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ABSTRACT. We present a level two generalization of Arakawa-Kaneko zeta function introduced
by T. Arakawa and M. Kaneko. We prove certain formulas for Arakawa-Kaneko zeta function
of level two. Also, we study the level two generalization of poly-Bernoulli numbers, which is
referred to as the poly-cosecant numbers. We obtain a recurrence and two explicit formulas for
poly-cosecant numbers. Moreover, we extend those formulas for multiple versions in a similar
manner. This is in part a joint work with M. Kaneko and H. Tsumura.

1. INTRODUCTION
(k)

Poly-Bernoulli numbers (Kaneko 1997; Arakawa-Kaneko 1999) have two versions, namely By,
and C,gk), which were defined by Kaneko in [5] and in Arakawa-Kaneko [2] by using generating

series. For any integer k € Z, the sequences of rational numbers {BT(zk)} and {Cﬁk)} are defined
by

lel—e R kt
B)
1T T2

and

Lip(1—e™) < "
-1 Z Cn nl’
n=0
where Lig(z) is the poly-logarithm function (or rational function when k& < 0) defined by

[e.9]

Lisz) = 30 20 (el <),

m=1
Since Lij(z) = —log(1 — 2), the generating functions on the left-hand sides respectively become

tet t
d
et —1 an et —1

when k£ = 1, and hence BS) and C’,(@l) becomes the usual Bernoulli numbers. There are various
properties of poly-Bernoulli numbers (e.g.: explicit formulas, duality relations, etc.).
In this paper, we study the level two version of poly-Bernoulli numbers, which we also call

the poly-cosecant numbers (Sasaki 2012 [9]; Kaneko-M.-Tsumura 2019 [6]) DY defined by

sinh ¢ " onl
n=0
for k € Z, where Ag(z) is the poly-logarithm function of level 2 defined by

00
z2n+l

Ak(2) = QZW (z€C; |2| < 1),
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which was first studied by Sasaki (see [9, Definition 5]). In particular, for & = 1, we have
A1(z) = 2tanh™!(2). In this case, Dq(ll) becomes the ordinary cosecant number D,, defined by

o)

==yl
sinht "l

n=0

Note that Dggﬂ =0 for (n € Z>o).

We may define the multi-poly-cosecant numbers D,(qkl""’k’") b

Y

Ak, .. ke tanh(/2) = (b g 1"
) ) ’ — D( Lyeens 7q)_
sinht nz—:o " n!’

where the function .

y4
Aky, .. k) =20 > -

kr
0<my<---<my ml My
m;=i mod 2

for ki,...,kr € Z is 2" times Ath(ky,...,k,;2) which was introduced in [8, §5]. (Our Ag(z)
is A(k;z)). We can regard D k) a5 a level 2-version of the multi-poly-Bernoulli numbers
BULek) n g ek,
Now we recall the following lemma.
Lemma 1.1. [8, Lemma 5.1]
(1) Forkq,... k. EZzl

d LAk, o k1, ke — 15 2) (kr > 2)
ZA - — P ) ’ ’ ) =
dt (k’h K 2) { %ZA(klv-~'7kr—l;Z) (kr: )

(2) A(1,...,1;2) = L (Ay(2)"

In their research, Arakawa and Kaneko [2] studied the single variable function

1
Clki, .o kro1ss) = > =

y oo T s
O0<mi<---<mp_1<mn my my._ mpy

for the purpose of establishing the connection between MZVs and poly-Bernoulli numbers. This
is absolutely convergent for Re(s) > 1. They have shown that the poly-Bernoulli numbers can
be expressed as special values at negative arguments of certain combinations of these functions.
Corresponding to these functions, Arakawa and Kaneko [2] defined the following zeta function
which is known as Arakawa-Kaneko zeta function as

1 o] 7fs—l ) .
f(k’l,...,kms) = F(S) /0 et— szl,...,kr(l_e )dt

where 7, k1,...,k, € Z>1, s € C with Re(s) > 0.

For r = 1 we denote £(k; s) by &k (s). Note that & (s) = sC(s +1).

In [8] Kaneko and Tsumura defined the single variable multiple zeta function of level-2 as
follows.

1
TO(klv"'7k7“—17S) = Z k1 kr—1

e - S
O<my<---<my my m,._; m;
m;=i mod2

for k1,...,kr—1 € Z>1 and Re(s) > 1.
Furthermore, as its normalized version,

T(k?l, oo ,k,«_l, S) = QTTo(kl, ceey k?,«_l, S).
The values T'(k1, ..., kr—1,k.)(kj € N, k. > 2 : addmisible) are called the multiple T-values.
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When k, > 1, we see that
A(k‘l,...,k}r;l) :T(k‘l,...,kr).

