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1. Introduction

Risk-sensitive expectation is given by

FHEFO)), (1)

where f and f~! are decision maker’s utility function and its inverse function and F(-)
is an expectation (Howard and Matheson [3]). Eq. (1) estimates risky events through
utility functions. Coherent risk measures have been studied to improve the criterion of
risks with worst scenarios (Artzner et al. [2]): For example, conditional value-at-risks,
expected shortfall (Rockafellar and Uryasev [5], Tasche [6]). Kusuoka [4] gave a spectral
representation for coherent risk measures. Further Yoshida [7] has introduced a spectral
weighted average value-at-risk as the best coherent risk measure derived from decision
maker’s utility functions. This paper discusses risk-sensitive decision making, which will
be useful for artificial intelligence’s quick and responsible reasoning, based on the concepts
of Yoshida [7, 10] and presentation documents in RIMS 2019.

2. Coherent risk measure derived from risk averse utility
e Let P be a non-atomic probability on a sample space 2.

e We deal with the following random wvariables:

X has a continuous distribution function
r+— Fx(r) = P(X < z) and there exists

an open interval I(# () such that

Fx : I+~ (0,1) is strictly increasing and onto

X=¢X:0— (—00,00)

o Value-at-risk at a probability p(€ (0, 1]) is given by the percentile of the distribution
Fx, ie.
VaR,(X) = sup{z € I | Fx(v) < p} = Fx'(p) (2)

for p € (0,1) and VaR;(X) = sup I, where Fi' is the inverse function of F.
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e Average value-at-risk at a probability p(€ (0, 1]) is given by

AVaR,(X) = % /O'p VaR, (X) dg. 3)

Definition 1 (Artzner at al. [2]). A map p: X — (—o00,00) is called a coherent risk
measure if it satisfies the following (i) — (iv):

X) > p(Y) for X,V € X satisfying X <Y. (monotonicity)

cX) =cp(X) for X € X and ¢ € (0,00). (positive homogeneity)

e In this paper we use a law invariant, comonotonically additive, continuous coherent
risk measure p.

e For a probability p(€ (0,1]) and a non-increasing right-continuous function A :
[0,1] = [0, 00) satisfying fol Aq) dg = 1, we define a weighted average value-at-risk
with weighting A on (0, p) by

wWar)(X) = ["var, O M@ da /[N (4)

0

Then X is called a risk spectrum.

Lemma 1 (Kusuoka [4], Yoshida [7]). Let p : X — (—o00,00) be a law invariant,
comonotonically additive, continuous coherent risk measure. Then there exists a risk

spectrum A such that
p(X) = —AVaR}(X) (5)

for X € X. Further, —AVaR;} is a coherent risk measure on X forp € (0,1).
e For the family X', we assume the following (i) and (ii):
(i) There exists a strictly increasing function « : (0,1) — (—o00, 00) such that
VaR,(X) = p+k(p)o, pe€(0,1] (6)

for the means p and the standard deviations ¢ of random variables X € X.

(ii) There exists a probability density function
¢ : (:U’» U)(E (_007 OO) X [07OO)> = [07OO>

for the means p and the standard deviations ¢ of random variables X € X.



e From (4) and (6) we have

AVaR;}(X) = u+ & (p) o, (7)

2) = [ rla) M) d / R

o Let f: 1+ (—o00,00) be a C%-class risk averse utility function satisfying f’ > 0 and

where

f” <0 on I, where I is an open interval.

Lemma 2 (Yoshida [7]). A risk spectrum X\ which minimizes the distance between the
non-linear risk-sensitive form and weighted average value-at-risk (4):

T (f‘l (}9 / pf(VaRq(X))dq> - AVaR;<X>)2 5)

XeXx

for p € (0,1] is given by
Ap) = e hCOUCp).  pe (0] (9)

with a component function C in [7, Theorem 2] if X is non-increasing,
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Fig. 1. Risk-sensitive estimation and coherent risk measures
derived from risk averse utility f.



Remark. Regarding Eq, (8),
o f! (z—l] fopf(VaRq(X)) dq) is the risk-sensitive estimation of X through utility f.
° —AVaR;(-) is a coherent risk measure with risk spectrum .
e AVaR)(X) is the weighted average value-at-risk such that

* AVaR;}(X ) can inherit decision maker’s risk averse sense of utility f, using
risk spectrum X\ as a weight on (0, p).

