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Abstract

This paper examines a discrete-time optimal trade execution problem with generalized price
impacts. We extend a model recently discussed in Ohnishi and Shimoshimizu (2019), which
consider price impacts of (aggregate) random trade execution orders posed by noise-traders as
well as a large trader. Although Ohnishi and Shimoshimizu (2019) assume that trading volumes
submitted by noise—traders are serially independent, this paper allows a Markovian dependence.

Our new problem is formulated as a Markov decision process with state variables including
the last noise—traders’ orders. Over a finite horizon, the large trader with Constant Absolute Risk
Aversion (CARA) von Neumann-Morgenstern (vIN-M) utility function is assumed to maximize
the expected utility from the final wealth. By applying the backward induction method of
dynamic programming, we characterize the optimal value function and optimal trade execution
strategy, and conclude that the trade execution strategy is a time—dependent affine function of
three state variables: the remained trade execution volume of the large trader, (so—called) the
residual effects of past price impacts caused by both of the large trader and other noise-traders,
and the new state variable, i.e., the last trade execution orders submitted by noise-traders. This
model enables us to investigate how the execution strategies and trade performances of a large
trader are affected by the orders posed by noise—traders.

1 Introduction

The researches concerned with “optimal execution problem” play a fundamental role in analyzing
a security market as the so—called “high—frequency trading (HFT)” or algorithmic trading have
emerged in these decades. In a real marketplace, there are some kind of institutional traders called
“large traders” who have a great influence on the market or the market price of traded assets (i.e.
price impacts) through their own (large) submission. If large traders execute orders by splitting
their large orders into small pieces, they can mitigate the price impact through their trades. On the
other hand, executing slowly indicates that one is more likely to be exposed to the price fluctuation
risk. From these facts, large traders have to recognize the price impacts as “liquidity risk” and
construct an execution strategy considering both liquidity risk and volatility risk.

In this paper, we theoretically investigate an execution problem associated with the interaction
among large traders and non—large traders (noise—traders) in a discrete—time setting. The pioneering
work [2] address the optimization problem of minimizing the expected execution cost in a discrete—
time framework via a dynamic programming approach. Notwithstanding a valuable insight into the
execution problem, their model fails to take into account any attitudes toward risk. Subsequently,
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[1] derive an optimal execution strategy by considering both the execution cost and volatility risk,
which entails the analysis with a mean—variance approach. As for the application of stochastic
dynamic programming for optimal execution problems, [16] and [17] construct models with the
residual effect of the transient price impact which dissipates over the trading time window. These
works solve an optimization problem of maximizing an expected utility payoff from the final wealth
at the maturity via a method of dynamic programming and derive an optimal execution strategy
in a deterministic and nonrandomized class.

A multitude of researches focusing on execution problems formulate the market model without
price impacts caused by the submission of noise—traders on the execution price. As mentioned in
[23], however, the small trades have relatively by far larger impacts on the price than that of large
trades from a statistical point of view. Thus, following this result, one should take into account a
price impact caused by noise-traders when constructing a price impact model. [4] incorporates the
price impact caused by other traders into the construction of the midprice process by describing the
market order—flow through a general Markov process and derive a closed—form strategy for a large
trader. They also show that the optimal execution strategies are different from the one obtained in
[1] when noise—traders cause a price impact and coincide with the one obtained in [1] when noise—
traders are assumed to have no influence on the midprice. This analysis is based on assuming the
temporary and permanent price impacts and not the transient price impact. Our model considers
the transient price impact through the “residual effect” of the past execution (caused by both a large
trader and noise—traders) on a risky asset price. This setting enables us to analyze how residual
effects affect the execution strategy of a large trader.

The paper [18], [21], and [22] theoretically investigate how the existence of other traders affects
the execution strategy and trade performance of a large trader through the following two models:
a single—large-trader Markov decision model, and a two—large—trader Markov game model. These
models then yield the optimal execution strategy and an equilibrium execution strategy at a Markov
perfect equilibrium. These kinds of investigation reveal that both strategies are not necessarily
deterministic, although a multitude of researches show that optimal and equilibrium execution
strategies often become deterministic. Incorporating the price impact caused by noise—traders into
the price impact modeling is the novelty of the research in [22]. The formulation of an execution
problem as a game model is also a significant factor in analyzing how the existence of other large
traders affects the execution strategy of a large trader.