Now according to these functions, Kaneko and Tsumura (see [8, Sction 5]) defined a level
2-version of &(ky,..., ky;s)

k1, ... kp;s) =

for k1,...,k, € Z>1 and Re(s) > 0.

1 /OO ts_1A(]€1, ..., ky;tanht/2)
I'(s) Jo sinh(t)

2. FORMULAS ON THE LEVEL 2 VERSION OF ARAKAWA-KANEKO ZETA FUNCTIONS

In this section, we prove certain formulas for Arakawa-Kaneko zeta functions of level two. We
obtain a level two version of [2, Proposition 2| as follows.

Proposition 2.1. (1) For Re(s) > 1

1 o] 2fs—l
T(ki,..., kn_ = A(ky, ... kp_1;e )dt.
( 1, ) 178) F(S) /0 Slnh(t) ( 1, ) 1;€ )

(2) For Re(s) >1,n>2,7>0
/ ts+j_1A(kl7 R kn—l; e_t)dt = F(S + ])T(k17 vy kn—?» § +J + kn—l)'
0

Proof. To prove (1), we use the definition

1
T(kl,...,k‘n_l,s):2” Z ko Tl

0<m1<--<mn
m;=1 mod2

1 1
=2" ) s X

0<my<--<mmnp—1 my n—1 Mp=mMnp_1+1
m; =% mod2 mpZmp_1 mod2

1 1 % ntyso1
— = STt 2.1
n’ r(s)/o c 21)

to convert the inner sum into the integral. Then we can get the desired results.
To obtain (2), we only need to use the definition

and use the standard expression

e—mn_lt

kl kn—1
O0<my1<---<mnp—1 my -y,
m; =1 mod2

A(/ﬂ, e ,k’n_l; e_t) = 2n—1

and use equation (2.1) to obtain

/ ¥ mnatgsti1gy — D5 +7)
0

s+j
My

O

Now we obtain the following lemma associated with the multi-poly-logarithm functions of
level two, corresponding to [7, Lemma 3.5].

Lemma 2.2. Let k be any index. Then we have

1—2z 1—2z
A [ k; = E K:DA|1,....1; AK;
<’1—|—Z> : Ck( a]) 9 s ’1—|-Z ( ,Z)
k/7.720 ]
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where the sum on the right runs over indices X' and integers j > 0 that satisfy |K'| + j < |k|,
and Cx(k'; j) is a Q—linear combination of T—wvalues of weight |k| — |k'| — j.
Proof. We prove this by induction on the weight k. When k = (1), we have the trivial identity
1-— 1-—
V) a ()
142 142

Suppose the weight |k| > 1 and assume the statement holds for any index of weight less than

k.
For k =Fki,... ky, set ko = (k1,...,kn_1,kn —1).

First, assume that k is admissible. Then by the differential relation and the induction hy-
pothesis, we get,

d 1—=2 2 1—2z2
LA (K . Ak =2
dz <’1+z> 1— 22 < ’1+z>
2
1— 22
1

1—2z
1+2

d G BHA[L .1

Let the depth of 1 be s. Again by the differential relation we see that

2 1—=2 d 1—=2
All....1;: —— | A(l;2) = — All....1;—— | Al,i +1;
1—22 9 bl ’1+z (’Z) dz 9 b ’1—|—Z (7Z+ 72)
J J

R

Now substitute this in (2.2). Then we get

1=z 1-=2
Alki— ) =~ LA L., 1;—= | A(Li+1;
( 71+Z> 1]Z>:00k(a]) ) D1+ (77—|— 72)“—0

where C' is a constant. Since,

1—
mA|1,...,1,—2
2—0 ~—— 1+ 2z

J

A(l,i+1;2) =0,

we have C' = T'(k). Now we can obtain the desired result.
When k is not necessarily admissible, we write k = (kg, 1,...,1) with admissible ky and
N——

q
g > 0. Now we prove the formula by induction on ¢. Since, kg is admissible the case ¢ = 0 is

already done.
Suppose ¢ > 1 and assume the claim is true for smaller g. Then by the assumption we get

1=z s LT )
A(k71+z = ) Ci(m;j)A Lo Lig— A(m; 2)

z

where k' = (kg, 1,...,1). Now multiply both sides by Ay (%I_Z) Then by the shuffle product,
——

q—1
the left-hand side becomes of the form

1—2z 1—2z
Alk,—— Alk),1,...,1;
q <71+2)+ Z 0> ) ’1—|—Z

k{:admissible g—1
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By using the induction hypothesis, each term in the sum can be written in the claimed form.
Since,

1— 1-— 1—
A Va2 =G+nalL,.., 2
1+ 2 ~—— 142 ~——— 142
J Jj+1
the right-hand side also becomes the claimed form. Hence we get the desired form. U

The following theorem shows that the function )(k; s) can be written in terms of 7'—functions.
Theorem 2.3. Let k be any index set.
Nf(s+i—1 .
s =Y, Ck(k’;J)( . )T(k’;s+3)
K720 J

Here, the sum is over indices k' and integers j > 0 that satisfy |k'| + j < |k|, and Cx(K';j) is a
Q—linear combination of T—wvalues of weight |k| — |k’| — j.

