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Abstract

In this paper, we consider the estimation for the inverse matrix of a high-dimensional
covariance matrix under the strongly spiked eigenvalue model. One of the well-known
estimation methods is the principal orthogonal complement thresholding (POET) given
by Fan et al. [5]. We show that the POET has consistency properties only under several
severe conditions in high-dimensional settings. In order to overcome the difficulty, we
consider applying the noise-reduction (NR) method given by Yata and Aoshima [8, 9]
to the POET. We propose a new estimation of the inverse covariance matrix called the
NR-POET. We compare the performance of the NR-POET with the POET by several
simulations.

1 Introduction

One of the features of high-dimensional data is that the data dimension d is high, however,
the sample size n is low. This is the so-called “HDLSS” or “large d, small n” data. Such
data situations appear in many fields of modern science such as genetic microarrays, medical
imaging, text recognition, finance, chemometrics, and so on. For HDLSS data, the sample
covariance matrix does not have its inverse matrix. The estimation for the inverse matrix of a
covariance matrix is a crucial issue for high-dimensional data analyses, especially for pathway
analysis and graphical modeling.

Bickel and Levina [4] gave a thresholding estimator for the inverse matrix of a covari-
ance matrix when the covariance matrix is sparse and its eigenvalues are bounded. However,
such sparsity conditions are severe for actual data and often out of touch with reality. In
fact, Aoshima and Yata [1, 2, 3] and Yata and Aoshima [8, 9] showed that the first sev-
eral eigenvalues diverge as d grows and the bounded-eigenvalues condition is quite strict for
microarray data sets. Fan et al. [5] proposed a different thresholding estimator called the
principal orthogonal complement thresholding (POET) under the assumption that the first



several eigenvalues diverge rapidly at the rate of d. Unfortunately, the assumption required
in the POET cannot express the structure of actual data.

Suppose we have a d x n data matrix X = [x1,...,®,], where x;, i = 1,...,n (< d),
are independent and identically distributed (i.i.d.) as a d-dimensional distribution with mean
zero and covariance matrix . We denote the eigen-decomposition of ¥ by ¥ = HAHT,
where A = diag(A1,...,\g) with eigenvalues \y > --- > Ay > 0 and H = [hy,...,hg] is an
orthogonal matrix with eigenvectors hy, ..., hgq corresponding to the Ai,...,A\g. Let oy; be
the (4,7) element of X for 7,5 = 1,...,d. We assume that o;; € (0,00) as d — oo for all
j. For a function, f(-), “f(d) € (0,00) as d — o0” implies that liminfy , f(d) > 0 and
lim supy_, . f(d) < occ.

Let ; = HAl/sz, where z; = (21j,...,24)7 is considered as a sphered data vector
having the zero mean vector and identity covariance matrix. We assume that

(C-i) limsupy_,oo E(z) < 0o for all r, and
E(2%22%) = E(2%)E(22%) = 1 and E(2yi2siztizui) = 0 for all 7 # s,t,u.
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When ;s are Gaussian, (C-i) naturally holds.
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The sample covariance matrix is given by § = n 1 X X7, Let \; > 0 be the

eigenvalues of S. Then, we denote the eigen-decomposition of S by

d
= b

where h; is a unit eigenvector corresponding to the \;. The dual sample covariance matrix is
given by Sp = n~1 X7 X. We have the eigen-decomposition of Sp by

SD—ZAul :

where 4; is a unit eigenvector corresponding to the ;.
We assume the following spiked model for the eigenvalues of 3:

(C-ii) d1/2 —ooasd—oofori=1,...,m,and \; € (0,00) as d — oo for all i > m + 1.
Here, m is a positive and fixed integer. When m > 2, A1, ..., A, are distinct in the sense
that

ligninf()\i/)\j —1)>0 for1<i<j<m.
—00

Note that (C-ii) is one of the strongly spiked eigenvalue models given by Aoshima and Yata
[1]. See Remark 1.2. We devide ¥ into ¥y = > 1", /\jhjh;r and X = ZJ a1 Al h
that ¥ = 3y + 3s. Here, 3 is regarded as the signal and 35 is regarded as the noise.