In this paper we consider a maximization problem concerned with the expected utility maxi-
mization of a large trader in a discrete—time setting. Constructing a Bellman equation (or dynamic
programming equation) yields an optimal execution strategy in the form of a discrete-time trading
strategy. Our finding is that the optimal execution strategy strongly depends on the aggregate vol-
ume submitted by noise-traders: that is, the optimal execution strategy becomes an affine function
of trading volume posed by noise-traders as well as remaining volume (which the large trader has to
execute in the remainder of the time horizon) and the residual effect of the past execution volumes,
and not on the wealth process or the price dynamics. We also discover that this execution strategy
is not always deterministic as shown in [18], [21], and [22]. Our focus is placed on the formulation of
the noise—traders’ submission as a sequence of random variables which has a Markov dependency.

This paper proceeds as follows. In Section 2, we construct a market model that characterizes the
generalized price impact model by defining the price impact caused by the aggregate volume posed
by noise-traders. Then, we solve the maximization problem of the expected utility of a risk—averse
large trader with Constant Absolute Risk Aversion (CARA) von Neumann-Morgenstern (vN-M)
utility (or negative exponential utility) from the wealth at the maturity. This leads to an optimal
execution strategy. Finally, Section 3 concludes.

2 Price Impact Model with Non—Large Traders Effects

In the discrete time framework ¢ € {1,..., 7,7 + 1}(T € Zy = {1,2,...}), we assume that
one large trader in a financial market must purchase Q(€ R) volume of one risky asset by the



time 7'+ 1. We also suppose that he/she has a Constant Absolute Risk Aversion (CARA) von
Neumann-Morgenstern (vN-M) utility ( or negative exponential ) utility function with the absolute
risk aversion rate v > 0.

2.1 Market Model

Firstly, ¢:(€¢ R) represents large amount of orders submitted by the large trader at time ¢t €
{1,...,T}. Then, we denote by @, the remained execution volume, that is, the number of shares
remained to purchase by the large trader at time t € {1,..., 7,7 + 1}.1 This assumption yields
@1 =9 and

Q1 =Q;—q, t=1,...,T. (2.1)

We assume that the market price (or quoted price) of the risky asset at time t € {1,...,T,T+1}
is set as P;. Since the large trader has a great influence on the risky asset’s price through his/her large
amount of orders when executing the transaction, the execution price at time ¢t € {1,...,7,T + 1}
becomes not P; but ﬁt with the additive execution cost. In the rest of this paper, we assume that
submitting one unit of (large) order at time ¢t € {1,...,T} causes the instantaneous price impact
denoted as \(€ R). We also assume that the aggregate trading volume posed by noise—traders
also has some impact on the execution price. k; represents the price impact per unit at time
t € {1,...,T} caused by noise-traders. The aggregate trading volume submitted by noise-traders
at time ¢t € {1,...,T} is assumed to be a sequence of random variables vy which has a Markovian
dependence and follows a normal distribution with the following mean and variance:

vo=0; vi~N(al,00); vl ~ N (afyy — bYpqvr, (07)?), t=1,...,T —1. (2.2)

Note that ay, {,b{,,, and oy are deterministic functions of time ¢. Then, the dynamics of v; can be
written with an i.i.d. sequence of normally distributed random variables (w)se(1,... 7} as follows:

vo=0; v =al +ojw; vigr = (agy — b qve) + 0w, t=1,...,T =1, (2.3)

where w; ~ N(0,1) for all t € {1,...,T}. By definition, if af = a” and b; = b* (that is, af
and byy; are time—independent) for all t € {1,...,T} and —1 < b” < 0, then v; follows an AR (1)
process. This case corresponds to a (time-)discretized version of an ergodic Ornstein—Uhlenbeck
(OU) process. [8] considers an optimal execution problem in a continuous time setting under the
assumption that the aggregate trading volume posed by noise-traders takes the form of an OU
process. It must be noted that a lot of empirical researches highlight the importance of taking the
autocorrelattion of order flow into account (see [12], [13], [6], [7]). Moreover, if b} = b” = —1 for
all t € {1,...,T}, then v; follows a unit root process. In the case where b} = b” < —1, v; follows
an a (time—)discretized version of an non—ergodic OU process. This case reflects the situation that
the noise-traders’ buying (selling) at time ¢t € {1,...,T} incurrs further “tendency” of buying
(selling) by noise-traders at time ¢t + 1. We can also confirm that if b < 0 for all t € {1,...,T},
larger v, yields stochastically larger vy41, while if b7 > 0, larger v, yields stochastically smaller vy 1.
Furthermore, in the case where by = 0 for all ¢ € {1,..., T}, the model is reduced to [18] and [22].
In the sequel of this paper, the buy—trade and sell-trade of a large trader are supposed to induce
the same (instantaneous) price impact. Assuming this would be inconsistent with the situation
observed in a real market. However, we can justify this assumption from the statistical analysis of
market data in [4] and [5].2 The argument below is based on the model setting discussed in [18],

!The positive Q, for t € {1,...,T,T + 1} stand for the acquisition and negative Q, the liquidation of the risky
asset. This setting allows us to establish a similar setup for a selling problem of a large trader.

