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ABSTRACT. Egoroff’s theorem and Lusin’s theorem are most fundamental the-
orems in classical measure theory. They established for set-valued measures,
which take values in the family of all non-void, closed subsets of a real normed
space using Hausdorff metric by several authors. In this talk, we consider these
theorems for set valued non-additive measures from the another point of view,
using the topological convergence of set sequences.

1. INTRODUCTION

Egoroff’s theorem and Lusin’s theorem are most fundamental theorems in clas-
sical measure theory and do not necessary hold in non-additive measure theory
without additional conditions. In [1], Wang generalized Egoroft’s theorem in case
of fuzzy measures. Moreover in [2], Wang and Klir gave another generalization
of this result for fuzzy measures, which are null-additive. In [3], Li showed that
Egoroft’s theorem remain true for fuzzy measures without any other supplemen-
tary conditions for them. When a fuzzy measure is not necessarily finite, Li et al.
[4] have proved that Egoroff’s theorem remains valid on fuzzy measures possess-
ing the order continuity and pseudo-metric generating property. In [5], Murofushi,
Uchino and Asahina find the necessary and sufficient condition called the Egoroff
condition, which assures that Egoroff’s theorem remains valid for real valued non-
additive measures, see also Li [6]. In [7, 8], Kawabe extend these results for Riesz
space-valued fuzzy measures. In [9], Li and Yasuda proved Lusin’s Theorm remains
valid for real valued for fuzzy measures, also in [10] Li and Mesir proved Lusin’s
Theorm remains valid for real valued for monotone measures. For the Lusin’s the-
orem for fuzzy measures on vector (Riesz) space-valued, see [11]. Also these results
for an ordered vector space-valued and an ordered topological vector space-valued
non-additive measures, see [12, 13]. For informations on real valued non-additive
measures, see [2, 14, 15].

Recently, by several authors, Egoroff’s theorem and Lusin’s theorem are es-
tablished for non-additive set-valued (multi) measures, which take values in the
family of all non-void, closed subsets of real normed spaces. In [16], Precupanu
and Gavrilut investigate Egoroff’s theorem in a fuzzy multimeasure in the sense
of Hausdorff pseudo metric; see Precupanu and et al. [17]. In [18], Wu and Liu
investigate Egoroff’s theorem in a set-valued fuzzy measure introduced in Gavrilut
[19].

In this talk, we prove Egoroff’s theorem and Lusin’s theorem remains valid for
non-additive multi measures. In particular, we use a topological convergence with
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respect to set-valued mappings, see [20, 21]. We consider the convergence of point
as a weak setting.

2. PRELIMINARIES

Let R be the set of all real numbers and N the set of all natural numbers. We
denote by T the set of all mappings from N into N. Let X be a non-empty set
and F a o-field of X. Let Y be a topological vector space (see [22, 23]). Let 6
be an origin of Y, and By a system of neighborhoods of § € Y. Note that for any
neighborhood U € By, there exists W € By such that W is balanced and satisfy
W cV.
We denote Py(Y') be a family of non-empty subsets of Y. Let P.;(Y) be a family
of closed, non-empty subsets of Y. We consider the following two types convergence.
Let {E,} C Po(Y) be a set sequence and E € Py(Y). We say that {E,} is
(A) type (I) convergent to E, if for any e € E there exists a sequence {e,, }, which
converges to e, that is, for any U € By there exists a ng with e,, —e € U
for any n > ng, such that e, € F,, for every n;

(B) type (II) convergent to E, if given j € N, for any sequence {e,,} C Y,
which converges to e € Y, that is, for any U € By there exists a jo with
en; —e €U for any j > jo, if e,, € Ey,, then e € E.

J
If (A) holds, we will write Lim", E, = E and if (B) holds, we will write
Lim"_E, = E. If both (A) and (B) hold, we will write Lim,_,ocE, = E and
said to be Kuratowski convergence [20, 21].

3. THE CONTINUITY OF NON-ADDITIVE MULTI MEASURES

Definition 1. Let (X, F) be an arbitrary measurable space, and let pn: F — Py (Y)
be a set-valued mapping. p is said to be a non-additive multi measure on X if the
following conditions (i) and (ii) hold.

(i) p(0) = {6},
(ii) for A,B € F with A C B, u(A) C u(B) (monotonicity).

Moreover, we consider the following conditions.