Proof. Let r, | be the depths of k and k’ respectively. Put z = e~ in the above lemma.

1—et
Alk; Cx( L., L—— | AK;e ™).
< 1—|—€_t> k%;() K a] ) 1+ et ( € )
= J

By using Lemma 1.1 we can write the above equation as

A(k;tanht/2) = > Ci(K 7] AK;e™). (2.3)
k/,5>0

We know the definition,

bk 5) = 1 | /OOO ts_lA(k;tanht/Q)dt

I'(s sinh(¢)

Finally, we substitute equation (2.3) and in the above equation and apply Proposition 2.1 to
obtain the desired formula for i (k; s).
O

3. RECURRENCE AND EXPLICIT FORMULAS FOR POLY-COSECANT NUMBERS

In this section, we will obtain recurrence and explicit formulas for poly-cosecant numbers.
Furthermore, we discuss about their multi-indexed versions.

The following proposition gives a recurrence formula for Dflk:) which can be derived in two
ways by using definition and the iterated integral expression of the generating function. Here
we only consider the proof by definition.

Note that since Ag(tanh(¢/2)) = sinh(¢), Déo) —1and D) =0 for all n > 1.

Proposition 3.1. For any integers k and n > 0,

L3]

_ n+1 k)
D,(f 1) _ Z ( n >D£_2m.
= 2m +1

Proof. By the definition of poly-cosecant numbers we have that,

tn
; k
Ay (tanh(t/2)) = sinh tnE ODq(1 )m
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Differentiate with respect to t,

Aj_1(tanht/2) " -t
<nh —coshtnz;JD —l—smhtZD (n =11

By using the definitions we can write the above equation as,

o0 n o0 2 > n > t2m+1 0 tn—l

k-t _ " mt" T (k)
nE::oan 1n!—m§_: 2m! D"k n!+n;(2m+1)!;D”k (n—1)!
tn
B Z Z D” 2m (2m)(n — 2m)!

m=0n=2m

k) "
D! =n 42
+Z Z mGm i —am 1) (=t 2m)

m=0n=2m

oo 3] oo Lz]

DM NALANTES 35 o N AN

n=0 m=0

By equating the coefficients of %n, we can get the desired result.

When k > 0, we may want to write this as
l5]
_ +1 k)
n+ 1) D% — pk=1) _ " D! n>0).
(IL—l- ) n n — om -+ 1 n—2am (IL> )
Note that D =1 for all k € Z.
Let z(py = x(r —1)---(z —n + 1) and 2™ = z(x +1)---(x +n — 1). Then the Stirling
numbers of the first kind is defined by

2 = En: [Z} Pl

k=0
k)

In the following theorem we obtain two explicit formulas for DﬁL

Theorem 3.2. For any k € Z and n > 0, we have

(1)
L%J 2m+1 n
D¥) =4 @ Z Z n(gptatl _ 1)(”) {n—q} [2m+1] M.
m02m+1+p1q0 q) | 2m P lp+a+1
and
(2)

1% nt1

pw—y L5 UML) fng

o (2m + 1)k+1 2r—1 2m p J
m=0 p=2m-+1

To prove the first formula of Theorem 3.2, we prepare the following lemma.
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Lemma 3.3. Forn > 1 we have,
n d " _ . n—m | T d "
(&) el ()

Proof. We can prove this by induction on n. For n = 1 both sides equal to m%.

Suppose the formula is true for n. Then,

n+l [ 7 — entl 2 el
v (dax) o <d3:> (dax)

I
M
=
3
I
3
+
/N
3
| —
3 3
| I
_|_
3 z
| S
—
_
~_
S
Q.
S~
~_
3

0 +1
This shows the formula is true for n + 1. Therefore the formula holds.

Here we have used [n] =0 and { " ] 0.