2In their works, they estimate the permanent and temporary price impact by conducting a linear regression of price
changes on net order—flow using trading data obtained from Nasdaq. According to this estimation and the relevant
statistics show that the linear assumption of the price impact is compatible with the real stock market and that the
price impact caused by both buy and sell trades are thought of as same from the viewpoint of statistical analysis.



[21], and [22]. We define the execution price in the form of a linear price impact model as follows:
E:Pt+()\tqt+h'tvt>, tzl,...,T. (24)

We next define the residual price impact of past price at time ¢t € {1,...,T,T + 1} represented
by R: by means of the following exponential decay kernel function G(t) of time t € {1,...,T,T+1}:

Gt)=e", t=1,...,T,T +1. (2.5)

Using a deterministic price reversion rate «; (€ [0,1]) and deterministic resilience speed p (€
[0,00) ), the dynamics of the residual effect of past price impact Ry is given as follows:

Riy = Z (Mek + Fvr) age PLEFD=R)

k=1
t—1
=e’ Z (e + Fror) axe™ 9 4 (Ngy + ko) age™
k=1
= [Rt + (Atqt + Ktvt) Oét] e_p, t=1,...,T. (26)

Eq. (2.6) shows that R; has a Markov property in this setting, i.e., R¢1+1 depends only on R; and
the transient price impact (\iq; + kivy)ae™. The Markov property arises thanks to the assumption
of the exponantial decay kernel. Here we also define by the independent random variables ¢; at
time t € {1,...,T} the effect of the public news/information about the economic situation between
t and t + 1, and assume that &; follows a normal distribution with mean u§ and variance (0%)?, i.e.,

et~ N (15, (05)Y), t=1,...,T. (2.7)

We suppose that the two stochastic processes, v; and &; for t € {1,...,T} are mutually inde-
pendent for convenience.

As for the “fundamental price” of the risky asset at time t € {1,...,T}, denoted by Ptf , we
consider the formulation carefully . Since the residual effect of the past execution dissipates over the
course of the trading horizon, we define P, — R; as the fundamental price of the risky asset. By the
definition of £; and by assuming that permanent price impact is represented by (Axqr + Kkrvr) (1—ay),
we can set the fundamental price Ptf := P, — R; with a permanent price impact as follows:

Ptil =By — R
=P — Ry + (Meqr + kev) (1 — o) + & (2.8)
:Ptf+(/\tqt'i'ﬁtvt)(l_at)'i'gta t=1,...,T.

This relation indicates that the permanent price impact caused by large traders and noise—traders
and the public news or information about an economic situation are assumed to affect the funda-
mental price. This assumption also reveals that the permanent price impact may give a non—zero
trend to the fundamental price, even if the mean of ; is zero for all ¢t € {1,...,T}. According to
Eq. (2.4), (2.6), and (2.8), the dynamics of market price or the relation between P, and P; are
described as

Pry1 = P+ (Rep1 — Re) + (Meqr + ko) (1 — on) + &
:Pt— (1 —e_p)RtJr()\tqt+/$tvt){06te_p+(1—Oét)}JrEt, t= 1,...,T. (29)

Remark 2.1. In this context, (Mg + krve) (1 — o), (Aeq + K)o, and (Agqy + kvy) e ™P represent
the permanent impact, temporary impact, and transient impact, respectively. Moreover, if p — oo,



the residual effect of past price impact becomes zero for all ¢t € {1,...,T} since Ry = 0 and from
Eq. (2.6)

lim Rt+1 = lim [Rt + ()\tqt + /{tUt)O(t]e_p = 0, t= 1, NN ,T, (210)
pP—r00 pP—+00

and therefore,

Py =P — (1 —e ") + (Mae + meve) {owe™ + (1 — oy)} + &4,
:Pt+(Atqt+KtUt)(l_Oét)+5t, tzl?“'7T7 (211)

that is, we have a permanent impact model. Also, if ; = 1, the model is reduced to a transient
impact model. Also, if kK, = 0 or o,, = 0, the model is reduced to [17].