* AVaRz(X ) has a kind of linear properties like positively homogeneity and trans-
lation invariance in Definition 1(ii)(iii).

Example 1. Let a domain [ = (—00,00) and let f be a risk neutral function
flx)=ax+0
for x € (—o0, 00) with constants a(> 0) and b(€ (—o0, 00)).
e Its optimal risk spectrum in Lemma 2 is A(p) = 1 with C(p) = %.

e The corresponding weighted average value-at-risk (4) is reduced to the average value-
at-risk (3):

1 4
AVaR;(X):AVaRp(X):Z—? / VaR,(X)dg and AVaR,(X) = E(X)
0

for X € X and p € (0, 1].

Example 2. Let a domain I = (—oc, 00) and let a risk averse exponential utility function

1 _ e—TI

T

()
for z € (—o00, 00) with a constant 7(> 0).
o —J}—,,, = 7 is Arrow’s absolute risk averse index (Aroow [1]).

e [ts optimal risk spectrum in Lemma 2 is given by

Ap) = e b DUy pe(o,1],

where the component function C' is given by




Let X be a family of random variables X which have a normal distribution with a density

function ,
1 _ (=)
w(x) = e 202
2mo

for x € (—o0, 00), where p and o are the mean and standard deviation of random variables
XeXx

e Define an increasing function « : (0,1) — (—00, 00) by an inverse function

k(p) = G '(p)

for p € (0, 1), where G is the cumulative distribution function of the standard normal

1 v 22
G(z) = E/ ez dz

distribution

(r € (—00,0)).
e Then we have value-at-risk
VaR,(X) = i+ n(p) o
for X € X.

Suppose X has a distribution function :

21—n/2 | o
= . n=lo=7%
5(10) = 6l0)+ Fos e
for (u, o) € (—00,00)x[0, 00), where ¢(1) is some probability distribution and % o" e

is a chi distribution with degree of freedom n. Then we have Figs. 2-4.
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Fig. 2. Utility functions f(z).
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3. Risk-sensitive decision making with risk constraints

Let p be a coherent risk measure in Lemma 1 and let f be a C?-class risk averse utility
functions in the previous section. Let  be a positive constant. Then we investigate the
following problem.

Problem 1. Maximize the risk-sensitive expected reward
FHE(F(XM)) (10)
with respect to strategies 7 under a risk constraint

p(X7) < 6. (11)

Hence we estimate the downside risks on (0,p). From Lemmas 1 and 2, there exist



risk spectra A and v such that

s -1 ( VR, (()) w) = ' f(VaR,()) 1) = AVAR()

p(-) = —AVaRY(.).
Thus we discuss the following optimization instead of Problem 1.

Problem 2 Maximize weighted average value-at-risks
AVaR} (X™) = B(X™) +rM1) - o(XT) (12)
with respect to strategies m under risk constraints
AVaR)(X™) = E(X™) + x"(p) - 0(X™) > —0. (13)

e Problem 2 is easier to solve in actual cases than Problem 1 because we calculate
only E(X™) and ¢(X™) when we have prepared constants x*(1) and x”(p).
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Fig. 5. Risk-sensitive estimation under utility function f.
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Fig. 6. Coherent risk measure under utility function f.

Using Lemma 2, we can incorporate the decision maker’s risk averse attitude into
coherent risk measures as weighting for average value-at-risks. As we have seen in Example
2, risk-sensitive estimations are approximated by weighted average risks with the best
spectrum A\ for with utility f, and the coherent risk measures p is also given by weighted
average risks with the best spectrum v for with utility ¢ in the same manner. If we prepare
constants £*(1) and x”(p) once from x, A and v like Figs. 5 and 6, we can calculate risk-
sensitive estimation ¢ and coherent risk values p immediately respectively. This kind
of quick risk-sensitive decision making will be applicable to reasonable and high-speed
computing with artificial intelligence reasoning, for example, stock trading, auto driving
and so on.

4. Application to decision making

Yoshida [7] has introduced a spectral weighted average value-at-risk as the best coherent
risk measure derived from decision maker’s utility functions. Using this derived coherent
risk measure, In dynamic Markov decision models, Yoshida [9] has discussed risk-sensitive
running rewards by dynamic programming, and Yoshida [10] has investigated risk-sensitive
terminal rewards by multi-parameter optimization, Yoshida [8] has developed their avail-
ability in high-speed computing. Yoshida [11, 12] has also applied it to portfolio selection
in finance.
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