Definition 2. Let p: F — Po(Y) be a non-additive multi measure. p is said to
be
(i) continuous from above type (I) if LimY, _1(A,) = u(A) whenever {A,} C
F and A € F satisfy A, \( A;
(ii) continuous from below type (I) if LimY, _u(A,) = u(A) whenever {A,} C
F and A € F satisfy A, N A;
(i) continuous from above type (II) if Lim™) __1(A,) = p(A) whenever {A,} C
F and A € F satisfy A, \( A;
(iv) continuous from below type (1I) if Lim")__1(A,) = u(A) whenever {A,} C
F and A € F satisfy A, S A.
(v) p has property (S) if for any sequence {A,} C F with u(A,) — {0}, there
exists a subsequence {A,, } such that u(N2, U, A, ) = {6}; see [25].
(vi) A non-additive multi measure p is said to have property weak-(S) if for any
(B} € F, with LimY, _u(E,) 3 0, there exists a subsequence {E,,} of
{En} such that p (ﬁ?‘;l U, E,.) 2 0. Note that property weak-(S) implies
property (S).
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Example 3. Let (X, F) be a measurable space, m : F — Ry a non-additive
measure on F, Y = R? and Rf_ is a positive cone. Consider the order interval with
respect to Rf_ defined by

0,8 = {y € R? |y € (a +R2) N (h—RE)},
where a,b € R2.

Define p(A) := [(0,m(A)), (m(A),m(A))]Ri for any A € F. Then p is a non-
additive multi measure on F.

Definition 4. Let pi: F — Py (Y) be a non-additive multi measure. i is said to
be
(i) strongly order continuous type (1), if it is continuous from above at measur-
able sets of measure zero, that is, for any {A,} C F and A € F satisfying
An N\ A and p(A) = {6}, it holds that Lim",__u(A,) = {6};
(i) strongly order semi-continuous type (I), if for any {A,} C F and A € F
satisfying A, \y A and p(A) 3 0, it holds that Lim'Y, _u(A,) 3 0.

Note that strongly order semi-continuous type (I) implies strongly order contin-
uous type (I).

Definition 5. Let u: F — Py (Y) be a non-additive multi measure. p is said to

be
(i) null-additive, if for any B € F with u(B) = {6}, then u(AUB) = u(A) for
any A € F;
(i) null-subtractive if for any B € F with u(B) = {0}, then (A \ B) = u(A)
for any A € F.

(iii) null-null-additive, if for any A,B € F with u(A) = w(B) = {6}, then
u(AUB) = {0} for any A€ F;

(iv) weak null-null-additive, if for any A, B € F with u(A) 3 0 and u(B) 3 0,
then w(AU B) 3 0 for any A € F;

(iv) w is said to have the weak pseudometric generating property, abbreviated as
weak-p.g.p., if for any sequences {A LB} © F, if LimY, _u(A4,) > 6
and Lim(l)_mou( ) 3 0, then LimY, (A, UB,) 3 6.

(iv) w is said to have the pseudometric generating property, abbreviated as p.g.p.,
if for any sequences {An}, {Bn} C F, if LimL, _u(A,) = {0} and
Lim{)), . u(By) = {6}, then Lim{}),  p(A, U B,) = {6}.

Lemma 1. Let i : F — Py(Y) be a non-additive multi measure. Then the null-
additivity of p is equivalent to the null-subtractivity of it.

4. EGOROFF’S THEOREM

Definition 6. Let p: F — Py (Y) be a non-additive multi measure.

(1) A double sequence {Ap, »} C F is called a weak-u-regulator if it satisfies
the following two conditions.
(D1) A, n D Asy, ns whenever n < n'.
(D2) p(U=y Moz Am,n) 2 0.
(2) A double sequence {A,, n} C F is called a p-requlator if it satisfies the
following two conditions.
(D1) Ap,n D Am, n whenever n < n'.
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(D2) H (U?;;:I rW%O:l Am,n) = {9}
(3) p satisfies the weak-Egoroff condition if for any weak-p-regulator {Am n},
there exists a T € T such that p(Ugs_1 A, r(m)) > 0 holds.
(4) p satisfies the Egoroff condition if for any p-requlator { Ay, n}, there exists
a1 €T such that p (U?ﬁzlAm,T(m)) = {0} holds.
Note that Egoroff condition implies weak Egoroff condition.

It is easy to check that the following lemma holds.