From the definition of the execution price, the wealth process w; satisfies

Wt+1 :Wt—ﬁtqt:Wt—{Pt+()\tqt+/<ctvt)}qt, tzl,...,T. (212)

2.2 Formulation as a Markov Decision Process

In this subsection, we formulate the large trader’s problem as a discrete-time Markov decision
process. In a discrete-time window ¢t € {1,...,T,T + 1}, we define the state of the decision process
at time t € {1,...,T,T + 1} as 5—tuple and denote it as

st = (Wi, PQu R, vi—1) e RXRxRxRXR=:8. (2.13)
For t € {1,...,T}, an allowable action chosen at state s; is an execution volume ¢ € R =: A so
that the set A of admissible actions is independent of the current state s.
When an action ¢ is chosen in a state s; at time ¢t € {1,...,T}, a transition to a next state
St11 = (Wet1, Prs1, Qryr, Repr,vr) | €S (2.14)

occurs according to the law of motion which we have precisely described in the previous subsection.
We symbolically describe the transition by a (Borel measurable) system dynamics function h; (:
SxAx(RxR)— 9):

St41 = he(st, qp, (wise6)), t=1,...,T. (2.15)

A utility payoff (or reward) arises only in a terminal state sp4q at the end of horizon T+ 1 as

—exp{—yW if Q =0;
gT+1(ST+1) ::{ P{ Y T+1} QT+1 (2.16)

—00 if @T—O—l 7é 07
where v > 0 represents the risk aversion. The term —oo means a hard constraint enforcing the large
trader to execute all of the remaining volume Q7 at the maturity 7', that is, g7 = Q.

If we define a (history—independent) one—stage decision rule f; at time ¢ € {1,...,T} by a Borel
measurable map from a state s; € S = R® to an action

a = fi(st) € A=R, (2.17)

then a Markov execution strategy m is defined as a sequence of one—stage decision rules

7= (fyeees foreeos JT)- (2.18)
We denote the set of all Markov execution strategies as IIy;. Further, for ¢t € {1,...,T}, we define
the sub—execution strategy after time ¢ of a Markov execution strategy m = (f1,..., ft,..., fr) € lm
as m := (ft,..., fr), and the entire set of m; as Ily,.



By definition (2.16), the value function under an execution strategy m becomes an expected
utility payoff arising from the terminal wealth Wry; of the large trader with the absolute risk
aversion -y:

Vi [s1] = ET [9T+1(8T+1)‘81} =ET [ —exp{ —Wri1} - LG =0y T (—00) - 1@”1#0}‘81}, (2.19)

where 14 is the indicator function of the event A and, for ¢ € {1,...,T}, ET is a conditional
expectation given a condition at time ¢ under 7.
Then, for t € {1,...,T,T + 1} and s; € S, we further let

V" [st] = Ef [9T+1(3T+1)‘3t} =Ef [ —exp{ —"Wru} - lg, g+ (—00)- 1{@T+1¢0}‘3t} (2.20)

be the expected utility payoff at time ¢ under the strategy 7. It should be noted that the expected
utility payoff V,;* [st] depends on the Markov execution policy © = (fi,..., ft, ..., fr) only through
the sub—execution policy 7 := (ft,. .., fr) after time ¢.

Now, we define the optimal value function as follows:

Vi [s¢] :ﬂselhp ViT[se], se€S, t=1,....T,T+1. (2.21)
M

From the principle of optimality, the optimality equation (Bellman equation, or dynamic pro-
gramming equation) becomes

W[St] = SU%E[W+1 [ht (st,qt,(wt,st))Hst}, St € S, t= 1,...,T,T—|—1. (2.22)
qt<

2.3 Dynamics of the Optimal Execution

The optimal dynamic execution strategy 7 is acquired by solving the above equation (2.22) back-
wardly in time ¢ from maturity 7'

Theorem 2.1 (Optimal Value Function and Optimal Execution Strategy).

1. The optimal execution volume at time t € {1,...,7,T + 1}, denoted as ¢}, becomes an affine
function of the aggregate volume submitted by noise—traders at time ¢ — 1 as well as the
remaining execution volume @), and the cumulative residual effect Ry:

a = fi (Wt, Ptv@thtvUt—l) =ar+bQ,+ R +dw—y, t=1,...,T. (2.23)
2. The optimal value function V; [st] at time ¢t € {1,...,T,T + 1} is represented as follows:
— — —92 — —
Ve [Wi, Pr, Qg R vy ] = — GXP{ - [Wt — PQ, + GiQ; + HiQ, + Q. Ry + Ji R} + Ly Ry

+ MyQuui—1 + NiRywy—1 + Xyviq + Yivg1 + Zt} }7 (2.24)

where ag, by, ¢ty dy; Gey Hyy Ity Jiy Ley My, Ny, X4, Ye, Zy for t € {1,...,T, T+ 1} are deterministic func-
tions of time ¢ which are dependent on the problem parameters, and can be computed backwardly
in time ¢t from maturity 7.