Remark 1.1. When we consider a spiked model such as
Ai=ad¥ (i=1,....m) and N =¢ (i=m+1,...,d) (1)

with positive and fixed constants, a;s, ¢;s and «;s. Note that (C-ii) is met when a,, > 0.5.
For instance, when we analyze a microarray data set, we find several gene networks and each
network consists of genes that are highly correlated to each other. The high correlation is one
of the reasons why strongly spiked eigenvalues appear in high-dimensional data analyses.

Remark 1.2. Aoshima and Yata [1] showed that the asymptotic normality of high-dimensional
statistics cannot be established under the following model called the “strongly spiked eigen-
value (SSE) model”:

o A1
They gave a data transformation technique from the SSE model to the non-SSE model.

This paper is organized as follows: In Section 2, we consider the POET to construct an
estimator of ¥~! and show that the POET has consistency properties under several severe
conditions. In Section 3, we introduce the noise-reduction (NR) method that was given by
Yata and Aoshima [8, 9]. The NR method is a new PCA having consistency properties for
high-dimensional data. In Section 4, we consider applying the NR method to the POET for
the inverse matrix estimation. We propose a new estimation of the inverse covariance matrix,
called the NR-POET. Finally, in Section 5, we compare the performance of the NR-POET
with POET by several simulations.

2 POET and its asymptotic properties

In this section, we introduce the principal orthogonal complement thresholding (POET) given
by Fan et al. [5]. Let og;; be the (7,7) element of ¥y. Let 74, = maxi<j<q4 Z?:l |02ij|h for
0 < h < 1. Here, 74, is the sparsity measure given by Bickel and Levina [4]. If 74 is much
smaller than d for a constant h € [0,1), 39 is considered as sparse in the sense that many
elements of ¥y are very small. We assume limsupy_, 74, < oo for a constant h € [0,1).
Let Apin(M) and Apax(M) be the smallest and largest eigenvalues of any positive definite
matrix, M. Note that Anax(Z2) = O(74,) and limsupy . Amax(Z2) < co. We assume that
liminf g, )\min<22> > 0.
Let

m
w; = (wy, ..., wg)’ = <Id—2hjh;r)ml for 1=1,...,n
and

m
@ZZ(wll,-~~7wdl)T=<1d— fLﬁ?)wl for 1=1,...,n.



Let I(-) be the indicator function. A thresholding operator is defined by

T(M) = [mi{I(i = j) + I(i # j)I(Imis] = tij)}]
for any symmetric matrix M = (m;;) and t;; > 0, i # j. Fan et al. [5] considered estimating
3 by T(2s) with o = 31", ] /n and

tiy = /63, (d‘1/2 +/n1log d) for all i # §. 2)

Here, C'(> 0) is a sufficeintly large constant and éij =n 30 (Wisjs —nTE DO p ) Wigte)
Then, they gave an estimator of 3 by

i = ZS\jﬂjiL?‘f’T(ZQ). (3)

They assumed the following spiked model:
s
(C-ii’) j € (0,00) asd — oo fori=1,...,m,and \; € (0,00) as d — oo for all i > m + 1.

Note that (C-ii’) is met when a,,, = 1 in (1). Thus (C-ii’) is much stricter than (C-ii). Let
v = min{d,n}. We denote the frobenius and spectral norms by || - ||z and || - ||, that is,
IM||p = {tr(MTM)}'/? and ||M]|| = {Amax(MTM)}Y/2 for any d x d matrix, M. Then,
the following result was given by Fan et al. [5].

Theorem 2.1 ([5]). Assume (C-i) and (C-ii’). Then, under some regularity conditions, for
a sufficiently large constant C(> 0) it holds that as v — oo

1

12882~ I|lp/Vd = op(1) and [|E7 -2 = op(1).

It should be noted that (C-ii’) is quite strict for high-dimensional data.

