + —dT.
dan AT BT dan AT BT P Ban AT T

Solving the first two equations for daa and dT" and substituting them into the third, we obtain
expressions of <%) and (%) in terms of derivatives with respect to asx and T. We note
S v

that, by arranging quantities, v and I' are represented in terms of dimensionless quantities as
above. O

The form of 7 is shown in Theorem 2.1 and we have by (6.3)

v = 1 = —R“AQAQ T_%eTTA = Rppasa

p M(1—ay) M1 - ap)

3
2

Sl

T 2e
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We have by direct computations

o 1 5 Ta 1 5 T
QAM—l‘FOH‘ﬁ(a‘FQ-FT)QA+(1—/3)<Q+2+T)QB,
Tan_(l—/?)(TB—TA)qB<1 b TB) Ta(1+a)

[ _ -t =) -

oT T a ' 2T T
q_Aﬁ:H_ﬁqAJr(l_ﬁ)QB Tov (-p5)Ts—Ta)gs _ 3. Ta
v Oap o ’ v 0T oT 2 T )’
wop Bt -Fe  Top _(A-HTs-Tag (5 Ta
p Dap a(l+a) ' pol’ a(l+a)T 2 T )

We first compute I' : For the sake of brevity, we set ¢ = fga + (1 — )¢ and Qpa =

w. The denominator is computed as

. an Tan

P )

o oT | _ 3  1Ip 3 BQpa(Ts — Ta)ga
a 00 z@—‘QBA(f?)—i(”“)‘ oT

v dap v OT

Taqa I | (3 , Ta 3q 5 Thc
2 s ] (222 - [ (10304 2)] o

and the numerator is

aa 9p T op
pdax poT|__(; Qva)_ |1, 1 (3 Ta 0
ga v T <+1+a fNatizaat7)| =Y
v dap v OT

Consequently, we conclude that " > 0.
Next we compute « : Note that v has the same denominator as I'. By denoting ¥ = «(1 +

a)+q, Qr =12 QATAH}_B J05T% the numerator is computed as

@ 9 T ( )
p day pdT|__5% (5 5. TN 5 Is\ , Baa(Ts —Ta)
w2 o 20 \2dTCr) (g7 ) —@allgt7 )t e+ | <0
Oap oT
Finally we verify the Liu-Smith strong condition.
Theorem 7.3.
y>1>0
Proof. Since the denominator is negative, we compute
@ % Top @ 9 Top
_ | p Qasx pOT p dap aT
o o | TOEDNe o7 T
QAE)aA or v dap v OT
3% 3 5 Ta 3 1Tp Baa(Ts — Ta)
2% " <2Q+QT> (2 * T)  Qpa (2 * T) T airar |7V
Thus the theorem follows. O
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8 Conclusions and Discussions

In this paper, we have studied a model system for macroscopic motion of an ionized gas which
is a mixture of two monatomic gas A and B; the mixture ratio is 5 : 1 — 5. This model system
is proposed by [9] and consists of three conservation laws in one space dimension together with
the first and second law of thermodynamics which are supplemented by an equation of state and
two more thermodynamic equations called Saha’s laws. We have assumed that Tg : the first
ionization temperature of the gas B is higher than T : that of the gas A and 27 > Tx. Note
that A: hydrogen and B: helium satisfy these assumptions.

The physical entropy functions are constructed and it is remarkable that they are expressed
in terms of elementary functions. Saha’s two equations bring about a compatibility condition
involving aa,ap and T. It is shown that ap is a differentiable function of aa and T whose
graph constitutes the thermodynamic state space. We propose that (T, ap) is a suitable pair of
independent thermodynamic state variables.

The system of conservation laws is shown to constitute a strictly hyperbolic system, which
implies that the initial-value problem is well-posed locally in time for sufficiently smooth ini-
tial data. Characteristic fields are computed and geometric properties are studied: unlike the
polytropic (non-ionized) case, the convexity (genuine nonlinearity) of the forward and backward
characteristic fields of the system is lost and the set where this happens is determined in a
neighbourhood of T' = oy = 0. Whole set is located in a finite region in (7', s ) plane but it
is difficult to get its full picture by purely mathematical reasoning; only pictures by numerical
computation are presented.

A detailed study of the thermodynamic Hugoniot locus is performed. The Hugoniot locus
represented by a smooth graph in the (7', ap) plane. While the thermodynamic Hugoniot locus
is monotone in (7, o) plane in a single monatomic case, for the mixed monatomic case it is shown
that: if 8 is sufficiently small, then it loses monotonicity at some base state. Thus the degree
of ionization does not always increase across the shock front, even if the temperature increases.
However the pressure is actually proved to increase as the temperature increases which ensures
that T' > T is the admissible branch.

By adopting the branch of increasing temperature (hence increasing pressure) of the Hugoniot
locus as a shock curve, the existence and uniqueness of solutions to the Riemann Problem is
studied. It is shown that the Griineisen coefficient is positive and the Liu-Smith strong condition
is satisfied, which shows that: (1) the physical entropy increases across the shock wave in the
genuinely nonlinear region, (2) the Riemann problem has a unique solution as long as the vacuum
state is not involved.
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