See the proof of this theorem in Appendix A.

From the above theorem, we find that the optimal execution volume ¢; for ¢t € {1,...,T} depend
on the state s; = (W3, Py, Q,, Ry, vs_1) " of the decision process through the total volume submitted
by noise-traders at the previous time v; 1 in addition to the remaining execution volume @, and
the cumulative residual effect R;, and not through the wealth W; or market price P;. Not only does
our analysis show that the optimal execution strategy becomes a stochastic one but also it reveals
that the orders posed by noise—traders both directly and indirectly affect the execution strategy of
the large trader. This is our contribution to the field of the optimal execution problem. Thus, we
have the following facts.



Corollary 2.1. If the trading volumes submitted by noise-traders v; for ¢t € {1,...,T}, are de-
terministic, the optimal execution volumes ¢; at time ¢ € {1,...,7} also become deterministic
functions of time, which means that the optimal execution strategy is a one in a class of the static
(and non—randomized) execution strategy.

A great number of researches focusing on the execution problem of a single large trader yields
an optimal execution strategy in a deterministic class, although these researches do not yield an
optimal execution strategy which reflects the (direct) effect caused by the noise-traders’ trading
volume.

2.4 In the Case with Target Close Order

In this subsection, we consider a model with closing price. The time framework ¢ € {1,...,7,T+1}
is same in the model mentioned above. However, we add an assumption that a large trader can
execute his/her remaining execution volume at time 7'+ 1, i.e., Qp 11, with closing price Pryi. We
further assume that the trading at time 7'+ 1 impose the large trader to pay the additive cost x741
per unit of the remaining volume.

According to the above settings, the value function at the maturity becomes

Vryi[sry1] = —exp { - ’V[WT+1 = (Pry1+ XT+1@T+1>@T+1} } (2.25)
Then, the following theorem holds.

Theorem 2.2 (Optimal Value Function and Optimal Execution Strategy in the Case with Target
Close Order).

1. The optimal execution volume at time ¢ € {1,...,T,T + 1}, denoted as ¢}, becomes an affine
function of the aggregate volume submitted by noise—traders at time ¢ — 1 as well as the
remaining execution volume @, and the cumulative residual effect Ry:

q: = ft (thpt;@taRtavt—l) :a:er;@tJrCther;Ut_l, t= 1,...,T. (226)
2. The optimal value function V; [st] at time t € {1,...,T,T + 1} takes the form as follows:

a) a) *_2 *x * * *
Vi [We, Pr, Qy, Re,vi—1] = — eXP{ - ’Y[Wt - PQ,+G;Q, + HQ, + I; QR + J; R} + L} Ry

o+ MFQ,v1 + N Ryveoy + Xjv2 | + Y1 + Z;‘} } (2.27)

where af,bf,cf,df; Gf, Hf L JF L, M NS XY, ZF for t € {1,...,T,T + 1} are determin-
istic functions of time ¢ which are dependent on the problem parameters, and can be computed
backwardly in time ¢ from maturity 7.

We omit the proof of this theorem since it is very similar to that of Theorem 2.1.

3 Conclusion

We constructed, in a (finite) discrete—time framework, a model focusing on a single large trader.
The large trader maximizes the expected Constant Absolute Risk Aversion (CARA) von Neumann-
Morgenstern (vN-M) utility which arises from his/her wealth at the end of the trading epoch in
a market with noise—traders. The most important result which emerged from this research is as
follows: the aggregate execution volume of noise—traders has both direct and indirect impacts on
the execution strategy of the large trader.

In the above models, we have assumed that that the price reversion rate and the resilience
speed are deterministic. This assumption makes the fundamental price of the risky asset observable



for large traders before the trading time. The fundamental value of a risky asset is, however,
unobservable and uncertain in a real market. Therefore, we can evolve the model built in this paper
as an incomplete state information model, which leads to an analysis in a more realistic situation
of the marketplace. Developing an incomplete state information model of single— or multiple-large
traders will contribute to some developments of a study involved in a trading market.