Lemma 2. Let p : F — Pu(Y) be a non-additive multi measure.  satisfies
the weak-Egoroff condition (resp. Egoroff condition) if (and only if), for any
double sequence {A, »} C F satisfying (D2) in Definition 6 and the following
(D1"), it holds that there exists a T € T such that p (Upe_1 A, r(my) 2 0 (Tesp.
M (U?s:lAm,‘r(m)) = {H})
(DY) Am n DO Ay, ns whenever m > m/ and n < n'.
Definition 7. Let (X, F, u) be the non-additive multi measure space, f, and f € F
form=1,2,....
(1) {fn} is said to converge to f p-almost everywhere on X, which is denoted
by fn “5 f, if there exists A € F such that u(A) = {0} and {f.} converges
to f on X\ A.
(2) {fn} is said to converge to f p-almost uniformly on X, which is denoted
by fn “S f, if there exists {A, | j € v} C F and there exists v € ' such
that (1(Ay) = {0} and {fn} converges to f uniformly on X \ A,.
(3) We say Egoroff theorem holds if for u if { fn} converges p-almost uniformly
(u-a.u.) to f whenever it converges p-a.e. to the same limit.

Under the above settings we have the following theorems.

Theorem 8. Let p: F — Po(Y) be a non-additive multi measure. If y satisfies
the Egoroff condition, then it satisfies the weak-Egoroff condition.
Theorem 9. Let u : F — Py(Y) be a non-additive multi measure. Then the
following two conditions are equivalent.

(1) p satisfies the Egoroff condition.

(2) The Egoroff theorem holds for p.
Theorem 10. Let p: F — Py (Y) be a non-additive multi measure. Assume that
there exists B € F with u(B) = {0} and for u-regulator {Am.n},

(Uni=1 MaZy Am,n) N B # 0

holds. If p satisfies the weak-Egoroff condition, then the Egoroff theorem holds for
1t

5. SUFFICIENT CONDITIONS FOR WEAK-EGOROFF CONDITION

Next we give several sufficient conditions for the establishment of weak-Egoroff
condition.

Theorem 11. We assume that Y is locally conver spaces. Let p : F — Pu(Y)
be a non-additive multi measure. If p satisfies continuous from above type (I),
continuous from below type (II), and null-additive, then the weak-Egoroff condition
holds for p.
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Next we consider another sufficient condition.

Definition 12. The double sequence {rm, n} of sets in Pu(Y) is called a weak
topological regulator if it satisfies the following two conditions.

(1) T n D Tm,n+1 for any m, n € N.

(2) For any m € N, it holds that NS 7 p.n 3 0.

Definition 13. The double sequence {ry, ,} of sets in Py (Y) is called a topological
requlator if it satisfies the following two conditions.

(1) m,n D Tm,n+1 for any m, n € N.

(2) For any m € N, it holds that NS 7. = {0}.

Definition 14. We say that P, (Y') has property (EP) if for any topological regu-
lator {rm, n}t in Pa(Y), there exists a sequence { Py} of set in Pe(Y') satisfying the
following two conditions.

(1) Lim{’, P, = {6}.

(2) For any k € N and m € N, there exists an no(m, k) € N such that
{rm,n} C Py for any n > ng(m, k).

Definition 15. We say that Py (Y) has property weak (EP) if for any weak topo-
logical regulator {rpy, »} in Pa(Y), there exists a sequence {Py} of set in Pu(Y)
satisfying the following two conditions.

(1) Lim{", P 36.

(2) For any k € N and m € N, there exists an no(m, k) € N such that
{rm,n} C Py for any n > no(m, k).

Theorem 16. Let p: F — Py (Y) be a non-additive multi measure. We assume
that p is strongly order semi-continuous type (I) and satisfies property weak-(S).
We assume that Py (Y) has property (EP). Then p satisfies the weak-Egoroff
condition.

6. REGULARITY

Let X be a Hausdorff space. Denote by B(X) the o-field of all Borel subsets of
X, that is, the o-field generated by the open subsets of X. A non-additive multi
measure defined on B(X) is called a non-additive Borel multi measure on X. First
we give a lemma.

Lemma 3. Let p: B(X) — Pa(Y) be a non-additive Borel multi measure which
is strongly order continuous Type (I) and has property weak-(S). We assume that
P.(Y) has property (EP). Then the following two conditions are equivalent:

(i) p is null-null-additive.

(ii) For any U € By and double sequence {Amn} C F satisfying that Apmn | D
asn — oo and w(Dy,) = {0} for each m € N, then there exists a sequence {1} of
elements of T such that Lim,(jloo,u (U Ay () = {0}

Lemma 4. Let p: B(X) — Pa(Y) be a non-additive Borel multi measure which

is strongly order semi-continuous Type (I) and has property weak-(S). We assume

that P (Y) has property weak-(EP). Then (i) implies (ii):

(i) p is weak null-null-additive.