3 NR method and its asymptotic properties

In this section, we introduce the noise-reduction (NR) method given by Yata and Aoshima
8, 9]. Let §; = )\j_l Z§:m+1 As/n for j = 1,...,m. Aoshima and Yata [1] and Yata and
Aoshima [9] gave the following result when v — oco.

Proposition 3.1 ([1, 9]). Assume (C-i) and (C-ii). It holds for j = 1,...,m, that \j/\; =
1+ 8; +Op(n~'?) and (ﬁ?hj)2 =(1+6;)"  +0p(n~?) as v — c0.

If §; — 00 as v — 00, A; and h; are strongly inconsistent in the sense that A;/\; = op(1)

T
and (h; hj)? = op(1). See Jung and Marron [6] for the concept of the strong inconsistency. In
order to overcome the curse of dimensionality, Yata and Aoshima [8, 9] proposed an eigenvalue
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estimation called the noise-reduction (NR) method, which was brought about by a geometric
representation of Sp. If one applies the NR method, the A; is estimated by

< tr(Sp) =Y, A
Y WG D DR

n—j

(GG=1,.on—1). (4)

Note that S\j >0 w.p.1for j =1,...,n—1, and the second term in (4) is an estimator of A;d;.
When applying the NR method to the PC direction vector, one obtains

hj = (nk)) " * X4,

for j =1,...,n — 1. Then, we have the following result.

Proposition 3.2 ([1, 9]). Assume (C-i) and (C-ii). It holds for j = 1,....k, that X\;/\; =
14+ Op(n=/?) and (ibrhj)Q =1+0p(n7') asv — co.

J

Thus, S\j and iLj have the consistency properties even when ¢; — oo and (C-ii) is met.

Remark 3.1. Wang and Fan [7] proposed the following estimator of 3 by using the NR
method:

5= Nhshi +T(2s). (5)

They called this estimation method the Shrinkage-POET (S-POET).

For estimating =7 h;, Aoshima and Yata [1] showed that mfﬂj and even :clezj involve a
huge bias. In order to overcome the inconvenience, Aoshima and Yata [1] gave the modofied
NR method. According to [1], we modify a:lThj as mlThjl by

nj\j>1/2 B (n — 1)5\;/2,

- :( n ) X’&'jl nl/QXﬂjl
t n—1/(

where
- A ~ ~ ~ \T
U = (ujla'“aujl—laoa Ujl+17~-aujn> .

Note that 37, @j;/n = {(n — 1)/n}a,. We give the following R-code to calculate =] hj:



xTh <- function(X, m, MeanZero=F){
d <- dim(X) [1]
n <- dim(X) [2]
if (MeanZero){
r <- min(n-1, d4)
Sd <- t(X) %»*h X / n
eig <- eigen(Sd)
dualval <- eig$values([1:m]
dualvec <- eig$vectors
ans <- matrix(0, n, m)
c <= sqrt(n) / (n-1)
for (i in 1:m){
nrmval <- dualval[i]l - (sum(diag(Sd)) - sum(dualvall[1:il1)) / (n-i)
u_hat <- dualvec[, il
for (j in 1:n){
u_hat[j] <- 0
nrmvec_self <- ¢ * X %*), u_hat / sqrt(nrmval)
ans[j, i] <- as.numeric(t(nrmvec_self) %x*% X[, j1)
u_hat <- dualvec[, i]
}
}
} else {
r <- min(n-2, d4d)
X <- sweep(X, 1, apply(X, 1, mean), ’-’)
Sd <= t(X) %*% X / (n-1)
eig <- eigen(Sd)
dualval <- eig$values([1:m]
dualvec <- eig$vectors
ans <- matrix(0, n, m)
¢ <- sqrt(n-1) / (n-2)
for (i in 1:m){
nrmval <- dualval[i] - (sum(diag(Sd)) - sum(dualval[1:i])) / (n-i
-1)
u_hat <- dualvec[, i]
for (j in 1:n){
u_hat[j] <- 0
nrmvec_self <- ¢ * X Y*% u_hat / sqrt(nrmval)
ans[j, i] <- as.numeric(t(nrmvec_self) %x*% X[, j1)
u_hat <- dualvec[, il