Adding to the possibility of extending our research to an incomplete state information model,
there would be room for formulating an execution problem as a stochastic game of multiple large
traders. In our current research, we assume that there is a single large trader in a security market,
although many large traders participate in a real market. The assumption may be relaxed by
assuming that multiple large traders influence the execution price with each other. This makes
us capable of formulating the problem as a stochastic game played by multiple large traders. The
formulation is, however, intractable in terms of obtaining an analytical solution. Thus, there might
be room for searching for a more tractable model of an execution problem concerned with multiple
large traders which yields a semi—analytical or, if possible, an analytical solution.
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Appendix
A Proof of Theorem 2.1

We derive the optimal execution volume ¢; at time t € {1,...,T} by backward induction method
of dynamic programming from the maturity 7. From the assumption that the large trader must
unwind all the remainder of his/her position at time t = T,

Qry1=Qr—qr =0, (A.1)

must hold, which yields @T = gp. Then, for t = T, with the relation of the moment—generating
function of vy,

_ — 1 —2
]E[GXP {VHTQTUT}} = exp { V61 Qr(av; — bupvr 1) + 572H%QT03T ; (A.2)



Eq. (2.22), or the Bellman equation at time ¢ = T, becomes

Vrlsr] = SU%ER/T—H (W1, Pro1, Qry, Rrya, o) ‘WT,PT,@%RT,UT—J
qr € -
= sup E| —exp {—yWri1} ‘WT,PT,@T, RTaUT—l}
grerR -
= SUII)RE — exp {—y[Wr — [Pr + (A\rqr + srvr1)] g7 }‘WT, Pr,Qr, Rr, UT}
qar € -
= ]E[ —exp {—y[Wr — [Pr + (MQr + krvr)] Q7] }‘WT, Pr,Qr, Rr, UT—l}
= —exp { - [WT — PrQr + GrQy + HrQr + MT@TUT—l} }, (A.3)
where
1
Gp = —Ap— 57&%(0%)2(< 0); Hp = —KTG%; My .= IﬁZszf.
Fort =T — 1, we have
Vr—1 [ST—1]
= sup E|Vr [ST] ’5T—1}
gr-1€R -
= sup E|—exp{—~ [WT — PrQr + GT@2T + HrQp + MT@T”T} }‘ST—I}
gr-1€R -

= sup E - eXP{ - [WT—l —{Pr_1 + (Mr—1qr—1 + Fr—1vr-1) far—
gr—1€R
)

—{Pr_1— (1= e ?)Rp—1 + (A\r—1qr—1 + kr—1vr—1) {or—1e P+ (1 —e )} +er—1} (Qr_1 — qr-1)
+Gr (Qr_ 1 — qT—l) + My (Qr 1 — qr-1) UT—l} }‘ST—l}

= SUPR— exp { - 7[— Ar_1q5_1 + (Br-1Qr_1 + Cr—1Rr—1 + Dr_1vr—2 + Fr_1) qr—1
qr-1€

— 1 - v 1 —2
#Wrot = ProsQroa + {6 = (et P (b0 - Gato )} 0y

2
+ (Hr — o hpoaay g +va e i My (% 1)? = 5 1) Qpoy + (1 — e )@ R4
P ! 1 )
+ rr10” T Qp_yvr—o + Mrby_vr_g — <MT - §7MCI2"UT—1> } }7 (A.4)

with the following relation:

oI = ar e 4+ (1 — ar_y);

Ap =1 =a" A1 — Gr + %’7(1 — a2 R7 4 (0F) + %’Y(U’fr—OQ;
Broyi=—a" "\ —2Gr — 0" (1 = " T RT (08)% + (05 1)%;
Cr—1:=—(1—e™");

Dr_y:=(1—a" Yk b4y

Proy=—Hp—(1—a" Ner_jah_y +v(1 — o' kg1 Mp(oh_1)* + pey_, -

Finding the optimal execution volume ¢}._; which attains the supremum of Eq. (A.4) is equivalent
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to finding the one which yields the maximum of the following function Kp_1(gr—1) defined as
Kr_1(gr-1) == —Ar_1¢3_1 + (Br-1Qp_y + Cr—1Rr_1 + Dr_1vr_1 + Pr_1) qr—1

_ 1 _ 1 —2
+Wr1— PraQpr_q + {GT - —’Y(QT Y27y (oh 1) — 5“/(0%1)2} Qr_1

2
+ (Hr — o™ 'hroaah v epaMp(ob )2 = 55 1) Qroy + (1— e )Qp_ Ry
—1v a) v 1 v
+rraal W Qr_yorg — Mpby_jur o + <MT - §’YM:%UT_1) ; (A.5)

since both Eq. (A.4) and Eq. (A.5) are concave functions with respect to gr—_1. Thus, by completing
the square of K7_1, we obtain the optimal execution volume ¢7_; as

. _ Br_1Qr_1 + Cr—1Rr_1 + Dr_yvr_1 + Fr_
qr—1 247

(=tar—14+br1Qr_y +cr1rr—1 +dr_1vr_1) .