O
Now we give the proof for the first formula of Theorem 3.2.
Proof of Theorem 3.2(First Formula). We write
R t"  Ag(tanh(t/2))
S ool = Alhi2)
" nl sinh ¢
n=0
5 i (tanh(t/2) )2m+1 1
(2m + 1)k sinht
m=0
0 el(et 2m
—1
—4 (e = D)™ (3.1)
2m )R (ef + 1)2m+2
m:O
Since
1 -D" /d\" 1
= (D" (4 , (3.2)
(x + 1)ntt n! \dr) x+1

we see by setting x = ¢! and using Lemma 3.3 that

Wznvz i (@) wr 3)

From
t S
=N"B,—
et —1 Z_:O 1q!
q_
and
1 1 2
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we have
1 > ta—1
—_—= E 1 -29)By——.

By taking the p-th derivative of both sides, we get
(3] —p—1 0
(i)p (L) =y aoamB Py g grrerty Boren B
dt el +1 Pt q (g—p—1)! Rt p+qg+1qg!
and we substitute this in (3.3) to obtain

nt

i H
- |§:§:

q=0 p=1

2P+q+l M E
p+q+1¢

ng

_ grratl) Bpiqt1 1
p+q+1¢

1
< 3
—_

From this, we have
et e—(2m+l)t
(ef + 1)2m+2 — (e—t T 1)2mt2

oo 2m+1
Z Z 1)P+a |:2m+ 1:| (1— 2p+Q+1) Bpigr ﬁ
2m—|—1'qop1 p p+qg+1q!

Together with the well-known generating series ([1, Proposition 2.6 (7)], note that {Q:n} =0if
s < 2m)

o0
tS
(ef — 1) (2m) 'ZO{Qm}
s=

we obtain
€t(6t _ 1)2m
et + 1)2m+2

co 00 2m+l

1yPHa(l 2P+q+1)[2”14‘1] {28 } Bpigr1 177
m

gl
quOpl p pta+tlas
oo n 2m+l
SN S (maypran - grrarty (M) (2L 0 g Brtgrn 1"
2m—|—1n e q P 2m | p+q+1n!

Substituting this into (3.1), we have

[e.e] tn
(k)Z_
S0,
e’} co n 2m+l1
2m+ 1| [n—q| DBprg+1 "
mZ::OQm—l—lk“nz%qZ;]; ) q P 2m | p+q+1n!
o0

om0 2m+1’“+1p q) | » 2m [ p+qg+inl’
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n—q
2m
By equating the coefficients of ™ /n! on both sides, we obtain the desired result.

(We have used the facts that Bpiq11 =0if p+ ¢ > 1 is even and =0ifn—q<2m.)

We can easily prove the second formula of Theorem 3.2 by using the definition of the n-th
tangent numbers of order k, T}, ,, for the non negative integers n and k, by the generating
relation (see [3, P. 259]).

t t
an® Z Tnm—p) (3.4)

and the formula in [4, Proposition 9]

T = (—1)" " (—1)" m:k(—l)mzn—m {;‘l} <7Z__11> 7:—,' (3.5)

Proof of Theorem 3.2(Second Formula). From the definition we have

ZD 00— Arlanb/2) _ 4y, (ranb(/2)

d (tanh(t/2))2m+1
=2— . .
at ZO @m + )FH (36)
By using tanh¢ = —itan(it) and equations (3.4) and (3.5), we can write
(tanh(t/2))™ = (—i)"m! Z Tann -
(i —1\ [n) i
B —1) \pJ 27 n!
n=m p=m
Sk (r e
m—1) |pJ n!"
n=m p=m
We therefore have
Sophoy e Y (zm) Li)a
n=0 m=0 n=2m p=2m
o 5] ) n
Z Z p n+1]t"
2m—|—1k+1 2m) \p+1[ n!’
n=0 :0 p=2m
By equating the coefficients of " /n!, we complete the proof of the theorem. O

Remark 3.4. In very similar manners, by using the definition of multi-poly cosecant numbers

o0

A(kl,...,kr;tanht/2) . (k1 ~--kr)t
sinh ¢ N ZD”

we obtain the recurrence and explicit formulas for multi-poly-cosecant numbers as follows.
Notations: For any index set k = (k1,...,k;) € Z%, put
k= (ki,....kr—1, k. — 1).
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Proposition 3.5. For any admissible index k and n > 0,

3

15)
k) n+1 (k)
DI =2, (2m+1>D”—2m

m=0

Theorem 3.6. (1) For any index set k and n > 0,

. 1 my n—my—+1 . n
p-yt ¥ ey Y Core-y(?)
=1 q=0

0<mi<-<mp_1<mp<n+42 701 7 MMy q
m; =1 mod2
wd 4 {mr} Bpig+1
my—1J | p|p+q+1
(2) For any index set k and n > 0,

1 L (—yrrmepl fp— 1
AR I <n]j —1> {n;1}_
0<my < <mp<n+2 L p=m, T
m; =i mod2
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