3
by

return(ans)



4 NR-POET

In this section, we propose a new estimation of ¥ =1 by applying the NR method to the POET.
By using the modified NR method in Section 3, we estimate w; by

m
~ - ~ ~ ~T
W = (W, ... Wa)’ = (Id - E hjhjl)wz~
We consider estimating 3o by T(ig), where 3y = >y ﬂ}l’ale/n and

tij = C\/éij <d—1/2 ++/n~1tlog d) for all ¢ #£ j (6)

with 0;; = n= ' 20 (Wisijs — n~ L 31 wibjr)?. We denote the eigen-decomposition of
T(33) by

d
) = 3 Akl
j=1

where ),\js are eigenvalues of T(iz) having 5\1 > e > 5\d > 0 and ij is a unit eigenvector
corresponding to the )\] Note that

Z)\ 'hihT + Z A hih! .
j=m+1

Finally, by applying the NR method to the signal part and the noise part, we propose to
estimate X! by

5= iﬁj—lﬁjﬁf+ (Id Em:ﬁ ) (Z 5 Vhk, > (Id - gﬁjﬁf). (7)

Note that the signal and noise parts are orthogonal. We call this new estimation method the
“NR-POET”. In the next section, we compare the performance of the NR-POET with the
POET by several simulations.

5 Simulation studies

In this section, we compare the performance of the NR-POET with the POET and S-POET
by using computer simulations. We considered the following covariance matrix:

Laqyon o o
Y = (0] I‘d(2> 02 (0] ,
o (0] Qd(g) (p)



where dyy + d) + dg) = d, Ty = o(l; + 1,1]) with 1, = (1,...,1)7 and Q(p) =
By(0=11""B, with B, = diag[{0.5 + 1/(t + 1)}/2,... {0.5 + t/(t + 1)}!/2]. Note that
Amax(Lr0) = o(t+1) and its other eigenvalues are 0. Also, note that [Amax{$2(p)}]?/tr[{Q:(p)}?] =
o(1) as t — oo for |p| < 1. We set (d(1),d(2)) = ([d/3],[d/3]), where [x] denotes the smallest

integer > z. We set (0(1),0(2)) = (1,d'/3). Note that (A, o) =~ (d/3,d?/3/3), so that (C-ii)
is satisfied while (C-ii’) is not. We set d = 200(200)1400, n = [d*/®] and p = 0.3.
We fixed C' =5 in (2) and (6). We considered two cases:

(S-i) x;s are generated from Ng(0, X);

(S-ii) @;s are generated from z,; = (yr; —2)/2 (r = 1,...,d) in which y,;s are i.i.d as the
chi-squared distribution with 2 degrees of freedom.

For each case, we estimated ™! by using the POET in (3), S-POET in (5) and NR-POET
in (7). We calculated the average loss and its standard deviation by 2000 (= R, say) times

replications for each estimator. Under a fixed scenario, let flr_ ! be the r-th estimation of
L Let ||[M|]y = |[|EY2MXY?||p/Vd. In the above simulations, E||f]_1 — 27 Y|y was
estimated by R~! Zil ||flr_1 — X7 !|g. We denote the standard deviation of ||fl_1 - s
by SD||§]_1 — 37 !|s. In the above simulations, SD||§]_1

standard deviation of ||§3;1 —% Y|y, 7 =1,..., R. We displayed the results for (S-i) in Figure
1 and for (S-ii) in Figure 2. We observed that the NR-POET gave better performances than
the POET and S-POET both for (S-i) and (S-ii).

— 37 !5 was estimated by the
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Figure 1: For Case (S-i), the left panel displays the average loss and the right panel displays
its standard deviation.
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Figure 2: For Case (S-ii), the left panel displays the average loss and the right panel displays
its standard deviation.
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