(A.6)

Thus, the optimal value function at time T'— 1 becomes a functional form as follows:

Vir_1[s7-1]
J— _2 J— J—
= —exp { —y[Wro1 = ProaQp 1+ Gr—1Qp_y + Hr1Qp  + Ir1Qp Ry + Jr—1R7_ + Ly Ry
+ M7 1Qp_yvr—1 + Nr_1Rr_1vp_1 + Xr_1vi_y + Yr_qop_1 + Z7_1] }7 (A7)
where
1 _ . 1 B}
Gr-1:=Gr — 5“/(CVT D271 (0f 1) — 57(05“—1)2 + 1A
_ Y B , Br_1Fr_
Hp_y:=Hp — OZT 1"fT—laT_1 + ’YOZT 1l‘iT—lij(UT_ﬂ2 - N%_1 + w;
2A7 1
_ Br 1014 Ci 4 Cr_1Fr_y
It 1 =(1—-¢e" — Jp_q:= i Lp = ———;
r-1:=(1—-e")+ SAq_,  TUT g, T YT
_ Br_1Dr-1 Cr—1D7p—1 D7,
Mr_y = k1o’ Wy + ————; Np_ji=—; Xp_j:= ;
T—1 = KT-1Q 71+ oA, T—1 oA, T—1 1A,
Dr_1Fry 1 -5 F?_,
Vo1 = —Mypbl_ + =212 e Mp— MY, 4 L= A8
T-1 b1 + S AT, T-1 T 357 TUT—1+4AT_1 (A.8)
For t € {T —2,...,1}, we can assume from the above results that, at time ¢ + 1, the optimal

value function has the following functional form:

J— _2 J— J—
Vig1[st41] = — eXP{ - ’Y[Wt+1 — Pry1Qiy + G Qi + Hi1 Qg + 11 Qi Resr + JeaRY + Lija R

+ Mt+1@t+1vt + Nepir Rt + 1oy + Xt+1vt2_1 + Yo + Zt+1} } (Ag)

Then, we can obtain the following calculation by substituting the dynamics of wy, pt, Q;, r¢ into the
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equation above:

Vi[se] = SE%E[— GXP{ - [Wt+1 — Pr1Qppn
t

_2 J— J— J—
+Gi1Qry + Hi1Qpyy + L1 Qpyy Ry + Jia RE Gy + Ly Ry + Zt+1} }‘Wn Py, Qy, Ry, 'Ut—l}

= sup — exp { - 7[ — Mg} + (BiQ, + CyRy + Dyvy—1 + Fy_1)qs + Wi — P.Q,

qt€R
+ [Gt+1 — 1 7772(UU)2 o lﬁ/(0.5>2} @2 + [Ht L+ ;ntav
2{1 + 227G (op)2y NI T RO [ T 2902
1 = 1 _
-~ v\2 5} [1_ —-p —PT _ 0 ’U2:|
1+27G(00)2 ) tde(07)” — i |Qr + |(1—e™P) + e Phy TG ™ (00)?|Q, Ry
1 1
+ |:672PJ _ 62 (% 2:| R2 + |:6pr + 9 v
ST T g ey ) S T El
S N “ﬂR . WO — ———— 00" Ryvr
1+ 27G(00)2 ) 1pe(oy)” | Ry T 23G(o0 2 F Qrvi—1 TT G op)2 ot fevet
— 7 o bv 2,2 — |: b'U vbvi| B
+ 1+ 27@5(0’%})2{2&( t) Vi1 1+27Ct(0-;§))2¢t t + 1+2’7Ct(0’€)2€tat | Vt—1
[ - USSR
t+1 1 —|—2f)/<t(0—%1)2¢t t 2{1 +27Ct(0.%)>2}7¢t( t) 1 +2f}/€t(0_€>2ct(at> Tt
(A.10)
where
O(t = ()éte_p + (1 - Oét); Ct = K,tz()ége_QpJH_l + Kt(lte_pNt+1 + Xt+1;
0y = (Oét — D)kt — keage Py + 2/\mta?e*2pjt+1 — M1 + Moe PNiyq;
M= =k 4 Kpage PIpy + Migr;  0p o= 2miaqe P + € PNip1s ¢ = Kpae "Ly + Vi3
1 1
oy 1= ——log , (A.11)
Y 1+ 2R (o7)?
and
1 1
Api=(1-a )\ -G Aove PIiyr — Afaje ], 57 (af)? + (o)
t ( a ) t t+1 + Q€ t+1 0 € t+1 + 2{1 ¥ 27{2&(0_?)2}7 t(gt> + 27(0}) ’