(ii) For any U € By and double sequence {A, ,} C F satisfying that A, | Dy,

asn — oo and u(Dy,) 3 0 for each m € N, then there exists a sequence {1} of
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elements of T such that Lim(" (Uan:1Am,rk(m)) >0.

m—)OOILL

Then we have the following.

Definition 17 ([26]). Let pu : F — Pu(Y) be a non-additive Borel multi mea-
sure. p is called weak regular if for any U € By and A € B(X), there exist a
sequence of closed set {F{}} and an open set {G},;} such that F} C A C G and
Lim{), (G \ Fp) > 6

Definition 18 ([26]). Let u: F — P (Y) be a non-additive Borel multi measure. p
is called regular if for any U € By and A € B(X), there exist sequences of closed sets
{F} and open sets {G:} such that Fj C A C Gy, and Lim{), _u(Gy. \ F) = {6}

n=scol

Lemma 5. If i is reqular, then it is weak-reqular.

Theorem 19. Let X be a metric space and B(X) a o-field of all Borel subsets of
X. Let p: B(X) = Pua(Y) be a non-additive Borel multi measure on X which is
p.g.p and satisfies weak-Egoroff condition. Then p is weak-reqular.

By theorem Theorem 10, we have

Corollary 20. Let X be a metric space and B(X) a o-field of all Borel subsets of
X. Let p: B(X) = Pua(Y) be a non-additive Borel multi measure on X which is
p.g.p and satisfies weak-Egoroff condition. Assume that there exists B € F with
w(B) = {0} and for p-requlator { A, »}, (UX_1 NS, Ay ) N B # 0 holds. Then

W s reqular.
We have the following.

Corollary 21. Let X be a metric space and B(X) a o-field of all Borel subsets
of X. Let ji: B(X) — Pu(Y) be a non-additive Borel multi measure on X which
is null-null-additive, continuous from above Type (I) and has property (S). We
assume that Pe(Y) has property (EP). Then u is regular.

7. LUSIN’S THEOREM

In this section, we shall further generalize well-known Lusin’s theorem in classical
measure theory to set-valued non-additive measure spaces in the case where the
range space is an ordered topological vector space by using the results obtained in
Sections 2-3. For the real valued fuzzy measure case, see [9, 10], and the Vector(
Riesz space)-valued fuzzy measure case, see [11]. For the monotone set-valued
measure case, see [28].

By Theorem 19, we have the following.

Theorem 22. Let X be a metric space and p : B(X) — E a non-additive Borel
multi measure which is weak-p.g.p and satisfies the weak-Eqgoroff condition. If f is
a Borel measurable real valued function on X, then there exists a sequence of closed
set {F,,} such that Lim'", _u (X \ F,) 260 and f is continuous on each F,.

By theorem 10, we have the following.

Corollary 23. Let X be a metric space and p : B(X) — Pu(Y) a non-additive
Borel multi measure on X which is p.g.p and satisfies weak-Egoroff condition. As-
sume that there exists B € B(X) with w(B) = {0} and for p-requlator { Ay, n},
(Up—1 MpZ1 A n) NB#0
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holds. If f is a Borel measurable real valued function on X, then there exists a
sequence of closed set {F,,} such that LimD, ;i (X \ F,) = {0} and f is continuous
on each F,.

Corollary 24. Let X be a metric space and p : B(X) — Py(Y) a non-additive
Borel multi measure on X which is p.g.p and satisfies Egoroff condition. If f is a
Borel measurable real valued function on X, then there exists a sequence of closed
set {F,,} such that Lim (X \ F,,) = {6} and f is continuous on each F,.

n—r oo

Theorem 25. Let X be a metric space and p : B(X) — Pa(Y) a non-additive
Borel measure on X which is weak null-null-additive, continuous from above Type
(I) and has property weak (S). We assume that P (Y) has property weak (EP). If
f is a Borel measurable real valued function on X, then there exists a sequence of
closed set {F,} such that Lim{" (X\ F,) >0 and f is continuous on each F,.

n—r oo

We also have the following.

Theorem 26. Let X be a metric space and p : B(X) — Pa(Y) a non-additive
Borel measure on X which is null-null-additive, continuous from above Type (I)
and has property (S). We assume that Pe(Y') has property (EP). If f is a Borel
measurable real valued function on X, then there exists a sequence of closed set
{F,} such that Lim ) (X \ F,) = {0} and f is continuous on each F,.

Tn— 00
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