570 (0f)? + (o)

1
By = —M\a! —2G Aage Pl — —————
S et

1
L — — -2 V)2,
Ci=—(1—e")—e Pl +2 e P Jpy1 — W’Y&@t(%) ;
1
Dy = ——————~0;b};
A R
— v 1 v
F = —Hpp + Mowe P Ly + 5Y0tay — 57010:(0))? + (A.12)

1+ 27G(a?) 1+ 29¢(a?)

To find the optimal execution volume ¢; at time ¢t € {T" — 2,...,1} which satisfy (A.10), we only
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have to calculate the same derivation at time ¢t =T — 1, that is, completing the square of

Ki(qt) == —Aig} + (BiQ, + CiRy + Dyvy—1 + Fy) g + W, — P,Q,

+ [Gt+1 EETTE 271@(0%;)2}7773(0?)2 - %’7(05)2}@2 + [Ht+1 + Wﬂtaf
- WM@(UW @ [ e T Wmet(agﬂ@&
+ [ - g R R+ [ L + gt
_ W’Y@tﬁbt(af)ﬂ Ry — W&bf@tvt—l - W@tbﬁﬁvt_l
+ Wg(bf)%f—l - {W%bf + #Wgafbﬂvt_l
+ [Zt+1 + Wff’ta? Ty 2;(,5(05)2}7@2(0?)2 + TMQ(@)Q + lft}a
(A.13)
which yields the optimal execution volume ¢} at time ¢t € {T' — 2,...,1}:
g (:: F(se) = B,Q; + Cth/Z Dyvy_q + Ft> — a4+ 00, + e Ry + dyoy_1, (A.14)
where
a; = %; by = %; cp = %; di = % (A.15)

Then, by substituting this into Eq. (A.10), the optimal value function at time ¢t € {T' —2,...,1}
has a functional form as follows:

Vilst] = —exp{ - ’Y[Wt — PQ,
1
o e

S S w2 _ 0 — e P —-p —
T c e ol i [Q (- e ) e
1

207, . _
i [e T+ G0

1 v\2
- W’Y@@(%) }Rt -

1
Y 2 2_ _
T 29 o

+ |+

1 =2
2 v\2 e\2 v
yn; (o — —v(o Q; + |H, + ———=na
)2} t( t) 2 /( t> } ¢ [ i 1+2'th(0§’)2 1

1 _
——————=mibi(c})? | QR
1+2’YQ(U§))27% t(gt) :|Qt t
1

92 v\2 2 —PJ, 0,a?
~0; (07) }Rt + {e 41 + TE 270 (072 NACAE Ly

1
————0:b) Ryvs
L+ 29G(op)2 e

D) Cta;lf) bfg} Vg—1

1 —
———5by Qv —
1+ 2v¢(07)? D Qrvi-1

[ 1 SibY + 2
1+ 29¢(09)27t T 14 29¢,(0?)

Yo7 (0])? +

1 Sea — 1
1+ 290G (092 7 T 21+ 296, (07)?}

(B:Qy + Cyrt + Dyvpq + Ft)Q} }
4A;

J— _2 — J—
= —exp { - [Wt — PQ,; + GiQ; + HiQ, + LQ Ry + J:R} + Li R,

1 v\2
el

+ x¢ +

+ MQui—1 + NiRyor1 + Xpvf ) + Yive1 + Zt:| }, (A.16)
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where

Gt = Gg1 — 21 + 2,7Ct(g%;)2}7773(‘7$)2 - %7(05)2 + 4B_jt;
Hi:=Hi1 + Tmnﬂf - WW%@S(@?)Q — g + gi:};
Lii=(1—-e")+e Pl — WWW@(U?F + %?5
Jp = e_2/)Jt+1 - 271 + 25@(#’)2}703(0;})2 + %5
Ly:=ePLyyq + Wé’taf - WM’M@(#)Q + gt—f;
2
Xi = m@(bfy + 4D_}L5
Y=y + QWlCt(Uf)Qqstbg 1+ QWit(Uf)QCtagbg ’ l;t—f::t;
%= 2+ St = s e A T
T 4F_i , (A.17)
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